高中物理弹簧类问题专题练习(经典总结附详细答案)讲解学习
- 格式:doc
- 大小:219.00 KB
- 文档页数:5
高三物理第二轮专题复习(一)弹簧类问题轻弹簧是一理想模型,涉及它的知识点有①形变和弹力,胡克定律②弹性势能弹簧振子等。
问题类型:1、弹簧的瞬时问题弹簧的两端若有其他物体或力的约束,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
弹簧的弹力不能突变是由弹簧形变的改变要逐渐进行决定的。
2、弹簧的平衡问题这类题常以单一的问题出现,通常用胡克定律F=Kx和平衡条件来求解,列方程时注意研究对象的选取,注意整体法和隔离法的运用。
3、弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的合外力加速度速度动能和其它物理量发生变化的情况。
弹簧的弹力与形变量成正比例变化,而它引起的物体的加速度速度动量动能等变化不是简单的单调关系,往往有临界值或极值。
有些问题要结合简谐运动的特点求解。
4、弹力做功与动量能量的综合问题弹力是变力,求弹力的冲量和弹力做的功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。
如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。
在弹力做功的过程中弹力是个变力,并与动量能量联系,一般以综合题出现。
它有机地将动量守恒机械能守恒功能关系和能量转化结合在一起,以考察综合应用能力。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理动量定理和功能关系等知识解题。
规律:在弹簧-物体系统中,当弹簧处于自然长度时,系统具有最大动能;系统运动中弹簧从自然长度开始到再次恢复自然长度的过程相当于弹性碰撞过程。
当弹簧具有最大形变量时,两端物体具有相同的速度,系统具有最大的弹性势能。
系统运动中,从任意状态到弹簧形变量最大的状态的过程相当于完全非弹性碰撞的过程。
(实际上应为机械能守恒)典型试题1、如图所示,轻弹簧下端固定在水平地面上,弹簧位于竖直方向,另一端静止于B点。
在B点正上方A点处,有一质量为m的物块,物块从静止开始自由下落。
物块落在弹簧上,压缩弹簧,到达C点时,物块的速度为零。
弹簧类问题归类一、“轻弹簧”类问题1.如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加水平方向的力1F 、2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m-=仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的. 【答案】12F F a m-=1F 2.如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同: ①弹簧的左端固定在墙上;②弹簧的左端受大小也为F 的拉力作用;③弹簧的左端拴一小物块,物块在光滑的桌面上滑动;④弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧质量都为零,以L 1、L 2、L 3、L 4依次表示四个弹簧的伸长量,则有( ). A .L 2>L 1 B .L 4>L 3 C .L 1>L 3D .L 2=L 4【解析】弹簧伸长量由弹簧的弹力(F 弹)大小决定.由于弹簧质量不计,这四种情况下,F 弹都等于弹簧右端拉力F ,因而弹簧伸长量均相同,故选D 项. 答案 D二、质量不可忽略的弹簧3.如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度Fa M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:x x F x T ma M F L M L=== 【答案】x x T F L=三、弹簧长度的变化问题(胡克定律的理解与应用)4.如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,图3-7-1 图 3-7-2劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k + 故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 【答案】221221()m m m g k + 21121211()()m m m g k k ++ 四、与物体平衡相关的弹簧问题5.如图所示,用完全相同的轻弹簧A 、B 、C 将两个相同的小球连接并悬挂,小球处于静止状态,弹簧A 与竖直方向的夹角为30o ,弹簧C 水平,则弹簧A 、C 的伸长量之比为A .4:3 B.3:4 C. 1:2 D. 2:1【解析】将两小球看做一个整体,对整体受力分析,可知整体受到重力、A 、C 的拉力共3个力的作用,由于弹簧处于平衡状态,将轻弹簧A 的拉力沿竖直方向和水平方向分解可知水平方向上满足sin30Ax A C F F F =︒=,故:2:1A C F F =,又三个弹簧的劲度系数相同,据胡克定律F kx =可知弹簧A 、C 的伸长量之比为2:1。
专题复习——弹簧问题复习1:力学体系1——平衡状态下的弹簧问题(基础)1、(单选)探究弹力和弹簧伸长的关系时,在弹性限度内,悬挂15N 重物时,弹簧长度为0.16m ;悬挂20N 重物时,弹簧长度为0.18m.则弹簧的原长L0和劲度系数k 分别为( ) A . L0=0.02 m k =500 N/m B . L0=0.10 m k =500 N/m C . L0=0.02 m k =250 N/m D . L0=0.10 m k =250 N/m【答案】D 【解析】由胡克定律F=kx ,有悬挂15N 重物时15N=k (0.16m-L 0);悬挂20N 重物时20N=k (0.18m-L 0);联立两式可解得k=250N/m ,L 0=0.10m 。
故原长为0.10m ,劲度系数为250N/m 。
故选D 。
2、(单选)如图所示,A 、B 两个物块的重力分别是G A =3 N ,G B =4 N ,弹簧的重力不计,整个装置沿竖直方向处于静止状态,这时弹簧的弹力F =2 N ,则天花板受到的拉力和地板受到的压力,有可能是( ) A .3 N 和4 N B.5 N 和6 N C .1 N 和2 ND .5 N 和2 N解析:选D 当弹簧由于被压缩而产生2 N 的弹力时,由受力平衡及牛顿第三定律知识:天花板受到的拉力为 1 N ,地板受到的压力为6 N ;当弹簧由于被拉伸而产生2 N 的弹力时,可得天花板受到的拉力为5 N ,地板受到的压力为2 N ,3、(单选)一根轻质弹性绳的两端分别固定在水平天花板上相距80 cm 的两点上,弹性绳的原长也为80 cm.将一钩码挂在弹性绳的中点,平衡时弹性绳的总长度为100 cm ;再将弹性绳的两端缓慢移至天花板上的同一点,则弹性绳的总长度变为(弹性绳的伸长始终处于弹性限度内)( ) 解析:选B 设总长度为100 cm 时与水平方向夹角为θ,则cos θ=45,故θ=37°.总长度为100 cm 时弹力F =kx 1,设移至天花板同一点时的弹力为kx 2,则12kx 1sin θ=12kx 2,得x 2=12 cm ,则弹性绳的总长度为92 cm.故B 正确.4、(单选)一个长度为L 的轻弹簧,将其上端固定,下端挂一个质量为m 的小球时,轻弹簧的总长度变为2L .现将两个这样的轻弹簧按如图所示方式连接,A 小球的质量为m ,B 小球的质量为2m ,则两小球平衡时,B 小球距悬点O 的距离为(不考虑小球的大小,且轻弹簧都在弹性限度范围内) ( )A .4LB .5LC .6LD .7L解析:选D 一根轻弹簧,挂一个质量为m 的小球时,轻弹簧的总长度变为2L ,即伸长L ,劲度系数k =mg /L .若两个小球如题图所示悬挂,则下面的轻弹簧伸长2L ,上面的轻弹簧受力3mg ,伸长3L ,则轻弹簧的总长为L +L +2L +3L =7L ,故选项D 正确.5、(单选)如图所示,两根轻弹簧AC 和BD ,它们的劲度系数分别为k 1和k 2,它们的C 、D 端分别固定在质量为m 的物体上,A 、B 端分别固定在支架和正下方地面上.当物体m 静止时,上方的弹簧处于原长;若将物体的质量变为3m ,仍在弹簧的弹性限度内,当物体再次静止时,其相对第一次静止时位置下降了( ) A .mg k 1+k 2k 1k 2B .2mg k 1+k 2k 1k 2C .2mg 1k +kD .mg 1k +k答案 C 解析 当物体m 静止时,上方的弹簧处于原长,由平衡条件可得,k 2x 1=mg ,下面弹簧压缩了x 1=mgk 2.若将物体的质量变为3m ,设相对第一次静止时位置下降了x ,则有上面弹簧拉力F 1=k 1x.由平衡条件可得下面弹簧支持力等于3mg -F 1=3mg -k 1x.由胡克定律得,k 2(x +x 1)=3mg -k 1x ,解得x =2mg 1k 1+k 2,C 项正确.6、如图所示,质量为2m 的物体A 经过一轻质弹簧与地面上的质量为3m 的物体B 相连,弹簧的进度系数为k ,一条不可伸长的轻绳绕过定滑轮,一端连物体A ,另一端连一质量为m 的物体C ,物体A 、B 、C 都处于静止状态,已知重力加速度为g ,忽略一切摩擦 (1)求物体B 对地面的压力;(2)把物体C 的质量改为5m ,这时C 缓慢下降,经过一段时间系统达到新的平衡状态,这时B 仍没离开地面,且C 只受重力和绳的拉力作用,求此过程中物体A 上升的高度。
高中物理经典问题---弹簧类问题全面总结解读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时k a g m x )(-=因为221at x =,所以kaa g m t )(2-=。
2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
.分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m tx a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
弹簧类专题一、选择题1、如图,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O;整个系统处于静止状态;现将细绳剪断,将物块a的加速度记为a1,S1和S2相对原长的伸长分别为△l1和△l2,重力加速度大小为g,在剪断瞬间A.a1=3gB.a1=0C. △l1=2△l2D. △l1=△l22、如图所示,绝缘粗糙斜面体固定在水平地面上,斜面所在空间存在平行于斜面向上的匀强电场E,轻弹簧一端固定在斜面顶端,另一端拴接一不计质量的绝缘薄板.一带正电的小滑块,从斜面上的P点处由静止释放后,沿斜面向上运动,并能压缩弹簧至R点(图中未标出),然后返回.则( )A.滑块从P点运动到R点的过程中,其机械能增量等于电场力与弹簧弹力做功之和B.滑块从P点运动到R点的过程中,电势能的减小量大于重力势能和弹簧弹性势能的增加量之和C.滑块返回能到达的最低位置在P点的下方D.滑块最终停下时,克服摩擦力所做的功等于电势能的减小量与重力势能增加量之差3、如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连.弹簧处于自然长度时物块位于O点(图中未标出).物块的质量为m,AB=a,物块与桌面间的动摩擦因数为μ.现用水平向右的力将物块从O点拉至A点,拉力做的功为W.撤去拉力后物块由静止向左运动,经O 点到达B点时速度为零.重力加速度为g. 则上述过程中( )A.OA=OBB.OA>OBC.物块经过O点时,速度最大D.物块在B点时,弹簧的弹性势能等于W﹣μmga4、如图所示,由轻质弹簧下面悬挂一物块组成一个竖直方向振动的弹簧振子,弹簧的上端固定于天花板,当物块处于静止状态时,取它的重力势能为零,现将物块向下拉一小段距离后放手,此后振子在平衡位置附近上下做简谐运动,不计空气阻力,则A.振子速度最大时,振动系统的势能为零B.振子速度最大时,物块的重力势能与弹簧的弹性势能相等C.振子经平衡位置时,振动系统的势能最小D.振子在振动过程中,振动系统的机械能不守恒5、如下图示,一根轻弹簧上端固定在O点,下端拴一个钢球P,球处于静止状态。
高二物理培优材料《弹簧专题》1.如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面的木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢地向上提上面的木块,直到它刚离开上面的弹簧.⑴在这个过程中下面木块移动的距离为()A.m1g/k1B.m2g/k1C.m1g/k2D.m2g/k2⑵在这个过程中上面木块移动的距离为()A.m1g(1/k1+1/k2) B.m1g/k1+m2g/k2C.(m1+m2)g/k1D.(m1+m2)g/k22.如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,两木块和两根弹簧都连接在一起,整个系统处于平衡状态.现缓慢地向上提上面的木块,直到下面的弹簧刚离开地面.⑴在这个过程中下面木块移动的距离为()A.(m1+m2)g/k1B.(m1+m2)g/k2C.m1g(1/k1+1/k2) D.2(m1+m2)g/k2⑵在这个过程中上面木块移动的距离为()A.(m1+m2)g/k1+m2g/k2B.m1g/k1+m2g/k2C.m1g/k1+(m1+m2)g/k2D.(m1+m2)g(1/k1+1/k2)3.如图所示,一质量为m的物体一端系于长度为L1、质量不计的轻弹簧上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,另一端系于长度为L2的细线上,L2水平拉直,物体处于平衡状态.现将L2线剪断,则剪断瞬间物体的加速度大小为()A.g sinθB.g cosθC.g tanθ D.g cotθ4.如图所示,A、B两物块质量均为m,用一轻弹簧相连,将A用长度适当的轻绳悬挂于天花板上,系统处于静止状态,B物块恰好与水平桌面接触,此时轻弹簧的伸长量为x,现将悬绳剪断,则下列说法正确的是()A.悬绳剪断瞬间A物块的加速度大小为零B.悬绳剪断瞬间A物块的加速度大小为gC.悬绳剪断后A物块向下运动距离x时速度最大D.悬绳剪断后A物块向下运动距离2x时速度最大5.如右图甲所示,在粗糙的水平面上,质量分别为m和M(m:M=1:2)的物块A、B用轻弹簧相连,两物块与水平面间的动摩擦因数相同.当用水平力F作用于B上且两物块共同向右加速运动时,弹簧的伸长量为x1;当用同样大小的力F竖直加速提升两物块时(如图乙所示),弹簧的伸长量为x2,则x1:x2为()A.1:1 B.1:2 C.2:1 D.2:36.如图⑴所示,水平面上质量相等的两木块A、B,用一轻弹簧相连接,这个系统处于平衡状态.现用一竖直向上的力F拉动木块A,使木块A向上做匀加速直线运动,如图⑵所示,研究从力F刚作用在木块A瞬间到木块B刚离开地面瞬间的这一过程,并选定该过程中木块A的起点位置为坐标原点.则下列图中能正确表示力F和木块A的位移x之间关系的图是()7.水平地面上有一直立的轻质弹簧,下端固定,上端与物体A相连接,整个系统处于静止状态,如图(甲)所示.现用一竖直向下的力F作用在物体A上,使A向下做一小段匀加速直线运动(弹簧一直处在弹性限度内)如图(乙)所示.在此过程中力F的大小与物体向下运动的距离x间的关系图象正确的是()8.如图所示,一条轻质弹簧左端固定,右端系一小物块,物块与水平面各处动摩擦因数相同,弹簧无形变时,物块位于O点.今先后分别把物块拉到P1和P2点由静止释放,物块都能运动到O点左方,设两次运动过程中物块速度最大的位置分别为Q1和Q2点,则Q1和Q2点()A.都在O点右方,且Q1离O点近B.都在O点C.都在O点右方,且Q2离O点近D.都在O点右方,且Q1、Q2在同一位置9.如图所示,一根自然长度为l0的轻弹簧和一根长度为a的轻绳连接,弹簧的上端固定在天花板的O点上,P是位于O点正下方的光滑轻小定滑轮,已知OP=l0+a.现将绳的另一端与静止在动摩擦因数恒定的水平地面上的滑块A相连,滑块对地面有压力作用.再用一水平力F作用于A使之向右做直线运动(弹簧的下端始终在P之上),则滑块A受地面的滑动摩擦力()A.逐渐变小B.逐渐变大C.先变小后变大D.大小不变10.如图所示,放在水平桌面上的木块A处于静止状态,所挂的砝码和托盘的总质量为0.6kg,弹簧测力计读数为2N,滑轮摩擦不计,若轻轻取走盘中的部分砝码,使总质量减少到0.3 kg时,将会出现的情况是(g=10m/s2)()A.A所受的合力将要变大B.A仍静止不动C.A对桌面的摩擦力不变D.弹簧测力计的读数将变小11.如图所示,物体P左边用一根轻弹簧和竖直墙相连,放在粗糙水平面上,静止时弹簧的长度大于原长,若再用一个从零开始逐渐增大的水平力F向右拉P,直到拉动,那么在P被拉动之前的过程中,弹簧对P的弹力T的大小和地面对P的摩擦力f的大小变化情况是()A.T始终增大,f始终减小B.T先不变后增大,f先减小后增大C.T保持不变,f始终减小D.T保持不变,f先减小后增大12.竖直放置的轻弹簧,上端与质量为3kg的物块B相连接.另一个质量为1kg的物块A放在B上.先向下压A,然后释放,A、B共同向上运动一段后将分离,分离后A又上升了0.2m到达最高点,此时B的速度方向向下,且弹簧恰好为原长.则从A、B分离到A上升到最高点的过程中,弹簧弹力对B做的功及弹簧回到原长时B的速度大小分别是(g=10m/s2)()A.12J,2m/s B.0,2m/s C.0,0 D.4J,2m/s13.如图所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m =12kg ,弹簧的劲度系数k =300N/m .现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t =0.2s 内F 是变力,在0.2s 以后F 是恒力,求F 的最大值和最小值各是多少?(g =10m/s 2)14.一个弹簧秤放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M =10.5 kg ,Q 的质量m =1.5 kg ,弹簧的质量不计,劲度系数k =800 N/m ,系统处于静止,如右图所示,现给P 施加一个方向向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2 s 时间内F 为变力,0.2s 以后F 为恒力,求力F 的最大值与最小值(取g =10m/s 2)15.如图所示,一个劲度系数为k =800N/m 的轻弹簧,两端分别连接着质量均为m =12kg 物体A 和B ,将它们竖直静止地放在水平地面上.现施加一竖直向上的变力F 在物体A 上,使物体A 从静止开始向上做匀加速运动,当 t =0.2s 时物体B 刚好离开地面,设整个匀加速过程弹簧都处于弹性限度内,取g =10m/s 2.求:⑴此过程中所加外力F 的最大值和最小值;⑵此过程外力F 所做的功.16. A 、B 两木块叠放在竖直轻弹簧上,如图所示,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k =100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖直向上做匀加速运动(g =10 m/s 2).(1)使木块A 竖直做匀加速运动的过程中,力F 的最大值;(2)若木块由静止开始做匀加速运动,直到A 、B 分离的过程中,弹簧的弹性势能减少了0.248 J ,求这一过程F 对木块做的功.17.如图所示,质量10=A m kg 的物块A 与质量2=B m kg 的物块B 放在倾角θ=30°的光滑斜面上处于静止状态,轻质弹簧一端与物块B连接,另一端与固定挡板连接,弹簧的劲度系数k =400N /m .现给物块A 施加一个平行于斜面向上的力F ,使物块A 沿斜面向上做匀加速运动,已知力F在前t =0.2s 内为变力,0.2后为恒力,求(g 取10m /s 2)(1)力F 的最大值与最小值;(2)力F 由最小值达到最大值的过程中,物块A所增加的重力势能.18.如图所示,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态.一条不可伸长的轻绳绕过两个轻滑轮,一端连物体A,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A上方的一段沿竖直方向.若在挂钩上挂一质量为m3的物体C,则B将刚好离地.若将C换成另一个质量为m1+m3的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地时D的速度大小是多少?(已知重力加速度为g)19.如图所示,一轻质弹簧下端固定在水平地面上,上端与物体A连接,物体A又与一跨过定滑轮的不可伸长的轻绳一端相连,绳另一端悬挂着物体B,B的下面又挂着物体C,A、B、C均处于静止状态.现剪断B和C之间的绳子,在A、B运动过程中,弹簧始终在弹性限度范围内.(已知弹簧的劲度系数为k,物体A质量为3m,B和C质量均为2m)试求:⑴物体A的最大速度;⑵轻绳对物体B的最大拉力和最小拉力.20. 如图甲所示,在地面上竖直固定着一劲度系数k =50N/m 的轻质弹,正上方O 点处由静止释放一个质量m =1. Okg 的小球,取O 点为原点,建立竖直向下的坐标轴Oy ,小球的加速度a 随其位置坐标y 的变化关系如图乙所示,其中y 0=0 .8m ,y m 对应弹簧压缩到最短时小球的位置,取g=10m/s 2 ,不计空气阻力。
高中物理弹簧模型专题一、弹簧称的示数例1.如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上;②中弹簧的左端受大小也为 F 的拉力作用;③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动;④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以 l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则判断l 1、l 2、l 3、l 4的大小关系。
变式训练.一个质量为m 的物体在一弹簧称的作用下沿竖直向上做加速度为a 的匀加速直线运动,忽略空气阻力,重力加速度为g ,求弹簧称的示数.规律总结:弹簧称的示数等于轻质弹簧一端的拉力大小,并不一定等于物体的重力二、与物体平衡相关的弹簧问题例2.如图示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为 ( C )A.m 1g/k 1B.m 2g/k 2C.m 1g/k 2D.m 2g/k 2三、弹簧的瞬时性问题例3.质量分别为m 和2m 的小球P 、Q 用轻弹簧相连,P 用细线悬挂在天花板下,开始系统处于静止。
求:(1)剪断细线瞬间,P 、Q 的加速度(2)剪断弹簧瞬间,P 、Q 的加速度 变式训练.如图所示,小球P 、Q 质量均为m ,分别用轻弹簧b 和细线c 悬挂在天花板下,再用另一细线d 、e 与左边的固定墙相连,静止时细线d 、e 水平,b 、c 与竖直方向夹角均为θ=37º。
下列判断正确的是A .剪断d 瞬间P 的加速度大小为0.6gB .剪断d 瞬间P 的加速度大小为0.75gC .剪断e 前c 的拉力大小为0.8mgD .剪断e 后瞬间c 的拉力大小为1.25mg规律总结:当弹簧两端都有约束时,弹簧弹力不发生突变;细绳的弹力可以发生突变四、与动力学相关的弹簧问题例4.如图所示,一轻质弹簧竖直放在水平地面上,小球A 由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是( BD )A.小球加速度方向始终向上B.小球加速度方向先向下后向上C.小球速度一直减小D.小球速度先增大后减小边式训练:如图所示,轻弹簧下端固定,竖立在水平面上。
高中物理弹簧类问题专题练习、;用一绝缘弹簧联结,和mq,质量分别为a1.图中Mb为两带正电的小球,带电量都是。
现把一匀强电场作用弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d0),在两小球的加速度相等的时刻,弹簧的长度为d。
(于两小球,场强的方向由a指向b >dm,则dB.若M>A.若M = m,则d = d 00a b、M无关m D.d = d,与C.若M<m,则d<d 00 mM整个系统处于平衡状B用一轻弹簧相连接,、2. 如图a所示,水平面上质量相等的两木块A向上做匀加速直线运动,使木块A.现用一竖直向上的力F拉动木块A,态F刚离开地面的瞬B研究从力F刚作用在木块A的瞬间到木块b如图所示.的起始位置为坐标原点,则下A间这个过程,并且选定这个过程中木块A A)列图象中可以表示力F和木块A的位移x之间关系的是( B BFF F F a bx x x x OO O OD C B A的两物块相连接,并且静止在光滑的m和3.如图甲所示,一轻弹簧的两端分别与质量为m21两物块的速度随时间以此刻为时间零点,水平面上.现使m瞬时获得水平向右的速度3m/s,1)变化的规律如图乙所示,从图象信息可得(A.在t、t时刻两物块达到共同速度1m/s且弹簧都是处于压缩状态31时刻弹簧由伸长状态逐渐恢复原长t.从t到B43/m/sv2 m = 1∶C .两物体的质量之比为m∶213 m12 ∶∶t时刻两物体的动量之比为PP =1 D.在m2 22121 v0 /s tttttmm4 3 12 2 1 1-乙甲(可视为质.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q4大小相同,Q上。
现把与点)固定在光滑绝缘斜面上的M点,且在通过弹簧中心的直线ab与弹簧接触到速度变为N带电性也相同的小球P,从直线ab上的点由静止释放,在小球P 零的过程中()a 的速度是先增大后减小A.小球PQ和弹簧的机械能守恒,且PP速度最大时 B.小球PM 所受弹力与库仑力的合力最大N 的动能、重力势能、电势能与弹簧的弹 C.小球P 性势能的总和不变b 合力的冲量为零PD.小球、B两木块叠放在竖直轻弹簧上,如图所示,已知木块A、B如图所示,5、A质量分别为0.42 kg和0.40 kg,弹簧的劲度系数k=100 N/m ,若在木块A上作用一个竖直向上的力F,使A22.)=10 m/sg的加速度竖直向上做匀加速运动(0.5 m/s由静止开始以.(1)使木块A竖直做匀加速运动的过程中,力F的最大值;B分离的过)若木块由静止开始做匀加速运动,直到A、(2 ,求这一过程F对程中,弹簧的弹性势能减少了0.248 J.木块做的功弹簧相连,m的物体B如图,质量为m的物体A经一轻质弹簧与下方地面上的质量为6、21都处于静止状态。
压轴题03弹簧类专题1.足够长的光滑细杆竖直固定在地面上,轻弹簧及小球A 、B 均套在细杆上,弹簧下端固定在地面上,上端和质量为m 1=50g 的小球A 相连,质量为m 2=30g 的小球B 放置在小球A 上,此时A 、B 均处于静止状态,弹簧的压缩量x 0=0.16m ,如图所示。
从t=0时开始,对小球B 施加竖直向上的外力,使小球B 始终沿杆向上做匀加速直线运动。
经过一段时间后A 、B 两球分离;再经过同样长的时间,B 球距其出发点的距离恰好也为x 0。
弹簧的形变始终在弹性限度内,重力加速度取g=10m/s 2。
求:(1)弹簧的劲度系数k ;(2)整个过程中小球B 加速度a 的大小及外力F 的最大值。
【答案】(1)5N/m ;(2)2m/s 2,0.36N 【解析】 【详解】(1)根据共点力平衡条件和胡克定律得:()120m m g kx += 解得:5/k N m =;(2)设经过时间t 小球A 、B 分离,此时弹簧的压缩量为0x , 对小球A :11kx m g m a -=2012x x at -=小球B :()20122x a t =当B 与A 相互作用力为零时F 最大对小球B :22F m g m a -=解得:22/a m s = ,0.36F N =2.如图所示,半径为R 的光滑半圆形导轨固定在竖直面内的AB 两点,直径AB 与竖直方向的夹角为60°,导轨上的C 点在A 点的正下方,D 点是轨道的最低点,质量为m 的圆环套在导轨上,圆环通过两个相同的轻弹簧分别与A 、B 两点连接,弹簧原长均为R ,对圆环施加水平向右的力F =10可使其静止在D 点。
(1)求弹簧的劲度系数k :(2)由C 点静止释放圆环,求圆环运动到D 点的动能E k ;(3)由C 点静止释放圆坏,求圆环运动到D 点时对轨道的作用力N 。
【答案】(1)(310mgk R+=;(2)2k mgR E =;(3)1.7mg ,方向竖直向下【解析】 【分析】 【详解】(1)如图1所示,圆环在D 点时,BD 弹簧处于原长,AD 弹簧的伸长量为x =R 受力分析,正交分解sin 30F kx =解得k =(2)C 点与D 点的高度差 h =0.5R圆环从C 运动到D ,弹簧弹性势能不变,根据机械能守恒k mgh E =解得2k mgRE =(3)如图2所示,圆环运动到D 点时的速度v 受力分析,正交分解2cos30v kx N mg m R'+-=解得1.7N mg '=根据牛顿第三定律,圆环对轨道的作用力N 为1.7N N mg '==方向竖直向下.3.如图,A 、B 两小球由绕过轻质定滑轮的细线相连,A 放在固定的光滑斜面上,B 、C 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,C 球放在水平地面上.现用手控制住A ,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知A 的质量为4m ,B 、C 的质量均为m ,重力加速度为g ,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态.释放A 后,A 沿斜面下滑至速度最大时,C 恰好离开地面.求:(1)斜面倾角α=?(2)A 获得的最大速度为多少?【答案】(1)30=α︒(2)2v = 【解析】 【分析】 【详解】(1)释放A 后,A 斜面加速下滑,当速度最大时,加速度0A a =,A 、B 之间通过绳连接,则A 速度最大时,B 的速度也最大,加速度0B a =,以A 、B 整体为研究对象,由平衡条件得:4sin mg F mg α=+,F 为此时弹簧弹力,因C 此时恰好离开地面,则有F mg =,联立方程得斜面倾角30=α︒.(2)刚开始以B 为研究对象弹簧弹力01F mg kx ==, C 恰好离开地面时以C 为研究对象, 弹簧弹力2F mg kx ==,所以12mgx x k==,由能量守恒得:2121214sin ()()(4)2mg x x mg x x m m v -α++=+,解得2v =【点睛】本题关键是对三个物体分别受力分析,得出物体B 速度最大时各个物体都受力平衡,然后根据平衡条件分析;同时要注意是那个系统机械能守恒4.一轻弹簧的一端固定在倾角为θ的固定光滑斜面的底部,另一端和质量为m 的小物块a 相连,如图所示.质量为35m 的小物块b 紧靠a 静止在斜面上,此时弹簧的压缩量为x 0,从t=0时开始,对b 施加沿斜面向上的外力,使b 始终做匀加速直线运动.经过一段时间后,物块a 、b 分离;再经过同样长的时间,b 距其出发点的距离恰好也为x 0.弹簧的形变始终在弹性限度内,重力加速度大小为g .求:(1)弹簧的劲度系数; (2)物块b 加速度的大小;(3)在物块a 、b 分离前,外力大小随时间变化的关系式.【答案】(1)08sin 5mg x θ (2)sin 5g θ(3)22084sin sin 2525mg F mg x θθ=+ 【解析】 【详解】(1)对整体分析,根据平衡条件可知,沿斜面方向上重力的分力与弹簧弹力平衡,则有: kx 0=(m+35m )gsinθ 解得:k=8 5mgsin x θ(2)由题意可知,b 经两段相等的时间位移为x 0; 由匀变速直线运动相邻相等时间内位移关系的规律可知:1014x x = 说明当形变量为0010344x x x x =-=时二者分离; 对m 分析,因分离时ab 间没有弹力,则根据牛顿第二定律可知:kx 1-mgsinθ=ma 联立解得:a=15gsin θ(3)设时间为t ,则经时间t 时,ab 前进的位移x=12at 2=210gsin t θ则形变量变为:△x=x 0-x对整体分析可知,由牛顿第二定律有:F+k △x -(m+35m )gsinθ=(m+35m )a 解得:F=825mgsinθ+220425mg sin x θt 2 因分离时位移x=04x 由x=04x =12at 2解得:t =故应保证0≤tF 表达式才能成立.点睛:本题考查牛顿第二定律的基本应用,解题时一定要注意明确整体法与隔离法的正确应用,同时注意分析运动过程,明确运动学公式的选择和应用是解题的关键.5.如图所示,半径R =2.8m 的光滑半圆轨道BC 与倾角θ=37°的粗糙斜面轨道在同一竖直平面内,两轨道间由一条光滑水平轨道AB 相连,A 处用光滑小圆弧轨道平滑连接,B 处与圆轨道相切.在水平轨道上,两静止小球P 、Q 压紧轻质弹簧后用细线连在一起.某时刻剪断细线后,小球P 向左运动到A 点时,小球Q 沿圆轨道到达C 点;之后小球Q 落到斜面上时恰好与沿斜面向下运动的小球P 发生碰撞.已知小球P 的质量m 1=3.2kg ,小球Q 的质量m 2=1kg ,小球P 与斜面间的动摩擦因数μ=0.5,剪断细线前弹簧的弹性势能E p =168J ,小球到达A 点或B 点时已和弹簧分离.重力加速度g =10m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:(1)小球Q 运动到C 点时的速度大小; (2)小球P 沿斜面上升的最大高度h ;(3)小球Q 离开圆轨道后经过多长时间与小球P 相碰. 【答案】(1)12m/s(2)0.75m(3)1s 【解析】 【详解】(1)两小球弹开的过程,由动量守恒定律得:m 1v 1=m 2v 2 由机械能守恒定律得:2211221122P E m v m v =+联立可得:v 1=5m/s ,v 2=16m/s小球Q 沿圆轨道运动过程中,由机械能守恒定律可得:22222211222C m v m v m gR =+ 解得:v C =12m/s ,(2)小球P 在斜面向上运动的加速度为a 1由牛顿第二定律得:m 1g sin θ+μm 1g cos θ=m 1a 1, 解得:a 1=10m/s 2故上升的最大高度为:211sin 2v h a θ==0.75m (3)设两小球相遇点距离A 点为x ,小球P 从A 点上升到两小球相遇所用的时间为t ,小球P 沿斜面下滑的加速度为a 2由牛顿第二定律得:m 1g sin θ-μm 1g cos θ=m 1a 2, 解得:a 2=2m/s 2小球P 上升到最高点所用的时间:111v t a ==0.5 s , 则:2221112()sin 22R gt h a t t θ=+-- 解得:t =1s.6.(2020·重庆市育才中学高三开学考试)如图所示,光滑斜面体ABC 固定在地面上,斜面AB 倾角为37°,斜面AC 倾角为53°,P 、Q 两个物块分别放在AB 、AC 斜面上,并用绕过斜面体顶端A 处光滑定滑轮的细线连接。
专题弹簧类问题(附参考答案)高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。
弹簧弹力的特点:弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。
高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能和加速度)。
不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。
弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。
如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。
在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。
由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。
(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。
)一、与物体平衡相关的弹簧例.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 -m2g/k2=m l g/k2.参考答案:C此题若求m l移动的距离又当如何求解?二、与分离问题相关的弹簧两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。
-
v
甲
高中物理弹簧类问题专题练习
1.图中a 、b 为两带正电的小球,带电量都是q ,质量分别为M 和m ;用一绝缘弹簧联结,弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d 0。
现把一匀强电场作用于两小球,场强的方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为d 。
( )
A .若M = m ,则d = d 0
B .若M >m ,则d >d 0
C .若M <m ,则d <d 0
D .d = d 0,与M 、m 无关
2. 如图a 所示,水平面上质量相等的两木块A 、B 用一轻弹簧相连接,整个系统处于平衡状态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,
如图b 所示.研究从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬
间这个过程,并且选定这个过程中木块A
列图象中可以表示力F 和木块A 的位移x 之间关系的是(
3.如图甲所示,一轻弹簧的两端分别与质量为m 1和m 2的两物块相连接,并且静止在光滑的水平面上.现使m 1瞬时获得水平向右的速度3m/s ,以此刻为时间零点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得( )
A .在t 1、t 3时刻两物块达到共同速度1m/s 且弹簧都是处于压缩状态
B .从t 3到t 4时刻弹簧由伸长状态逐渐恢复原长
C .两物体的质量之比为m 1∶m 2 = 1∶2
D .在t 2时刻两物体的动量之比为P 1∶P 2 =1∶2
4.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q (可视为质
点)固定在光滑绝缘斜面上的M 点,且在通过弹簧中心的直线ab 上。
现把与Q 大小相同,带电性也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中( )
A.小球P 的速度是先增大后减小
B.小球P 和弹簧的机械能守恒,且P 速度最大时 所受弹力与库仑力的合力最大
C.小球P 的动能、重力势能、电势能与弹簧的弹 性势能的总和不变
D.小球P 合力的冲量为零
5、如图所示,A 、B 两木块叠放在竖直轻弹簧上,如图所示,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k =100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖直向上做匀加速运动(g =10 m/s 2).
A B C D b
(1)使木块A竖直做匀加速运动的过程中,力F的最大值;
(2)若木块由静止开始做匀加速运动,直到A、B分离的过
程中,弹簧的弹性势能减少了0.248 J,求这一过程F对
木块做的功.
6、如图,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧
的劲度系数为k,A、B都处于静止状态。
一条不可伸长的轻绳绕过轻滑轮,
一端连物体A,另一端连一轻挂钩。
开始时各段绳都处于伸直状态,A上方
的一段绳沿竖直方向。
现在挂钩上升一质量为m3的物体C并从静止状态释放,
已知它恰好能使B离开地面但不继续上升。
若将C换成另一个质量为(m1+m3)
的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地时D的速度
的大小是多少?已知重力加速度为g。
7、将金属块用压缩的轻弹簧卡在一个矩形的箱中,如图所示,在箱的上顶板和下顶板安有压力传感器,箱可以沿竖直轨道运动。
当箱以a=2.0m/s2的加速度作竖直向上的匀减速运动时,上顶板的传感器显示的压力为6.0N,下顶板传感器显示的压力为
10.0N。
(1)若上顶板传感器的示数是下顶板传感器示数的一半,试判断箱的运
动情况。
(2)要使上顶板传感器的示数为零,箱沿竖直方向的运动可能是怎样的?
8、如图所示,在倾角为θ的固定的光滑斜面上有两个用轻质弹簧相连接的物块A 、B .它们的质量都为m,弹簧的劲度系数为k , C为一固定挡板。
系统处于静止状态,开始时各段绳都处于伸直状态。
现在挂钩上挂一物体P,并从静止状态释放,已知它恰好使物体B离开固定档板C,但不继续上升(设斜面足够长和足够高)。
求:(1)物体P的质量多大?
(2)物块B 刚要离开固定档板C时,物块A 的加
速度 多大?
9、如图所示,一劲度系数为k=800 N / m的轻弹簧两端各焊接着两个质量均为m=12 kg的物体A、和B,物体A、B和轻弹簧竖立静止在水平地面上。
现要加一
竖直向上的力F在上面物体A上,使物体A开始向上做匀加速运动,
经0.4 s物体B刚要离开地面。
设整个过程中弹簧都处于弹性限度内,
取g=10 m / s2,求:
(1)此过程中所加外力F的最大值和最小值。
(2)此过程中外力F所做的功。
高中物理弹簧类问题专题练习参考答案
1. ABC
2. A
3. BC 4. AC
5、分析:此题难点和失分点在于能否通过对此物理过程的分析后,确定两物体分离的临界点,即当弹簧作用下的两物体加速度、速度相同且相互作用的弹力 N =0时 ,恰好分离. 解:当F =0(即不加竖直向上F 力时),设A 、B 叠放在弹簧上处于平衡时弹簧的压缩量为x ,有kx =(m A +m B )g x=(mA+mB )g/k ①
对A 施加F 力,分析A 、B 受力如图
对A F +N -m A g =m A a ② 对B kx ′-N -m B g =m B a ′ ③ 可知,当N ≠0时,AB 有共同加速度a =a ′,由②式知欲使A 匀加速运动,随N 减小F 增大.当N =0时,F 取得了最大值F m ,
即F m =m A (g +a )=4.41 N 又当N =0时,A 、B 开始分离,由③式知,
此时,弹簧压缩量kx ′=m B (a +g ) x ′=m B (a +g )/k ④ AB 共同速度 v 2=2a (x -x ′) ⑤
由题知,此过程弹性势能减少了W P =E P =0.248 J
设F 力功W F ,对这一过程应用动能定理或功能原理
W F +E P -(m A +m B )g (x -x ′)=2
1(m A +m B )v 2
⑥
联立①④⑤⑥,且注意到E P =0.248 J 可知,W F =9.64×10-2 J
6:解法一
开始时,A.B 静止,设弹簧压缩量为x 1,有kx 1=m 1g ①
B 不再上升,表示此时A 和
C 的速度为零,C 已降到其最低点。
kx 2=m 2g ② 由机械能守恒,与初始状态相比,弹簧弹性势能的增加量为 ΔE =m 3g(x 1+x 2)-m 1g(x 1+x 2) ③
解法二
第二次挂上物体D 后,比第一次多减少了的重力势能就变成了A 和D 的动能。
21 (m 3+m 1)v 2+2
1
m 1v 2= m 1g(x 1+x 2)
因此,(m 3+2m 1)v 2=2m 1g(x 1+x 2)
7、解:(1)取向下为正方向,设金属块质量为m ,有ma mg F F =+-下上
6-10+10m=2m 解得 m=0.5kg 因上、下传感器都有压力,所以弹簧长度不变,所
以弹簧弹力仍为10N ,上顶板对金属块压力为.52
10
N F =='上
根据.5.0105.010511a ma mg F F =⨯+-=+-'下上解得a 1=0,即箱子处于静止或作匀
速直线运动。
(2)要使上顶板无压力,弹簧只能等于或小于目前长度,则下顶板压力只能等于或大于10N ,即 )2(分下 ma mg F =- F 下≥10解得 a ≥10m/s 2。
即箱以a ≥10m/s 2的加速度向上作匀加速运动或向下作匀减速运动.
8解:(1)令x 1表示未挂P 时弹簧的压缩量,由胡克定律和牛顿定律可知m A gsinθ=kx 1 令x 2表示B 刚要离开C 时弹簧的伸长量,由胡克定律和牛顿定律可知kx 2=m B gsinθ 则 x 1= x 2 g
mg θ
sin =
此时A 和P 的速度都为0,A 和P 的位移都为d=x 1+x 2=
k
mg θ
sin 2 由系统机械能守恒得:θsin mgd gd m P = 则θsin m m P =
(2)此时A 和P 的加速度大小相等,设为a, P 的加速度方向向上
对P 物体 :F -m P g=m P a 对A 物体 :mgsinθ+kx 2—F=ma 解得a=
g θ
θ
sin 1sin +
9、A 原静止时,设弹簧压缩x 1,由受力平衡和胡克定律有:kx 1=mg
物体A 向上做匀加速运动,开始时弹簧的压缩形变量最大,向上的弹力最大,则所需外力F 最小,设为F 1。
由牛顿第二定律:F 1+kx 1—mg=ma
当B 刚要离地时,弹簧由缩短变为伸长,此时弹力变为向下拉A ,则所需外力F 最大,设为F 2。
对B :kx 2=mg 对A :F 2-kx 2-mg=ma
由位移公式对A 有:2
212
1at x x =+ 又t=0.4s
解得:m m k mg x x 15.0800
10
1221=⨯==
=
a=3.75m/s 2 F 1=45N F 2=285N
(2)0.4 s 末的速度:v=at=3.75×0.4 m / s=1.5 m / s 对A 全程由动能定理得:2212
1)(mv x x mg W F =+- 解得:W F =49.5 J。