糖尿病动物模型
- 格式:doc
- 大小:23.50 KB
- 文档页数:4
II型糖尿病(胰岛素非依赖)动物模型
1、自发性糖尿病模型(1)非肥胖型实验动物:PO大鼠、中国地鼠、GK大鼠、NSY鼠模型特点:高血糖,胰岛素抵抗,与人类II型糖尿病发病症状相似,NSY鼠有年龄依赖特征。
适用研究:非肥胖II型糖尿病研究获取方法:直接购买。
(2)肥胖型实验动物:ZDF大鼠、OLETF大鼠、ob/ob小鼠、db/db小鼠、KK小鼠模型特点:肥胖、糖尿病特征,同时伴有高血脂、高血压、脂肪肝、糖肾等并发症。
适用研究:肥胖、II型糖尿病以及所引起的各种并发症获取方法:直接购买。
2、诱发性糖尿病模型(1)饮食诱导实验动物:DIO小鼠模型特点:持续高脂饮食诱导的肥胖小鼠。
适用研究:肥胖、II型糖尿病研究获取方法:C57BL/6小鼠持续高脂饮食饲喂14周左右,检测糖尿病相关指标。
3、转基因模型实验动物:MKR小鼠、MODY2小鼠模型特点:靶向确定基因的小鼠模型,研究分子机制时有优势。
适用研究:II型糖尿病研究获取方法:自己构建转基因小鼠或直接定制购买。
糖尿病动物模型糖尿病(diabetes mellitus,DM)已成为严重危害人类健康的公共卫生问题,DM及其并发症不仅严重影响糖尿病患者的生活质量,同时也是致残、致死的重要原因。
因此,建立合适的糖尿病动物模型,阐明DM及其并发症的发病机制就显得尤为重要。
目前,DM动物模型制备方法主要有:①手术切除胰腺;②化学药物诱导;③自发性糖尿病动物模型;④转基因动物等。
【切除胰腺的DM模型】常采用狗、猫和大鼠等造模,全部或大部分切除实验动物的胰腺,但保存胰十二指肠动脉吻合弓。
如果连续两天血糖值超过11.1mmol/L或行葡萄糖耐量试验120min时的血糖值仍未恢复到注射前水平则认为DM造模成功。
其机制是全部或大部分切除胰腺后,β细胞缺如而产生永久性DM。
【化学药物诱发的DM模型】采用链脲佐菌素腹腔注射或四氧嘧啶静脉注射可诱发DM,常用动物有小鼠、大鼠、家兔和狗。
链脲佐菌素(streptozotocin STZ)的参考剂量为50~150mg/kg;四氧嘧啶(alloxan)的参考剂量为60~110mg/kg。
STZ是一种含亚硝基的化合物,进入体内可通过以下机制特异性地破坏胰岛β细胞:①STZ直接破坏胰岛β细胞:主要见于注射大剂量STZ后。
STZ注射后可引起β细胞内辅酶I(NAD)的浓度下降,NAD依赖性能量和蛋白质代谢停止,导致β细胞死亡。
②通过诱导一氧化氮(NO)的合成,破坏胰岛β细胞;③STZ激活自身免疫过程,进一步导致β细胞的损害:小剂量注射STZ可破坏少量胰岛β细胞,死亡的胰岛β细胞可作为抗原被巨噬细胞吞噬,产生TH1刺激因子,使TH1细胞系占优势而产生IL-2及IFN-γ,在胰岛局部促使炎性细胞浸润,并活化释放IL-1、TNF-α、IFN-γ、NO和H2O2等物质杀伤细胞。
死亡细胞又可作为自身抗原,再次递呈给抗原递呈细胞进行处理,释放细胞因子,放大细胞损伤效应,最终诱发DM。
四氧嘧啶进入体内后能迅速被胰岛β细胞摄取,影响细胞膜的通透性和细胞内ATP的产生,抑制葡萄糖介导的胰岛素分泌。
糖尿病动物模型建立糖尿病是一种常见的慢性代谢性疾病,严重影响着人类的健康。
为了深入研究糖尿病的发病机制、预防和治疗方法,建立可靠的糖尿病动物模型至关重要。
糖尿病动物模型的建立方法多种多样,主要包括化学药物诱导、手术诱导、自发性糖尿病动物模型以及基因工程技术诱导等。
化学药物诱导是较为常用的方法之一。
其中,链脲佐菌素(STZ)是常用的诱导剂。
STZ 能够选择性地破坏胰岛β细胞,导致胰岛素分泌不足,从而引发糖尿病。
在使用 STZ 诱导糖尿病模型时,剂量和给药途径是关键因素。
一般来说,小鼠的常用剂量较低,大鼠的剂量相对较高。
给药途径可以是腹腔注射或静脉注射。
此外,还有一些其他的化学药物,如四氧嘧啶,也可用于诱导糖尿病模型,但相对而言,STZ 更为常用。
手术诱导糖尿病模型主要是通过胰腺切除或胰岛切除的方式。
例如,切除大部分胰腺组织会使胰岛素分泌显著减少,从而导致糖尿病的发生。
这种方法的优点是模型的致病机制明确,但手术操作复杂,对动物的创伤较大,术后护理要求高,且模型的稳定性和重复性可能受到一定影响。
自发性糖尿病动物模型则是指某些特定的动物品系在自然状态下自发出现糖尿病症状。
例如,db/db 小鼠和 ob/ob 小鼠就是常见的自发性糖尿病模型。
这些小鼠由于基因突变,导致胰岛素抵抗或胰岛素分泌缺陷,从而自然发展为糖尿病。
自发性糖尿病动物模型的优点是更接近人类糖尿病的自然病程,但缺点是价格昂贵,饲养条件要求高。
基因工程技术诱导的糖尿病动物模型是近年来发展起来的新技术。
通过基因编辑技术,如敲除或过表达某些与糖尿病相关的基因,可以构建出特定类型的糖尿病模型。
这种方法可以精准地模拟特定的糖尿病发病机制,但技术难度较大,成本较高。
在建立糖尿病动物模型时,需要考虑多种因素。
首先是动物的选择。
常用的实验动物包括小鼠、大鼠、豚鼠等。
小鼠和大鼠因其繁殖快、饲养成本低、遗传背景清晰等优点,被广泛应用。
但不同品系的动物对糖尿病的易感性可能不同,因此需要根据研究目的选择合适的品系。
糖尿病的大鼠模型研究糖尿病是一种以高血糖为主要特征的代谢性疾病,在全球范围内已成为一个公共卫生问题。
研究糖尿病的机制和策略对于预防和治疗该疾病具有重要意义。
大鼠模型是糖尿病研究中常用的实验动物模型之一,其具有与人类糖尿病相似的临床表现和生理特征。
本文将介绍糖尿病的大鼠模型以及其在糖尿病研究中的应用。
1. 糖尿病的定义和类型糖尿病是一种代谢性疾病,其特征是血糖水平持续升高,主要由于胰岛素分泌不足或胰岛素作用异常引起。
根据病因和临床特点,糖尿病可分为1型糖尿病、2型糖尿病和其他类型的糖尿病。
2. 大鼠模型的建立和特点大鼠模型是研究糖尿病的重要工具之一,其建立主要通过基因改变、药物诱导或环境因素等方式来模拟糖尿病的发生和发展过程。
在大鼠模型中,常用的糖尿病模型有高脂饮食诱导糖尿病模型、低剂量链脲低毒素诱导糖尿病模型等。
3. 糖尿病大鼠模型在病理机制研究中的应用糖尿病大鼠模型在糖尿病的病理机制研究中起着重要的作用。
通过研究模型大鼠的胰岛素分泌功能、胰岛素信号通路和胰岛素抵抗等方面的变化,可以深入了解糖尿病的发生机制,并为糖尿病的治疗提供理论依据。
4. 糖尿病大鼠模型在药物筛选和治疗策略研究中的应用糖尿病大鼠模型在药物筛选和治疗策略研究中也发挥着重要作用。
通过给大鼠模型注射不同的药物或制定特定的治疗策略,可以评估其对糖尿病的治疗效果,并为临床治疗提供借鉴。
5. 糖尿病大鼠模型的优缺点及未来展望糖尿病大鼠模型具有较高的可重复性和可操作性,可以模拟人类糖尿病的发生和发展过程。
然而,由于大鼠与人类在遗传和生理上的差异,糖尿病大鼠模型仍存在一些局限性。
未来研究应继续改进模型的建立方法,提高其可靠性和可预测性。
总结:糖尿病大鼠模型在糖尿病研究中具有重要的地位和作用。
通过研究模型大鼠的病理变化和应用药物治疗等方法,可深入了解糖尿病的发生机制,并为糖尿病的治疗提供理论依据。
随着研究的不断深入,糖尿病大鼠模型的应用将得到进一步发展,为糖尿病的防治提供更多的支持和帮助。
糖尿病研究模型糖尿病是现代社会中一种常见的慢性代谢性疾病,严重影响着患者的生活质量。
为了更好地理解和研究糖尿病的发病机理、药物治疗以及预防措施,科研人员经过多年的努力,提出了多种糖尿病研究模型。
这些模型不仅有助于深入研究糖尿病的病理生理过程,还为新药物的发现和治疗方案的制定提供了基础。
一、动物模型动物模型是研究糖尿病最常用的研究工具之一。
尤其是小鼠和大鼠被广泛应用于糖尿病研究中。
研究人员通过外源性注射化学物质或基因突变等方法,诱导小鼠或大鼠发生类似糖尿病的病理变化。
这些模型能够模拟人体内的糖尿病病理过程,并且具有很强的重复性和可控性。
1. 腹腔注射链脲佐菌素模型链脲佐菌素模型是最为常见的糖尿病模型之一,常用于2型糖尿病的研究。
通过腹腔注射链脲佐菌素,可诱导小鼠或大鼠出现高血糖、胰岛素抵抗等症状,模拟2型糖尿病的发病过程。
研究人员可以通过此模型评估药物的降糖效果,研究新型药物的作用机制等。
2. 高脂饮食模型高脂饮食模型主要用于研究2型糖尿病和肥胖症之间的关系。
通过给小鼠或大鼠饲喂高脂饮食,可以诱导其发生胰岛素抵抗、肥胖等症状,模拟2型糖尿病的发病过程。
这个模型可以帮助研究者更好地了解饮食习惯和代谢疾病的关联,并寻找相关的治疗策略。
3. 基因突变模型基因突变模型是研究糖尿病发病机理的重要手段。
研究人员通过基因编辑技术,在小鼠或大鼠体内引入特定基因的突变,如胰岛素受体(InsR)基因的突变,以模拟人体内胰岛素受体的缺陷状态,从而诱导糖尿病的发生。
这个模型可以为研究人员提供更准确的病理过程和药物治疗的参考。
二、细胞模型除了动物模型,细胞模型也是糖尿病研究中常用的研究工具之一,主要用于细胞水平上的机制研究。
研究人员将糖尿病相关的信号通路与细胞系相结合,通过药物处理或基因技术进行干预,以模拟糖尿病的病理过程。
1. 脂肪细胞系脂肪细胞系是研究脂肪细胞分化和脂代谢的理想细胞模型。
通过诱导或转染方式,将未分化的前脂肪细胞分化为成熟的脂肪细胞,可以模拟脂肪细胞在糖尿病发展过程中的变化,并研究相关疾病发生发展的机制。
型糖尿病动物模型的构建一、概述型糖尿病动物模型的构建在生物医学研究中占据重要地位,其目的在于模拟人类型糖尿病的发病过程,以揭示其病理机制、评估治疗效果以及推动新药的研发。
型糖尿病的主要特征是胰岛细胞的自身免疫性破坏,导致胰岛素生产的缺乏,进而引发一系列代谢异常。
构建能够准确反映这些特征的动物模型,对于深入理解型糖尿病的发病机理以及开发有效的治疗策略具有重要意义。
动物模型的选择对于研究结果的准确性和可靠性至关重要。
常用的型糖尿病动物模型包括自发性模型和诱导性模型两大类。
自发性模型主要依赖于遗传因素,通过选择具有特定遗传背景的动物,使其在自然条件下发生型糖尿病。
这类模型能够较好地模拟人类型糖尿病的自然发病过程,但发病时间和疾病严重程度往往难以控制。
诱导性模型则是通过手术、化学药物或病毒等手段人为诱导动物发生型糖尿病。
这类模型具有发病时间和疾病严重程度可控的优点,但可能无法完全模拟人类型糖尿病的发病机理。
在构建型糖尿病动物模型时,需要充分考虑模型的稳定性、可重复性以及实验伦理等因素。
稳定性是指模型在实验过程中能够保持稳定的疾病状态,以便进行长期观察和评估。
可重复性则是指不同实验室或不同研究者使用相同方法构建的模型应具有一致性,以确保研究结果的可靠性。
实验伦理也是不可忽视的重要因素,应确保在构建和使用动物模型的过程中遵循相关的伦理规范,尊重动物的生命权和福利。
型糖尿病动物模型的构建是一项复杂而重要的工作,需要综合考虑多种因素。
通过选择合适的动物模型,我们可以更好地研究型糖尿病的发病机理、评估治疗效果以及推动新药的研发,为人类战胜这一顽疾贡献力量。
1. 型糖尿病概述:定义、发病机制、临床特点及治疗现状。
又称为胰岛素依赖型糖尿病,是一种慢性代谢性疾病,主要特点是胰腺细胞的自身免疫性破坏,导致胰岛素分泌减少或缺失。
发病机制方面,遗传因素和环境因素共同作用于个体,使得细胞受到损害,进而引发胰岛素分泌障碍。
遗传因素在型糖尿病的发病中占据重要地位,多个基因与型糖尿病的易感性相关。
糖尿病实验性动物模型研究概况糖尿病动物模型糖尿病是由多种病因引起以慢性高血糖为特征的代谢紊乱。
糖尿病的病因尚未被完全阐明。
目前公认糖尿病不是唯一病因所致的单一疾病,而是复合病因的综合征,与遗传、自身免疫及环境因素有关。
近年来,由于糖尿病的发病率上升,防治糖尿病已成为科学工的一个重要课题。
故合适的糖尿病模型是人类研究糖尿病的重要手段。
1糖尿病研究中动物模型的使用现状由于糖尿病的病因不明,诱发因素较多,因此糖尿病研究所涉及范围较广,而且使用的实验动物种类也较多。
主要以哺乳动物为主,如灵长类动物猕猴,主要用于病因学、遗传学、神经系统、细胞生化及药物鉴定等方面研究,这样的动物模型,研究人类糖尿病会更接近自然,结果也比较理想[1],但因价格昂贵,难以得到,国内较少使用。
啮齿类动物用量最大,如大鼠、小鼠、地鼠、豚鼠等,以药物筛选和血液生化、病理改变等方面的使用为主。
家兔主要用于糖尿病高脂血症和药物研究,但由于胆固醇沉积所致的家兔动脉硬化病变与人类动脉硬化机制不尽相同,因此,用家兔作这方面的研究应该有所考虑。
近年来人们对进化程度及器官功能更接近于人类且具有自发性糖尿病倾向的小型猪产生兴趣,其为研究糖尿病的病因学及并发症带来了方便[2]。
Rulifson等[3]认为,果蝇的IPC和哺乳单位的胰岛β细胞可能来源于一种共同的可以产生胰岛素的祖先神经元。
还认为,遗传是容易控制的无脊椎动物果蝇,可作为研究人类依赖于胰岛素的糖尿病的有用模型。
2糖尿病动物模型从Minkowski和VonMehring用切除狗胰腺的方法建立DM动物模型以来,已有100多年的历史。
迄今为止,已建立了多种建立DM动物模型的方法,主要有:(1)手术切除胰腺;(2)化学药物诱导;(3)自发性DM;(4)转基因动物等[4]。
下面就这几种常见的动物模型做简要的综述。
2.1手术切除胰腺[3]将实验单位的胰腺全部或大部分切除后,β细胞缺如而产生永久性DM。
编辑版word糖尿病动物模型糖尿病是一种终生的长期性的,糖尿病是一种终生的长期性的,以不能维持正常血糖稳态为特点的代谢性疾病。
糖尿病以不能维持正常血糖稳态为特点的代谢性疾病。
糖尿病分类繁多,但最主要的有I 型糖尿病和II 型糖尿病(型糖尿病(Type 2 Diabetes Mellitus Type 2 Diabetes Mellitus Type 2 Diabetes Mellitus,,T2DM T2DM)。
)。
目前认为II 型糖尿病的基本机制是β细胞分泌胰岛素相对或绝对不足。
动物模型被越来越多地用于研究T2DM T2DM,但是糖尿病动物模型众多,各有优劣。
选择合适的动物模型对,但是糖尿病动物模型众多,各有优劣。
选择合适的动物模型对糖尿病研究至关重要。
在动物选择上在动物选择上,,主要以哺乳动物为主主要以哺乳动物为主,,啮齿鼠类使用量最大啮齿鼠类使用量最大,,应用最广应用最广,,主要用于药物筛选、病理改变等方面研究。
家兔主要用于糖尿病性高脂血症等方面。
近年来近年来,,小型猪产生兴趣小型猪产生兴趣,,如Yucatan 小型猪越来越受到重视小型猪越来越受到重视,,因为其消化系统的器官功能更接近人类因为其消化系统的器官功能更接近人类,,且具有自发性糖尿病倾向性糖尿病倾向,,只需单次注射四氧嘧啶200mg,200mg,常能诱发隐性遗传为显性遗传常能诱发隐性遗传为显性遗传常能诱发隐性遗传为显性遗传,,发病1年内可产生眼底微血 管增殖型改变等。
1. 动物选择主要以哺乳动物为主。
啮齿鼠类使用量最大,应用最广;家兔主要用于糖尿病性高脂血症等方面的研究。
近年来,如Yucatan 小型猪因其与人类更加接近的消化系统而越来越受到重视,且小型猪有自发性糖尿病倾向。
2. 几种常用的啮齿类动物模型2.1.肥胖模型 2.1.1. 瘦素相关基因改变诱导的动物模型2.1.1.1.Lep ob/ob 小鼠背景为C57BL/6J,为位于6号染色体的Lepob等位基因突变形成自发性的纯合子糖尿病小鼠。
糖尿病动物模型随着社会的发展和生活水平的提高,糖尿病逐渐成为一种常见的代谢性疾病。
为了更好地研究和治疗糖尿病,科学家们利用动物模型进行相关研究。
糖尿病动物模型是一种重要的研究工具,可以帮助科研人员深入了解疾病的发病机制、药物的疗效以及潜在的治疗方法。
本文将介绍几种常见的糖尿病动物模型及其在疾病研究中的应用。
一、疾病模型的建立1. 糖尿病模型的分类糖尿病动物模型主要可以分为遗传性糖尿病模型、化学诱导性糖尿病模型和营养性糖尿病模型。
其中,遗传性模型是通过基因改变或交叉繁殖获得具有糖尿病表型的动物,化学诱导性模型是通过注射某些化学物质诱发糖尿病,而营养性模型则是通过调节动物的饮食结构引发糖尿病。
2. 模型的建立方法建立糖尿病动物模型需要经过一系列的实验步骤,包括动物的选择、实验条件的控制以及相关指标的检测。
通常情况下,研究人员会选择小鼠、大鼠、猪等动物作为模型动物,根据实验的需要选择合适的建模方法,如基因编辑技术、药物处理或饲养调节等。
二、研究应用1. 发病机制研究利用糖尿病动物模型可以深入了解疾病的发病机制,包括胰岛素分泌障碍、胰岛素受体功能异常、胰岛素信号传导障碍等方面。
通过对糖尿病模型动物进行实验观察和分析,可以揭示疾病发生发展的内在机制,为疾病治疗提供理论依据。
2. 药物疗效评价糖尿病动物模型还可以用于评价各种治疗手段的疗效,包括药物治疗、营养干预以及基因治疗等。
研究人员可以通过实验观察动物在治疗后的生理指标变化,评估治疗手段的有效性和安全性,为临床治疗提供参考依据。
3. 新疗法研发基于糖尿病动物模型的研究结果,科研人员还可以开发新的治疗方法和药物。
通过模拟疾病的发生和发展过程,筛选具有潜在疗效的化合物或治疗策略,有望为糖尿病的治疗带来新的突破。
三、挑战与展望虽然糖尿病动物模型在疾病研究中发挥着重要作用,但也面临一些挑战,如模型稳定性、模拟人类疾病的准确性以及动物福利等方面。
未来,随着科学技术的不断进步,研究人员将不断完善和发展糖尿病动物模型,提高其在疾病研究中的应用效果,为糖尿病的防治做出更大的贡献。
糖尿病肾病动物模型成模标准摘要:一、糖尿病肾病的背景和意义二、糖尿病肾病动物模型的建立方法三、糖尿病肾病动物模型的评价标准四、糖尿病肾病动物模型的研究进展五、糖尿病肾病动物模型的应用前景正文:糖尿病肾病是糖尿病的主要并发症之一,也是导致终末期肾病的主要原因。
控制血糖及血压能够减缓糖尿病患者向终末期肾病转化,但目前临床上尚缺乏新的治疗方法医治糖尿病肾病。
建立适当的动物模型,可以为研究糖尿病肾病的病因、发病机制和病理生理改变提供重要的线索,同时也为临床治疗糖尿病肾病提供理论依据。
糖尿病肾病动物模型的建立方法主要有诱发性糖尿病肾病动物模型、自发性糖尿病肾病动物模型和基因工程小鼠模型。
诱发性糖尿病肾病动物模型是通过诱导性建模方法,如化学药物、饮食调整等手段,使得动物出现糖尿病肾病的病理改变。
自发性糖尿病肾病动物模型则是通过自然发展过程,使得动物在患有糖尿病的基础上,逐渐出现肾病的病理改变。
基因工程小鼠模型则是通过基因编辑技术,使得小鼠具有糖尿病肾病的遗传特征,从而建立糖尿病肾病动物模型。
糖尿病肾病动物模型的评价标准主要包括病理学改变、生理学改变和分子生物学改变。
病理学改变主要通过观察肾脏组织病理切片,评价肾脏结构和功能的损害程度。
生理学改变主要通过检测动物的血糖、血压等生理指标,评价糖尿病肾病的发展程度。
分子生物学改变主要通过检测动物体内相关基因和蛋白质的表达水平,评价糖尿病肾病的病理生理改变。
近年来,糖尿病肾病动物模型的研究取得了显著进展,已经建立了多种类型的糖尿病肾病动物模型,为研究糖尿病肾病的发病机制和临床治疗提供了有力支撑。
然而,目前糖尿病肾病动物模型仍存在一定局限性,如模型的稳定性、可重复性和临床相关性等方面仍有待提高。
I型糖尿病(胰岛素依赖)动物模型
1、自发性糖尿病模型实验动物:BB大鼠、LETL大鼠、NOD小鼠模型特点:起病快、症状明显,BB大鼠伴有酮症酸中毒。
适用研究:I型糖尿病研究获取方法:直接购买
2、诱发性糖尿病模型(1)手术诱导实验动物:大鼠、猫、狗模型特点:切除胰腺后,β细胞缺失而产生永久性DM。
适用研究:I型糖尿病研究获取方法:全部或大部分切除实验动物的胰腺,但保存胰十二指肠动脉吻合弓。
如果连续两天血糖值超过11.1 mmol/L或者葡萄糖耐量试验120 min时的血糖值仍未恢复到注射前水平则认为DM造模成功。
(2)化学药物诱导(STZ)实验动物:小鼠、大鼠、家兔、狗模型特点:链脲佐菌素(streptozotocin STZ)诱导胰岛β细胞死亡。
适用研究:I型糖尿病研究获取方法:采用STZ腹腔注射。
STZ的参考剂量为50~150mg /kg。
(另一种四氧嘧啶诱导法由于不如STZ好,这里就不作介绍。
)
3、转基因模型实验动物:NOD-RIP-B7-1小鼠模型特点:过表达辅助刺激因子B7-1而致糖尿病发病时间较正常NOD小鼠明显提前,在12周龄即发生糖尿病。
适用研究:I型糖尿病研究获取方法:自己构建转基因小鼠或直接定制购买。
造模方法(1)链脲佐菌素(Streptozotocin)诱导大鼠糖尿病模型方法将大鼠禁食12h,按60mg/kg体重腹腔注射STZ,每日1次,连续2次,成功制备Ⅰ型糖尿病大鼠模型,并且该模型具有高血糖、体重减轻、多饮多食多尿的特点,与临床Ⅰ型糖尿病吻合;但在此实验中,若造模组只腹腔注射STZ一次,并给予高热量饲料饲养12周,则可制备Ⅱ型糖尿病动物模型,且按该法制备出的模型具有超重、糖耐量减低、血脂升高、血清胰岛素升高及胰岛素受体结合力降低伴胰岛素抵抗的特点,类似于Ⅱ型糖尿病病人的临床特征。
Ⅰ型糖尿病与Ⅱ型糖尿病动物模型的制备可能与STZ注射的剂量有关系:大剂量(常为120mg/kg)注射时,由于直接引起胰岛β细胞的广泛破坏,可造成Ⅰ型糖尿病模型;而注射较少量STZ时,由于只是破坏一部分胰岛β细胞的功能,造成外周组织对胰岛素不敏感,同时给予高热量饲料喂养,两者结合便诱导出病理、生理改变都接近于人类Ⅱ型糖尿病的动物模型。
/bbs/actions/archive/post/5636508_0.html(2)你还是采用腹腔的比较好!按65或是70给都可以。
最好是给STZ后7天开始测定血糖分组为好,这样血糖已经稳定了!我给我的一个朋友用ALLOXAN,尾静脉。
大鼠,50mg/kg,全都死亡了!给STZ前有的说禁食,有的说不用,但还是禁的好些,给STZ后,也不要立即给予食物,1小时后再给。
还有腹腔注射的手法要正确!!给STZ要快,最好在冰水中冷却溶液!/bbs/actions/archive/post/672237_0.html(3)链脲霉素(STZ)诱导的高血糖动物模型STZ水溶液不稳定,对小鼠的生物半衰期仅有5min左右,需要快速静脉注射。
造型剂量犬50mg/kg,静注,可引起糖尿病,动物死亡率较高;如15mg/kg,连续3天也可。
大鼠60-80mg/kg,iv或ip,小鼠100-200mg/kg,iv或ip。
小鼠糖尿病模型血糖标准糖尿病是一种常见的代谢性疾病,严重影响人类的健康。
为了研究糖尿病的发病机制和寻找治疗方法,科学家们通常会使用动物模型来进行实验。
小鼠作为常用的实验动物之一,被广泛用于糖尿病模型的研究。
在进行这些实验时,血糖标准是一个非常重要的指导依据。
本文将介绍小鼠糖尿病模型血糖标准的相关内容。
1. 小鼠糖尿病模型的建立在实验室,糖尿病模型的建立主要采用两种方法:化学诱导法和基因敲除法。
化学诱导法通过给小鼠注射化学物质(如阿霉素、链脲佐菌素等)来诱导糖尿病。
基因敲除法则通过敲除小鼠体内与胰岛素分泌或作用相关的基因,使小鼠发展为糖尿病模型。
2. 血糖测量的重要性血糖测量是评估糖尿病模型的关键指标之一。
在实验前,科研人员需要明确小鼠的血糖水平以区分正常小鼠和糖尿病模型小鼠。
同时,在糖尿病模型建立后,血糖测量还可以用于观察模型的稳定性和糖尿病的进展情况。
3. 小鼠糖尿病模型血糖标准的制定小鼠糖尿病模型血糖标准制定的主要目的是为科研人员提供合理的血糖范围,以便评估模型的有效性和稳定性。
血糖标准的制定要根据实验需求、模型类型和实验组设计来确定。
3.1 胰岛素敏感性糖尿病模型的血糖标准胰岛素敏感性糖尿病模型是指小鼠体内胰岛素受体功能异常导致的糖尿病。
这种模型下,小鼠的血糖水平通常偏高,血糖标准一般设置在7.8-11.1 mmol/L之间。
3.2 胰岛素抵抗型糖尿病模型的血糖标准胰岛素抵抗型糖尿病模型是指小鼠体内胰岛素抵抗性增加导致的糖尿病。
在这种模型下,小鼠的血糖水平会进一步升高。
血糖标准一般可以设置在11.1-15 mmol/L之间。
3.3 血糖标准的确定方法确定血糖标准的方法有多种,一般包括测量空腹血糖、餐后血糖和糖耐量试验等。
科研人员可以根据实验需要选择适合的方法。
4. 血糖监测技术的选择为了准确测量小鼠的血糖水平,科研人员需要选择适合的血糖监测技术。
常用的方法包括血液化学分析仪、连续血糖监测仪和葡萄糖氧化酶法试纸等。
糖尿病动物模型
糖尿病是一种终生的长期性的,以不能维持正常血糖稳态为特点的代谢性疾病。
糖尿病分类繁多,但最主要的有I型糖尿病和II型糖尿病(Type 2 Diabetes Mellitus,T2DM)。
目前认为II型糖尿病的基本机制是β细胞分泌胰岛素相对或绝对不足。
动物模型被越来越多地用于研究T2DM,但是糖尿病动物模型众多,各有优劣。
选择合适的动物模型对糖尿病研究至关重要。
在动物选择上,主要以哺乳动物为主,啮齿鼠类使用量最大,应用最广,主要用于药物筛选、病理改变等方面研究。
家兔主要用于糖尿病性高脂血症等方面。
近年来,小型猪产生兴趣,如Yucatan小型猪越来越受到重视,因为其消化系统的器官功能更接近人类,且具有自发性糖尿病倾向,只需单次注射四氧嘧啶200mg,常能诱发隐性遗传为显性遗传,发病1年内可产生眼底微血管增殖型改变等。
1.动物选择
主要以哺乳动物为主。
啮齿鼠类使用量最大,应用最广;家兔主要用于糖尿病性高脂血症等方面的研究。
近年来,如Yucatan小型猪因其与人类更加接近的消化系统而越来越受到重视,且小型猪有自发性糖尿病倾向。
2.几种常用的啮齿类动物模型
2.1.肥胖模型
2.1.1.瘦素相关基因改变诱导的动物模型
2.1.1.1.Lep ob/ob小鼠
背景为C57BL/6J,为位于6号染色体的Lepob等位基因突变形成自发性的纯合
子糖尿病小鼠。
该小鼠从4周开始呈现出肥胖,之后体重急速增加。
出现肥胖
后,该小鼠饮食过量,呈现高血糖、高胰岛素血症、妊娠能力低下、代谢低下
等特征。
2.1.1.2.Lep db/db小鼠
背景为C57BLKS/J, 为位于4号染色体的Lerpdb等位基因突变形成自发性的纯
合子糖尿病小鼠。
该小鼠从3-4周开始呈现出肥胖体征.,血胰岛素从10-14天
开始增加,血糖值从4-8周开始急速增加。
呈现出多饮,多食,多尿的临床表
现。
血糖开始上升后, 胰岛的分泌胰岛素的β细胞消耗严重。
这类小鼠平均寿命
约10个月,末梢神经系统,心血管系统,免疫系统,糖尿病性肾病等多个系
统均可观察到病理变化。
2.1.1.
3.Zucker肥胖大鼠/Zucker肥胖糖尿病大鼠
由Merck M-strain和sherman大鼠杂交而来的大鼠。
其染色体的Lepr fa等位基因
突变形成自发性的纯合子糖尿病大鼠。
4周开始呈现出肥胖,10周开始体重急
速增加,多伴有多食。
该大鼠还有高脂血症、高胰岛素血症、高瘦素血症、妊
娠能力低下代谢低下等临床特征。
该大鼠模型的脂肪细胞的数量和体积增加,
限制食物量也可以导致体重过度增加和过度的脂肪堆积。
空腹时,血糖值一般
在正常范围内
2.1.2.多基因诱导的模型
2.1.2.1.KK-Aγ小鼠
KK-Aγ小鼠是典型的自发性II型糖尿病模型小鼠,具有过量饮食、肥胖、高血
糖、高胰岛素血症、胰岛素抵抗、脂质代谢紊乱、葡萄糖不耐受等临床特点。
2.1.2.2.TallHo/Ing小鼠
2.1.2.
3.Otsuka Long Evans Tokushima Fat rat
Long-Evans系大鼠建立的自发性2型DM模型动物。
该大鼠有多食、肥胖、多
饮和多尿等临床特征,能缓慢地自然产生2型DM。
自8周起血清甘油三酯、
胆固醇和餐后血糖身高,随着年龄的增长,血清甘油三酯和餐后血糖不断升高。
从12周起出现明显的胰岛素抵抗。
尿蛋白自30周龄起明显增多,且随年龄的
增加而迅速增加,该模型大鼠胰腺呈进行性纤维化。
在22周龄时,可出现肾
小球基底膜增厚;以上胰腺和肾脏不同阶段的病理变化,与临床2型DM患者
的病理表现极为相似。
2.1.
3.饮食诱导的模型
饮食也可诱导出糖尿病模型。
比如,通过长期用含果糖饮食喂养大鼠,可制成糖尿病模型,大鼠会出现体重上升,血中胰岛素上升,糖耐量受损,及胰岛素耐受实验呈阳性。
2.2.β细胞功能/数量改变导致的糖尿病模型
2.2.1.Goto-Kakizaki(GK)大鼠
GK大鼠自3~4周龄起开始发生明显的高血糖。
在高血糖发生前,常有一段血
糖正常时期,类似人类的DM前期。
此期具有葡萄糖刺激的胰岛素分泌受损、β细胞数目减少、胰岛素的敏感性降低、胰岛素抵抗等特征。
GK大鼠血压也较正
常wistar大鼠高。
此外,该模型大鼠具有与人类2型DM微血管并发症相似的改变如运动神经传导速率减慢、神经纤维有节段性脱髓鞘、轴突变性、视网膜血管内皮生长因子(VEGF)表达增加、视网膜局部血流减少、白蛋白尿、肾小球基底膜增厚、肾小球肥大和硬化等改变。
2.2.2.链脲佐菌素诱导的糖尿病
用链脲佐菌素腹腔注射或四氧嘧啶静脉注射可诱发糖尿病,常用动物有小鼠、大鼠、家兔和狗。
四氧嘧啶进入体内后能迅速被胰岛β细胞摄取,影响细胞膜的通透性和细胞内ATP的产生,抑制葡萄糖介导的胰岛素分泌。
四氧嘧啶主要通过
产生氧自由基破坏β细胞结构,导致细胞的损伤及坏死,从而阻碍胰岛素的分泌,使血清胰岛素水平降低。
因为四氧嘧啶导致糖尿病的同时也造成肝、肾组织中毒性损害并且部分采用四氧嘧啶制造的DM动物模型可自发缓解,因此目前已经
很少应用。
2.2.
3.Pancreatectomy
切除全部或大部分胰腺,到保存胰十二指肠动脉吻合弓,可制作出糖尿病模型。
其机制是切除胰腺后,Β细胞缺失而产生永久性糖尿病。
(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,
供参考,感谢您的配合和支持)。