2005中国药典所需色谱柱快速检索
- 格式:xls
- 大小:255.50 KB
- 文档页数:7
中国药典2005版与2010版“含量测定”的对比一·基本规则为方便统计,简写相关名词。
列表如下。
含量测定 简写 数量化学滴定,双相滴定,电位滴定,永停滴定 滴定旋光度测定法 旋光原子吸收分光光度计 原子吸收氧瓶燃烧法 氧瓶燃烧氨基酸分析法 氨基酸气相色谱法 气相维生素A,B,D检定法 维生素A分子排阻色谱法 分子排阻紫外-可见分光光度计 紫外放射化学 放射高效液相色谱 HPLC生物检定 生物物理称重 称重薄层色谱 TLC无 无挥发油测定法 挥发油氮测定法 氮测定法荧光分析法 荧光桉油精含量测定法 桉油精含量测定法火焰光度法 火焰光度法水分测定法 水分测定法照氮测定法 照氮测定法二·药品统计2.1总数统计2005版记载 2005版实测 2010版记载 2010版实测一部 1146 1189 2165 1839 二部 1967 1982 2271 2280 合计 3113 3171 4436 4119 注:1.统计时对于复方药物的【含量测定】,采取单列成分均计算在内的方案,所以实测的理论上应大于记载的数量。
2.对于2010版一部,实际发现药典目录记载的约1700种,但药典摘要中记载为2165种,目前尚不清楚原因。
实际统计时发现时部分药物的后面会附录某一种物质的浸出物的相关规定,推测药典可能亦把该项列为一种药,目前,该猜测未得任何资料证实。
3.由于第一条的原因,该统计反映的是药典中所有涉及到【含量测定】的单列药物的不同技术方法的统计分析。
2.2各部统计2.2.1中国药典2005版一部【含量测定】统计 项目 含量测定 数量 百分比 无 无 494 41.55 高效液相色谱 HPLC 478 40.20 薄层色谱 TLC 50 4.21 化学滴定 滴定 413.45 紫外分光光度计 紫外 383.20 气相色谱法 气相 33 2.78 挥发油测定法 挥发油 33 2.78 物理称重 干燥 12 1.01 氮测定法 氮测定法 7 0.59 原子吸收分光光度计原子吸收 1 0.08 氨基酸分析法 氨基酸 1 0.08 桉油精含量测定法 桉油精含量测定法1 0.08各方法所占比例如图2.2.2中国药典2005版二部【含量测定】统计 项目 含量测定 数量 百分比 化学滴定 滴定 780 39.35 高效液相色谱 HPLC 565 28.51 紫外分光光度计 紫外 383 19.32 生物检定 生物 90 4.54 无 无 88 4.44 物理称重 干燥 201.01 维生素检定法 维生素 13 0.66 旋光度测定法 旋光 12 0.61 放射化学 放射 11 0.55 原子吸收分光光度计原子吸收 6 0.30 氮测定法 氮测定法 6 0.30 分子排阻色谱法 分子排阻 3 0.15 气相色谱法 气相 2 0.10 荧光分析法 荧光 2 0.10 氧瓶燃烧法 氧瓶燃烧 1 0.05各方法所占比例如图项目 含量测定 数量 百分比 高效液相色谱 HPLC 1206 65.58 无 无 348 18.92 气相色谱法 气相 98 5.33 化学滴定 滴定 532.88 紫外分光光度计 紫外 45 2.45 薄层色谱 TLC37 2.01 氮测定法 氮测定法 19 1.03 物理称重 干燥 16 0.87 挥发油测定法挥发油 13 0.71 原子吸收分光光度计 原子吸收 3 0.16 旋光度测定法旋光10.05各方法所占比例如图项目 含量测定 数量 百分比 高效液相色谱 HPLC 1001 43.90 化学滴定 滴定 716 31.40 紫外分光光度计 紫外 254 11.14 无 无 131 5.745614 生物检定 生物 84 3.68 气相色谱法 气相 19 0.83 物理称重 干燥 17 0.75 旋光度测定法 旋光 130.57 电位滴定 电位 12 0.53 氮测定法 氮测定法 8 0.350877 原子吸收分光光度计 原子吸收 5 0.22 离子色谱 离子色谱 4 0.175439 氧瓶燃烧法 氧瓶燃烧 3 0.13 氨基酸分析法 氨基酸 3 0.13 分子排阻色谱法 分子排阻 3 0.13 维生素A 检定法 维生素A 2 0.09 荧光分析法 荧光 2 0.087719 火焰光度法 火焰光度法 1 0.04386 水分测定法 水分测定法 1 0.04386 照氮测定法 照氮测定法 1 0.04386 各方法所占比例如图项目 2005版 2010版 无 41.55 18.92 高效液相色谱 40.20 65.58 薄层色谱 4.21 2.01 化学滴定 3.45 2.88 紫外分光光度计 3.20 2.45 气相色谱法 2.78 5.33 挥发油测定法 2.78 0.71 物理称重 1.01 0.87 氮测定法 0.59 1.03 原子吸收分光光度计0.08 0.16 氨基酸分析法 0.080.00 桉油精含量测定法 0.08 0.00 旋光度测定法 0.00 0.05各方法所占比例如图项目 2005版 2010版 化学滴定 39.35 31.05 高效液相色谱 28.51 46.55 紫外分光光度计 19.32 11.76 生物检定 4.54 3.92 无 4.44 3.59 物理称重 1.01 0.51 维生素A检定法 0.66 0.09 旋光度测定法 0.61 0.61 放射化学 0.55 0.00 氮测定法 0.30 0.37 原子吸收分光光度计 0.30 0.23 分子排阻色谱法 0.15 0.14 气相色谱法 0.10 0.51 荧光分析法 0.10 0.05 氧瓶燃烧法 0.05 0.14 离子色谱 0.00 0.19 氨基酸分析法 0.00 0.14 火焰光度法 0.00 0.05 水分测定法 0.00 0.05 照氮测定法 0.00 0.05 各方法所占比例如图三·结论1.由2.3的数据可知,无【含量测定】的中药占的比例正在减低。
反相高效液相色谱法测定竹沥达痰丸中黄芩苷的含量(作者:___________单位: ___________邮编: ___________)【摘要】目的建立反相高效液相色谱(RP HPLC)法竹沥达痰丸中有效成分黄芩苷含量的测定方法。
方法采用HPLC 法,色谱柱为ZORBAX Extend C18柱(4.6 mm×150 mm,5 μm),流动相为甲醇水磷酸(47∶53∶0.2),检测波长为316 nm。
结果黄芩苷线性范围10.04~77.2 μg/ml,r=0.999 8 (n=7);回收率为100.5%(n=6),RSD为1.22%。
结论测定方法简便、稳定,能有效地控制该制剂的质量。
【关键词】竹沥达痰丸黄芩苷反相高效液相色谱法Abstract:Objective To establish a measurement method of baicalin, the effective component of Zhulidatan Pills. MethodsThe isolation was conducted on a ZORBAX Extend-C18 column(4.6 mm×150 mm,5μm), the mobile phase consisted of methanol-water-phosphate(47∶53∶0.2), the detection wavelength was 316 nm. Results The content of baicalin showed good linearityin the range of 10.04~77.2 μg/ml,r=0.999 8 (n=7), and the average recovery was 100.5%(n=6), RSD was 1.22%. ConclusionThe method is simple,stable, and can effectively control the quality of the preparation.Key words:Zhulidatan Pills; Baicalin; RP-HPLC竹沥达痰丸由黄芩、半夏、大黄、橘红、甘草、沉香等6味药材加工提取制得的制剂,具有豁除顽痰,清火顺气的功效,用于痰热上壅,顽痰胶结,咳喘痰多,大便干燥,烦闷癫狂等症状[1]。
下面分别是USPL1~L60的对映。
L1—Octadecyl silane chemically bonded to porous silica or ceramic micro-particles,3to 10µm in diameter.L2—Octadecyl silane chemically bonded to silica gel of a controlled surface porosity that has been bonded to a solid spherical core,30to 50µm in diameter.L3—Porous silica particles,5to 10µm in diameter.L4—Silica gel of controlled surface porosity bonded to a solid spherical core,30to 50µm in diameter.L5—Alumina of controlled surface porosity bonded to a solid spherical core,30to 50µm in diameter.L6—Strong cation-exchange packing–sulfonated fluorocarbon polymer coated on a solid spherical core,30to 50µm in diameter.L7—Octylsilane chemically bonded to totally porous silica particles,3to 10µm in diameter.L8—An essentially monomolecular layer of aminopropylsilane chemically bonded to totally porous silica gel support,10µm in diameter.L9—10-µm irregular or spherical,totally porous silica gel having a chemically bonded,strongly acidic cation-exchange coating.L10—Nitrile groups chemically bonded to porous silica particles,3to 10µm in diameter.L11—Phenyl groups chemically bonded to porous silica particles,5to 10µm in diameter.L12—Astrong anion-exchange packing made by chemically bonding a quaternary amine to a solid silica spherical core,30to 50µm in diameter.L13—Trimethylsilane chemically bonded to porous silica particles,3to 10µm in diameter.L14—Silica gel 10µm in diameter having a chemically bonded,strongly basic quaternary ammonium anion-exchange coating.L15—Hexylsilane chemically bonded to totally porous silica particles,3to 10µm in diameter.L16—Dimethylsilane chemically bonded to porous silica particles,5to 10µm in diameter.L17—Strong cation-exchange resin consisting of sulfonated cross-linked styrene-divinylbenzene copolymer in the hydrogen form,7to 11µm in diameter.L18—Amino and cyano groups chemically bonded to porous silica particles,3to 10µm in diameter.L19—Strong cation-exchange resin consisting of sulfonated cross-linked styrene-divinylbenzene copolymer in the calcium form,about 9µm in diameter.L20—Dihydroxypropane groups chemically bonded to porous silica particles,5to 10µm in diameter.L21—Arigid,spherical styrene-divinylbenzene copolymer,5to 10µm in diameter.L22—Acation-exchange resin made of porous polystyrene gel with sulfonic acid groups,about 10µm in size.L23—An anion-exchange resin made of porous polymethacrylate or polyacrylate gel with quaternary ammonium groups,about 10µm in size.L24—Asemi-rigid hydrophilic gel consisting of vinyl polymers with numerous hydroxyl groups on the matrix surface,32to 63µm in diameter.5L25—Packing having the capacity to separate compounds with a molecular weight range from 100–5000(as determined by polyethylene oxide),applied to neutral,anionic,and cationic water-soluble polymers.Apolymethacrylate resin base,cross-linked with polyhydroxylated ether (surface contained some residual carboxyl functional groups)was found suitable.L26—Butyl silane chemically bonded to totally porous silica particles,5to 10µm in diameter.L27—Porous silica particles,30to 50µm in diameter.L28—Amultifunctional support,which consists of a high purity,100Å,spherical silica substrate that has been bonded with anionic exchanger,amine functionality in addition to a conventional reversed phase C8functionality.L29—Gamma alumina,reverse-phase,low carbon percentage by weight,alumina-based polybutadiene spherical particles,5µm in diameter with a pore volume of 80Å.L30—Ethyl silane chemically bonded to totally porous silica particles,3to 10µm in diameter.L31—Astrong anion-exchange resin-quaternary amine bonded on latex particles attached toa core of 8.5-µm macroporous particles having a pore size of 2000Åand consisting of ethylvinylbenzene cross-linked with 55%divinylbenzene.L32—Achiral ligand-exchange packing–L-proline copper complex covalently bonded to irregularly shaped silica particles,5to 10µm in diameter.L33—Packing having the capacity to separate dextrans by molecular size over a range of 4,000to 500,000Da.It is spherical,silica-based,and processed to provide pHstability.6L34—Strong cation-exchange resin consisting of sulfonated cross-linked styrene-divinylbenzene copolymer in the lead form,about 9µm in diameter.L35—Azirconium-stabilized spherical silica packing with a hydrophilic (diol-type)molecular monolayer bonded phase having a pore size of 150Å.L36—A3,5-dinitrobenzoyl derivative of L-phenylglycine covalently bonded to 5-µm aminopropyl silica.L37—Packing having the capacity to separate proteins by molecular size over a range of 2,000to 40,000Da.It is a polymethacrylate gel.L38—Amethacrylate-based size-exclusion packing for water-soluble samples.L39—Ahydrophilic polyhydroxymethacrylate gel of totally porous spherical resin.L40—Cellulose tris-3,5-dimethylphenylcarbamate coated porous silica particles,5to 20µm in diameter.L41—Immobilized a1-acid glycoprotein on spherical silica particles,5µm in diameter.L42—Octylsilane and octadecylsilane groups chemically bonded to porous silica particles,5µm in diameter.L43—Pentafluorophenyl groups chemically bonded to silica particles by a propyl spacer,5to 10µm in diameter.L44—Amultifunctional support,which consists of a high purity,60Å,spherical silica substrate that has been bonded with a cationic exchanger,sulfonic acid functionality in addition to a conventional reversed phase C8functionality.L45—Beta cyclodextrin bonded to porous silica particles,5to 10µm in diameter.L46—Polystyrene/divinylbenzene substrate agglomerated with quaternary amine functionalized latex beads,10µm in diameter.L47—High-capacity anion-exchange microporous substrate,fully functionalized with trimethlyamine groups,8µm in diameter.7L48—Sulfonated,cross-linked polystyrene with an outer layer of submicron,porous,anion-exchange microbeads,15µm in diameter.L49—Areversed-phase packing made by coating a thin layer of polybutadiene onto spherical porous zirconia particles,3to 10µm in diameter.8L50—Multifunction resin with reversed-phase retention and strong anion-exchange functionalities.The resin consists of ethylvinylbenzene,55%cross-linked with divinylbenzene copolymer,3to 15µm in diameter,and a surface area not less than 350m2per g.Substrate is coated with quaternary ammonium functionalized latex particles consisting of styrene cross-linked with divinylbenzene.9L51—Amylose tris-3,5-dimethylphenylcarbamate-coated,porous,spherical,silica particles,5to 10µm in diameter.10L52—Astrong cation exchange resin made of porous silica with sulfopropyl groups,5to 10µm in diameter.11L53—Weak cation-exchange resin consisting of ethylvinylbenzene,55%cross-linked with divinylbenzene copolymer,3to 15µm diameter.Substrate is surface grafted with carboxylic acid and/or phosphoric acid functionalized monomers.Capacity not less than 500µEq/column.12L54—Asize exclusion medium made of covalent bonding of dextran to highly cross-linked porous agarose beads,about 13µm in diameter.13L55—Astrong cation-exchange resin made of porous silica coated with polybutadiene–maleic acid copolymer,about 5µm in diameter.14L56—Isopropyl silane chemically bonded to totally porous silica particles,3to 10µm in diameter.15L57—Achiral-recognition protein,ovomucoid,chemically bonded to silica particles,about 5µm in diameter,with a pore size of 120Å.L58—Strong cation-exchange resin consisting of sulfonated cross-linked styrene-divinylbenzene copolymer in the sodium form,about 7to 11µm in diameter.16L59—Packing having the capacity to separate proteins by molecular weight over the range of 10to 500kDa.It is spherical (10µm),silica-based,and processed to provide hydrophilic characteristics and pHstability.17USP28L60—Spherical,porous silica gel,3or 5µm in diameter,the surface of which has been covalently modified with palmitamidopropyl groups and endcapped with acetamidopropyl groups to a ligand density of about 6µmoles per m2.18USP28。
2005版中国药典附录-高效液相色谱法高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱进行分离测定的色谱方法。
注入进样阀的供试品,由流动相带入柱内,各成分在柱内被分离,并依次进入检测器,由记录仪、积分仪或数据处理系统记录色谱信号。
采用微柱液相色谱系统可以减少溶剂的消耗并达到快速分离之目的。
高效液相色谱法的主要分离机制有吸附、分配、离子交换和排阻作用。
1.对仪器的一般要求所用的仪器为高效液相色谱仪。
仪器应定期检定并符合有关规定。
(1)色谱柱最常用的色谱柱填充剂为化学键合硅胶。
反相色谱系统使用非极性填充剂,以十八烷基硅烷键合硅胶最为常用,辛基硅烷键合硅胶和其他类型的硅烷键合硅胶(如氰基硅烷键合相和氨基硅烷键合相等)也有使用。
正相色谱系统使用极性填充剂,常用的填充剂有硅胶等。
离子交换填充剂用于离子交换色谱;凝胶或高分子微球等填充剂用于分子排阻色谱等;手性键合填充剂用于对映异构体的拆分分析。
填充剂的性能(如载体的形状、粒径、孔径、表面积、键合基团的表面覆盖度、含碳量和键合类型等因素)以及色谱柱的填充,将直接影响待测物的保留行为和分离效果。
孔径在150?以下的填料适合于分析分子量小于2000的化合物,分子量大于2000的化合物则应选择孔径在300?以上的填料。
以硅胶为载体的键合固定相填充剂适用pH2~8的流动相。
当pH大于8时,可使载体硅胶溶解;当pH小于2时,与硅胶相连的化学键合相易水解脱落。
当色谱系统中需使用pH大于8的流动相时,应选用耐碱的填充剂,如采用高纯硅胶为载体并具有高表面覆盖度的键合硅胶、包覆聚合物填充剂、有机-无机杂化填充剂或非硅胶填充剂等;当需使用pH小于2的流动相时,应选用耐酸的填充剂,如具有大体积侧链能产生空间位阻保护作用的二异丙基或二异丁基取代十八烷基硅烷键合硅胶、有机-无机杂化填充剂等。
(2)检测器最常用的检测器为紫外吸收检测器,其他常见的检测器有二极管阵列检测器(DAD)、荧光检测器、示差折光检测器、蒸发光散射检测器、电化学检测器和质谱检测器等。