超音速喷涂介绍
- 格式:ppt
- 大小:78.00 KB
- 文档页数:6
超音速火焰喷涂设备操作手册第一章:设备概述1.1 设备简介超音速火焰喷涂设备是一种高效且灵活的喷涂设备,适用于金属表面的涂层喷涂。
设备采用了超音速喷嘴技术,可以产生高速的火焰喷流,将涂料喷涂于目标表面。
1.2 系统组成超音速火焰喷涂设备主要由以下组成部分构成:- 压缩空气供应装置:提供压缩空气作为火焰喷射喷涂的动力源。
- 燃料供应装置:提供适量的燃料以维持火焰喷射过程。
- 火焰喷射喷嘴:将压缩空气和燃料混合并点燃,形成高速火焰喷流。
- 控制系统:用于设备的启动、停止和调整操作。
第二章:设备操作2.1 安全事项- 在操作设备前,请确保已经穿戴好合适的个人防护装备,如手套、护目镜、防护服等。
- 严禁在设备运行过程中将手指或其他物体靠近喷嘴出口,以免造成严重伤害。
- 设备操作过程中,禁止随意调整燃料和空气的供应量,以避免发生喷火或爆炸等事故。
- 当设备出现异常情况时,立即停止使用,并及时修理或寻求专业人士的帮助。
2.2 设备准备- 确保设备电源已接通,并检查控制系统的显示是否正常。
- 检查燃料供应是否充足,确保压缩空气供应是否正常。
- 检查喷嘴是否清洁,并在需要时进行清理。
2.3 启动设备- 按下控制系统上的启动按钮,设备开始供应燃料和压缩空气。
- 观察火焰喷射喷嘴是否正常工作,确保喷射火焰稳定且呈高速喷流状。
2.4 进行喷涂- 将喷嘴对准待喷涂的目标表面,并通过手柄控制喷涂的方向和喷涂的面积。
- 在喷涂过程中,保持适当的距离和喷射速度,均匀覆盖整个表面。
- 根据需要,可以进行多次喷涂以达到更好的涂层效果。
2.5 停止设备- 当喷涂完成或需要暂停时,按下控制系统上的停止按钮,断开燃料和压缩空气供应。
- 等待设备完全停止工作后,进行后续的清洁和维护。
第三章:设备维护3.1 日常清洁- 在每次使用设备后,将喷嘴和喷涂相关部件用清洁剂进行彻底清洁,以防止堵塞和积存物的影响。
- 清洗喷嘴时应注意安全,确保设备已经完全停止工作并断开电源。
超音速喷涂原理超音速喷涂是一种先进的表面涂覆技术,它利用高速气流将粉末或液态材料喷涂到工件表面,形成坚固的涂层。
这种喷涂技术具有高效、高质、高精度的特点,被广泛应用于航空航天、汽车制造、电子设备等领域。
那么,超音速喷涂的原理是什么呢?超音速喷涂原理的核心是利用气体动力学效应,将材料颗粒加速到超音速,并喷射到工件表面。
首先,喷涂材料经过加速器加速,进入到高速气流中。
随着气流的加速,材料颗粒也跟随气流加速,最终达到超音速。
当材料颗粒以超音速喷射到工件表面时,会产生高温高压的冲击效应,使材料颗粒瞬间熔化或变形,然后迅速冷却凝固,形成坚固的涂层。
超音速喷涂原理的关键在于气体动力学效应的应用。
气体动力学是研究气体在动态条件下的运动规律的科学,它包括了气体的压缩、加速、膨胀等过程。
在超音速喷涂中,气体动力学效应被充分利用,通过设计合理的喷涂系统和喷嘴结构,使喷涂材料能够在高速气流中达到超音速,从而实现高效喷涂。
除了气体动力学效应,超音速喷涂原理还涉及到热力学和材料科学等多个领域的知识。
在喷涂过程中,高速气流的运动会产生大量的动能,同时也会带走大量的热能,使喷涂材料瞬间升温。
这种快速的加热和冷却过程,对于材料的变形和固化起到了至关重要的作用。
此外,超音速喷涂原理还需要考虑到喷涂材料的选择和粒度分布等因素。
不同的材料对于超音速喷涂的适用性不同,而材料颗粒的粒度分布也会影响到喷涂涂层的质量和性能。
因此,在实际应用中,需要根据具体的喷涂要求和工件材料的特性,选择合适的喷涂材料和工艺参数。
总的来说,超音速喷涂原理是一种复杂的物理过程,它涉及到气体动力学、热力学、材料科学等多个学科的知识。
通过合理设计喷涂系统和喷涂工艺,充分利用气体动力学效应,可以实现高效、高质的涂覆,为工件表面提供优良的保护和功能性涂层。
超音速喷涂技术的不断发展和应用,将为现代制造业带来更多的可能性和机遇。
调研报告:等离子热喷涂与超音速火焰喷涂的区别、优缺点及成本对比一、工艺原理1. 等离子热喷涂:等离子热喷涂是一种通过将喷涂材料加热到熔融状态,然后以高速喷射到工件表面形成涂层的工艺。
等离子体作为一种高温热源,能够将涂料加热至熔融状态,使其在被喷涂时具有较高的流动性。
2. 超音速火焰喷涂:超音速火焰喷涂是一种利用高温燃气和高速喷射技术将喷涂材料喷射到工件表面的工艺。
该工艺使用燃气燃烧产生的高温高速气流将涂料加热并加速,使其以极高的速度喷射到工件表面。
二、涂料特性1. 等离子热喷涂:等离子热喷涂的涂料种类较多,包括金属、合金、陶瓷等材料。
由于等离子体的高温特性,能够保证涂料在熔融状态下的流动性,因此适用于喷涂较厚的涂层。
2. 超音速火焰喷涂:超音速火焰喷涂的涂料种类包括金属、非金属陶瓷等材料。
由于高速喷射的特性,适用于喷涂较薄的涂层。
三、涂层性能1. 等离子热喷涂:等离子热喷涂形成的涂层具有较高的结合强度、硬度和耐磨性。
同时,由于涂料在熔融状态下流动性较好,能够形成较致密的涂层结构。
2. 超音速火焰喷涂:超音速火焰喷涂形成的涂层具有较高的结合强度和硬度。
由于高速喷射的特性,形成的涂层具有较小的孔隙率,具有较好的防腐蚀性能。
四、优缺点1. 等离子热喷涂:优点:形成的涂层结合强度高、硬度较好;适用于喷涂较厚的涂层;可用于不同材料的喷涂。
缺点:设备成本较高;操作过程中需要消耗大量能源;高温下容易引起材料氧化。
2. 超音速火焰喷涂:优点:高速喷射形成的涂层结合强度高、防腐蚀性能好;设备成本相对较低;操作过程中能源消耗较少。
缺点:形成的涂层较薄,需多次喷涂才能达到预期效果;对于某些材料,易引起氧化和热损伤。
五、成本对比1. 等离子热喷涂:由于设备成本较高,操作过程中需要消耗大量能源,因此等离子热喷涂的成本相对较高。
2. 超音速火焰喷涂:设备成本相对较低,操作过程中能源消耗较少,因此超音速火焰喷涂的成本相对较低。
超音速火焰喷涂原理
超音速火焰喷涂是一种利用超音速气流将液态或粉状的火焰喷涂材料喷射到被涂表面的技术。
其原理可以概括为以下几点:
1. 喷涂材料的制备:将火焰喷涂材料以液态或粉状形式储存在高压容器中。
液态材料一般需要通过加热使其变为气态,而粉状材料则直接进入喷涂设备。
2. 气流产生:在喷涂设备中,利用压缩空气或氧气等气体通过高压喷嘴加速排出,形成超音速气流。
超音速气流具有非常高的动能和冲击力。
3. 火焰生成:喷涂设备中通过点火机构将气体与可燃物质混合,并点燃产生火焰。
火焰的燃烧产生高温、高能量的气体。
4. 喷涂作用:当火焰燃烧时,超音速气流通过喷嘴将火焰喷涂材料从喷射出,形成一个喷涂射流。
火焰的高温能使液体材料蒸发或粉状材料熔化,并将其析出到射流中。
5. 沉积:喷涂射流与被涂表面相碰撞,产生冲击和磨擦作用。
火焰喷涂材料将沉积在被涂表面上,与基材粘结。
6. 火焰喷涂层形成:随着火焰喷涂材料的沉积,一层薄的火焰喷涂层逐渐形成。
这层火焰喷涂层具有很高的致密性和附着力,能够提供保护和改良被涂表面的性能。
总结:超音速火焰喷涂利用超音速气流将火焰喷涂材料喷射到
被涂表面,通过火焰的燃烧以及超声速气流的动能和冲击力,将液态或粉状材料沉积到表面形成薄的火焰喷涂层。
这种技术可以实现高效、快速和高附着力的涂层制备。
高速火焰喷涂高速火焰喷涂国内习惯上称为超音速火焰喷涂,它的英文缩写为HVOF(High Velocity Oxygen Fuel的首写字母)。
高速火焰喷涂是在爆炸喷涂的基础上发展起来的一项新的热喷涂技术,是在上世纪八十年代初期,由美国Browning公司最先研制成功,并推出名为JET-KOTE的商用喷涂设备。
高速火焰喷涂技术一经问世,就以其超高的焰流速度和相对较低的温度,在喷涂金属碳化物和金属合金等材料方面显现出了明显优势。
在世界各大热喷涂公司的积极推动下,该技术发展很快,目前高速火焰喷涂技术在喷涂金属碳化物、金属合金等方面,已逐步取代了等离子喷涂和其它喷涂工艺,成为热喷涂的一项重要工艺方法。
1.高速火焰喷涂原理高速火焰喷涂是将助燃气体与燃烧气体在燃烧室中连续燃烧,燃烧的火焰在燃烧室内产生高压并通过与燃烧室出口联接的膨胀喷嘴产生高速焰流,喷涂材料送入高速射流中被加热、加速喷射到经预处理的基体表面上形成涂层的方法。
可使用乙炔、丙烷、丙烯、氢气等作为燃气,也可使用柴油或煤油等液体燃料。
煤油、氧气通过小孔进入燃烧室后混合,在燃烧室内稳定、均一地燃烧。
有监测器用来监控燃烧室内压力,以确保稳定燃烧,喷涂粉末的速度与燃烧室内压力成正比。
燃烧室的出口设计使高速气流急剧扩展加速,形成超音速区和低压区。
粉末在低压区域沿径向多点注入,粉末均一混合,在气流中加速喷出。
高速火焰喷涂焰流速度高达1500m/s-2000m/s,一般可观察到5-8个明显的马赫锥,粒子流速度高达300-650m/s。
2.设备构成高速火焰喷涂设备一般由喷枪、送粉器、控制系统、喷枪冷却系统、气体供应系统五部分构成。
目前我国在用的高速火焰喷涂设备绝大部分是进口的,使用最多的型号为:Sulzer Metco公司的DJ-2700和Praxair 公司的JP-5000,JP-5000 是原Hobart Tafa公司研制成功的,后该公司并入了Praxair公司。
超音速喷涂原理超音速喷涂原理一、引言超音速喷涂是一种高效的表面处理技术,广泛应用于航空、航天、汽车等领域。
本文将介绍超音速喷涂的原理。
二、超音速喷涂的定义超音速喷涂是指利用高温高压气体将粉末状材料加热成熔融状态,然后在高速气流中加速运动,最终以超音速冲击到基体表面,形成均匀致密的覆盖层。
三、超音速喷涂的设备超音速喷涂设备主要由以下组成部分:粉末供给系统、气体供给系统、火焰发生器、加热室和喷嘴等。
四、超音速喷涂的工艺流程1. 粉末供给系统将粉末输送到加热室;2. 气体供给系统提供氧气和惰性气体(如氮气);3. 火焰发生器提供火焰;4. 粉末在火焰中被加热成熔融状态;5. 氧气和惰性气体混合后形成高温高压气流;6. 熔融的粉末在高速气流中加速运动;7. 熔融的粉末以超音速冲击到基体表面。
五、超音速喷涂的原理1. 粉末加热成熔融状态超音速喷涂的第一步是将粉末加热成熔融状态。
火焰发生器提供高温火焰,将粉末加热至熔点以上。
此时,粉末开始熔化,并形成一定的表面张力。
2. 气流加速运动氧气和惰性气体混合后形成高温高压气流。
这个气流在喷嘴中被加速,达到超音速。
同时,喷嘴内部的设计也能够使气流产生旋转运动,使得粉末在运动过程中更为均匀。
3. 粉末冲击基体表面经过以上两个步骤后,熔融的粉末已经被加速到了超音速。
它们以极高的能量冲击到基体表面,并迅速冷却凝固。
由于喷涂过程中使用的惰性气体可防止材料与空气发生反应,因此形成的覆盖层具有很高的致密性。
六、超音速喷涂的优点1. 覆盖层致密由于超音速喷涂过程中使用的惰性气体可防止材料与空气发生反应,因此形成的覆盖层具有很高的致密性,能够有效防止基体受到外界环境的腐蚀和磨损。
2. 生产效率高超音速喷涂是一种高效的表面处理技术,可以在短时间内完成大面积覆盖。
同时,由于喷涂过程中使用的是粉末材料,因此可以根据需要进行不同材料之间的混合。
3. 可适用于多种材料超音速喷涂可以适用于多种不同类型和形状的材料,包括金属、陶瓷、塑料等。
防磨防腐新材料超音速电弧喷涂技术一、超音速电弧喷涂的原理电弧喷涂原理是利用两根连续送进的金属丝作为自耗电极,在其端部产生电弧作为热源,用压缩空气将熔化了的丝材雾化,并以超音速喷向工作件形成一种结合强度高、孔隙率低、表面粗糙度低的涂层的热喷涂方法。
其工作原理与普通电弧喷涂(亚音速雾化)一样,超音速电弧喷涂是一个不断连续进行的熔化-雾化-沉积的过程。
但在雾化方式上,超音速电弧喷涂与普通电弧喷涂有根本的区别,即超音速电弧喷涂是采用超音速雾化。
其优点是:雾化效果好,雾化后的粒子细小均匀,速度高,有利于获得高质量的涂层。
超音速电弧喷涂采用拉伐尔喷嘴,将气流的速度从亚音速提高到超音速,加强了气流对粒子的加速效果,从而提高了粒子速度。
粒子速度对涂层的性能有很大的影响。
粒子速度高,粒子沉积时对基体的撞击作用就强,粒子变形就充分。
有利于粒子与基体、粒子与粒子之间的结合,从而提高涂层的结合强度和内聚强度;粒子速度高,粒子沉积前在空气中的飞行时间短,飞行中产生的氧化物就少,有利于粒子的结合,从而提高涂层的内聚强度,降低涂层的孔隙率。
粒子速度越高,越有利于获得高质量的涂层。
随着热喷涂设备的更新换代,粒子速度在不断提高,涂层的质量也不断得到改善。
超音速雾化减小了粒子的粒度,降低了涂层的粗糙度。
粗糙度是涂层的一项重要性能指标,它取决于雾化后粒子的粒度。
超音速雾化加强了气流对丝材端部熔化金属间的作用,雾化的粒子细小均匀,大大降低了涂层的粗糙度。
同时,粒子粒度的减小,也降低了粒子扁平化过程中的飞溅,有利于降低涂层的孔隙率。
超音速雾化是超音速电弧喷涂的出发点,是其与普通电弧喷涂的根本区别。
超音速电弧喷涂设备包括电源、喷枪、送丝机构及其附件,关键设备是超音速电弧喷枪。
我公司采用进口喷嘴,并且喷涂电流稳定,能在保证丝材雾化效果、涂层质量的前提下,一天的喷涂面积达到20m2。
电弧喷涂时,弧区的温度高达5000-6000℃,用气冷的方式对喷嘴进行冷却。
爆炸喷涂、等离子喷涂、超音速火焰喷涂、微弧氧化、离子镀铝、离子注入等技术应用现状及适用对象范围1爆炸喷涂爆炸喷涂技术的实质是利用脉冲式气体爆炸的能量将被喷涂的粉末材料加热加速轰击到工作表面后形成坚固涂层。
喷涂时,先将一定比例的氧气和C2H2由供气口送入水冷喷枪的燃爆室,然后由送粉气将喷涂粉末送入燃爆室,经火花塞点火,氧气和C2H2混合气发生爆炸式燃烧,其热能加热喷涂粉末到一定状态,而爆炸冲击波则把喷涂粉末粒子高速喷向工件表面形成涂层。
随后向燃爆室内送入清扫气,为下次爆喷准备,如此循环反复进行。
爆炸喷涂所使用的粉末材料可以是:单一金属、合金、单一氧化物和混合氧化物、硬质合金、碳化物和碳化钨基体的金属陶瓷以及各种复合材料等。
主要用于在形状简单的金属/合金工件表面制备涂层。
爆炸喷涂的优点:(1)与其他喷涂方法相比,爆炸喷涂涂层的结合强度较高,喷涂陶瓷粉末时,涂层结合强度可达70MPa,喷涂金属陶瓷粉末时涂层结合强度可达175MPa;(2)涂层相对致密,孔隙率一般小于1%;(3)涂层耐磨性较好,由于喷涂时粉末颗粒撞击到工件表面后急冷,能够在涂层中形成超细组织;(4)涂层硬度比使用其他喷涂方式获得的涂层硬度更高;(5)对工件的热损伤小;(6)喷涂碳化物或碳化物基粉末材料时不会发生分解、脱碳现象。
爆炸喷涂的缺点:(1)效率低。
爆炸频率较低,不超过10次/s,而每次喷涂的涂层厚度仅4~6um,面积仅φ25mm;(2)爆炸喷涂时噪音强烈,达到或超过150dB;(3)喷涂时会产生极细的尘粒,需专用的防尘室等措施;(4)对形状复杂的工件表面、小内径内腔表面和长内腔表面无法喷涂爆炸喷涂的应用:爆炸喷涂由于其涂层结合强度高、硬度高、耐磨性好、以及工件的热影响小,故一出现就广泛应用到飞行器零部件的喷涂上,如高低压压气机叶片、涡轮叶片、火焰筒外壁上喷涂热障涂层,齿轮轴、衬套副翼、襟翼滑轨等部件的耐磨涂层等。
国外爆炸喷涂涂层已在50多种航空产品的零件上获得应用,仅JT3D发动机上采用爆炸喷涂涂层的部位就有10余处,零件达83件。
超音速火焰喷涂技术的研究与应用作者:安浩来源:《E动时尚·科学工程技术》2019年第19期摘要:超音速火焰喷涂是20世纪80年代出现的一种高能喷涂方法,它的开发是继等离子喷涂之后热喷涂工业最具创造性的进展。
虽然超音速火焰喷涂方法可喷涂的材料很多,但因其火焰含氧量少,温度适中,焰流速度很高,可以有效地防止粉末涂层材料的氧化和分解,所以被广泛地应用于碳化物类涂层的喷涂。
本文采用超音速火焰喷涂制备T800涂层,利用金相显微镜对涂层组织结构进行研究,并通过显微硬度测试、表面硬度测试、拉伸试验等测试方法确定涂层的最佳喷涂参数关键词:T800;涂层;超音速火焰喷涂技术前言超音速火焰喷涂(HighVelocityOxygenFuel,HVOF)的出现使得制备高质量非晶涂层成为了可能。
HVOF具有火焰速度快、火焰温度低、喷涂粒子冷却速度快等特点。
一般非晶形成的条件是最大临界冷却速度达到106K/s以上,而HVOF热喷涂可以获得临界冷却速度107K/s左右,使得多数合金成分都可在临界速度以上喷涂而形成非晶态组织。
通过HVOF喷涂制备的涂层往往比较致密、氧化物含量低、同时具有比等离子喷涂等喷涂方式更高的结合强度。
此外,超音速喷涂与等离子喷涂相比能够在较低温度条件下进行减少WC的分解。
当然,超音速火焰喷涂也有其局限性,相对于WC-Co烧结技术,超音速火焰喷涂层仍然会受到WC脱碳和分解的影响,导致形成W2C、W和W-Co-C相。
需要指出的是,超音速涂层显微组织、性质和孔隙率主要取决于涂层形成前的气体喷射和飞行粒子的传热和传质。
燃料的性质和化学计量比以及相关的燃烧气体是决定涂层微观结构和性能的关键条件。
1 超音速火焰喷涂的原理及特点图1为超音速火焰喷涂原理。
燃料气体(氢气,丙烷,丙烯或乙炔-甲烷-丙烷混合气体等)与助燃剂(O2)以一定的比例导入燃烧室内混合,通过爆炸式燃烧产生的高温气体高速通过膨胀管获得超音速;同时通入送粉气(Ar或N2),并定量地沿燃烧头内碳化钨中心套管送入高温燃气中,最终一同射出并喷涂于工件上形成涂层。
超音速喷涂原理
超音速喷涂是一种高速喷涂技术,利用超音速喷涂设备将材料颗粒加速到超音速并喷涂到工件表面,形成坚固的涂层。
这种喷涂技术被广泛应用于航空航天、汽车制造、船舶建造等领域,具有高效、节能、环保等优点。
超音速喷涂原理主要包括材料加速、喷涂过程和涂层形成三个方面。
首先,材料加速是超音速喷涂的关键环节。
在超音速喷涂设备中,通过高压气体或电磁场的作用,将材料颗粒加速到超音速。
这种高速加速可以大大提高材料颗粒的动能,使其在喷涂过程中具有更强的穿透力和沉积能力。
其次,喷涂过程是超音速喷涂的核心环节。
加速后的材料颗粒通过喷嘴喷射到工件表面,与表面发生剧烈的碰撞和摩擦,使材料颗粒的动能转化为热能,从而形成坚固的涂层。
喷涂过程中,喷涂速度、喷涂距离、喷涂角度等因素都会对涂层的质量产生影响,需要精确控制。
最后,涂层形成是超音速喷涂的结果。
经过喷涂过程后,材料颗粒在工件表面形成均匀致密的涂层,具有优异的耐磨、耐腐蚀、绝缘等性能。
涂层的质量和性能取决于材料的选择、喷涂工艺的控制以及工件表面的预处理等因素。
总的来说,超音速喷涂原理是利用高速喷涂设备将材料颗粒加速到超音速并喷涂到工件表面,形成坚固的涂层。
这种技术在航空航天、汽车制造、船舶建造等领域具有重要应用,为提高工件表面的性能和延长使用寿命发挥着重要作用。
随着材料科学和喷涂技术的不断发展,超音速喷涂技术将会更加完善和成熟,为工业生产带来更多的便利和效益。
超音速电弧喷涂概述超音速电弧喷涂(Supersonic Arc Spraying)是一种常见的热喷涂技术,用于在材料表面形成高质量的涂层。
它结合了超音速喷射和电弧放电的原理,适用于各种材料的喷涂,包括金属、合金、陶瓷等。
超音速电弧喷涂技术具有高效率、低温度、低氧化和低氢损失的特点,被广泛应用于领域。
工作原理超音速电弧喷涂的工作原理基于热喷涂的基本原理,即将喷涂材料加热到熔融或部分熔融状态后通过喷嘴喷射到基材表面,并快速凝固形成涂层。
超音速电弧喷涂具体的工作步骤如下:1.喷涂材料预处理:将要喷涂的材料制成粉末状,并经过预处理,如筛分、除尘、干燥等,以确保喷涂质量。
2.电弧放电:在电弧喷涂设备中,通过电极产生高温的电弧,使粉末颗粒在电弧中熔化并加速。
3.超音速喷射:由于电弧的高温和高速气流的作用,熔融的喷涂材料被加速到超音速并通过喷嘴喷射出来。
4.冷却和凝固:超音速喷射的喷涂材料与基材接触后会迅速冷却并凝固,形成均匀致密的涂层。
5.涂层处理:涂层形成后,可以进行后续的处理,如热处理、打磨、抛光等,以提高涂层的性能和质量。
应用领域超音速电弧喷涂技术在许多领域都有广泛的应用,以下是一些常见的应用领域:1. 航空航天超音速电弧喷涂技术在航空航天领域中用于涂层修复、表面保护和功能增强。
涂层可以提供优异的耐磨、耐蚀和热阻抗性能,用于飞机发动机叶片、涡轮、燃烧室等部件的涂层修复和功能增强。
2. 汽车工业超音速电弧喷涂技术在汽车工业中广泛应用于引擎、排气系统、刹车系统等零部件的涂层修复和功能增强。
涂层可以提供良好的耐磨、降噪和热阻抗性能,延长零部件的使用寿命。
3. 石油和天然气工业超音速电弧喷涂技术在石油和天然气工业中用于涂层修复和功能增强。
涂层可以提供耐蚀、防磨和耐高温性能,用于管道、阀门、接头等设备的涂层修复和功能增强。
4. 电力工业超音速电弧喷涂技术在电力工业中用于涂层修复和功能增强。
涂层可以提供优异的耐蚀、耐磨和耐高温性能,用于发电机、涡轮、导叶等设备的涂层修复和功能增强。
热喷涂技术之未来趋势--超音速喷涂技术摘要:本文简要叙述了热喷涂技术的概况,比如热喷涂设备组成,热喷涂的工作原理,热喷涂技术的特点;着重介绍了热喷涂技术中超音速喷涂技术的发展过程, 简述了超音速火焰喷涂、超音速等离子喷涂、超音速电弧喷涂及冷喷涂等设备的结构和技术特点, 介绍了超音速喷涂工艺及涂层特性, 展望了该技术在制备纳米涂层方面的应用及发展前景。
关键词: 表面处理技术;热喷涂技术;超音速喷涂;超音速火焰喷涂;超音速等离子喷涂;超音速电弧喷涂;冷喷涂1.1 热喷涂技术概况众所周知, 除少数贵金属外,金属材料会与周围介质发生化学反应和电化学反应而遭受腐蚀。
此外,金属表面受各种机械作用而引起的磨损也极为严重。
大量的金属构件因腐蚀和磨损而失效,造成极大的浪费和损失。
据一些工业发达国家统计,每年钢材因腐蚀和磨损而造成的损失约占钢材总产量的10 %,损失金额约占国民经济总产值的2 - 4 %。
如果将因金属腐蚀和磨损而造成的停工、停产和相应引起的工伤、失火、爆炸事故等损失统计在内的话,其数值更加惊人。
因此,发展金属表面防护和强化技术,是各国普遍关心的重大课题。
随着尖端科学和现代工业的发展,各工业部门越来越多地要求机械设备能在高参数(高温、高压、高速度和高度自动化)和恶劣的工况条件(如严重的磨损和腐蚀)下长期稳定的运行。
因此,对材料的性能也提出更高要求。
采用高性能的高级材料制造整体设备及零件以获得表面防护和强化的效果,显然是不经济的,有时甚至是不可能的。
所以,研究和发展材料的表面处理技术就具有重大的技术和经济意义。
而表面处理技术也在这种需求的推动下获得了飞速的发展和提高。
热喷涂技术是表面防护和强化的技术之一,是表面工程中一门重要的学科。
所谓热喷涂, 就是利用某种热源, 如电弧、等离子弧、燃烧火焰等将粉末状或丝状的金属和非金属涂层材料加热到熔融或半熔融状态,然后借助焰流本身的动力或外加的高速气流雾化并以一定的速度喷射到经过预处理的基体材料表面,与基体材料结合而形成具有各种功能的表面覆盖涂层的一种技术。
超音速火焰喷涂Cr3C2-NiCr涂层的高温耐磨特性引言Cr3C2-NiCr是由金属合金粘结相NiCr与陶瓷硬质相Cr3C2组成的复合材料,因此具有陶瓷的硬度高、耐磨性好、抗高温氧化性能优越的特点,同时还具有金属基韧性高等特点,是最重要的高温耐磨涂层材料,一般可用于850-950oC以下。
超音速火焰喷涂(HVOF)是制备高性能Cr3C2-NiCr涂层的最重要方法之一,其耐磨损性能主要取决于涂层的成分与显微组织结构等诸多因素。
1超音速火焰喷涂金属陶瓷涂层结构与性能超音速火焰喷涂,又名高速氧燃料火焰喷涂,是利用丙烷、丙烯等燃气与高压氧气在特制的燃烧室中燃烧产生的高温高速焰流进行喷涂的方法。
燃烧焰流速度可达1500m/s~2000m/s以上。
将粉末沿轴向或侧向送进焰流中,粉末粒子被加热至熔化或半熔化状态的同时,可被加速到高达300~650m/s的速度,撞击在基体上后能够形成比其它喷涂方法结合强度更高的致密涂层。
HVOF喷涂中的超音速焰流温度约为3000oC,比等离子焰流温度低,且超音速焰流速度高致使粉末在焰流中的停留时间短,所以粉末在焰流中加热所达到的温度较低。
超音速火焰喷涂是在八十年代初期,首先由美国Browning公司以Jet-Kote为商品推出。
在国内,西安交通大学于1995年初在国内率先研制成功了CH-2000 HVOF系统。
1.1涂层结合强度与硬度涂层结合强度始终是决定涂层应用的最关键因素。
CH-2000制备的HVOF Cr3C2-NiCr涂层结合强度可超过90MPa(根据ASTM C633-79标准测量。
测试时,基体为低碳钢,全部断在胶中,因此真实结合强度大于该数值。
),显著高于等离子喷涂与电弧喷涂层(约20-60MPa)。
涂层硬度是耐磨涂层的重要参量之一,HVOF Cr3C2-NiCr涂层的硬度为530-900 Hv0.3,硬度受含碳量的显著因素,硬度随含碳量的增加而增加,即失碳会降低涂层硬度,如图1所示。
超音速火焰喷涂超音速火焰喷涂呀,这可是个相当厉害的技术!我先给您讲讲我之前遇到的一件小事儿。
有一次,我去一家工厂参观,正好看到他们在使用超音速火焰喷涂技术来处理一些零件。
那场面,真叫一个震撼!工人们戴着防护眼镜和手套,全神贯注地操作着设备,喷枪里喷射出的火焰就像一条火龙,呼呼作响。
我凑过去仔细看,发现那些被喷涂的零件表面瞬间就覆盖上了一层均匀而细腻的涂层,简直太神奇了!那到底啥是超音速火焰喷涂呢?简单来说,它就是一种利用高速燃烧的火焰来把材料喷涂到工件表面的技术。
这火焰的速度那可不是一般的快,比声音的速度还快,所以叫超音速火焰。
超音速火焰喷涂有好多优点呢。
比如说,它喷涂出来的涂层质量特别高。
因为火焰速度快,温度高,材料在喷涂过程中被加热得很均匀,所以涂层的结合强度高,孔隙率低,耐磨、耐腐蚀性能都特别好。
而且呀,这技术适用的材料范围也很广。
不管是金属材料,像不锈钢、钛合金,还是陶瓷材料,它都能搞定。
这就好比是一个“万能化妆师”,不管啥样的“脸蛋”(工件),都能给化出漂亮的“妆容”(涂层)。
再说说它在工业中的应用吧。
在航空航天领域,那些飞机发动机的叶片、火箭的零部件,很多都需要超音速火焰喷涂来提高性能。
就像飞机发动机叶片,在高温、高压的工作环境下,很容易磨损和腐蚀。
有了超音速火焰喷涂的涂层保护,就能大大延长叶片的使用寿命,让飞机飞得更稳、更远。
在汽车制造中,这技术也大有用处。
比如说发动机的气缸内壁,经过超音速火焰喷涂处理后,能够减少摩擦,提高燃油效率,让汽车跑得更顺畅。
还有能源领域,像风力发电机的叶片,长期暴露在恶劣的环境中,容易受到侵蚀。
通过超音速火焰喷涂一层防护涂层,就能增强叶片的抗风蚀能力,保证发电效率。
不过,超音速火焰喷涂也不是完美无缺的。
它的设备比较复杂,成本也相对较高。
而且操作的时候需要技术娴熟的工人,不然一不小心就可能出现涂层不均匀、质量不过关的问题。
但总的来说,超音速火焰喷涂在现代工业中发挥着越来越重要的作用。