端粒及端粒酶的主要结构特点及作用
- 格式:doc
- 大小:45.00 KB
- 文档页数:3
端粒是真核生物染色体末端的DNA重复片段,由许多个短的富含G重复序列组成的3撇端。
并突出于另一条DNA链的5撇端,和许多蛋白质构成。
这些重复序列并不含有遗传信息,形态上,染色体DNA末端膨大成粒状。
像两顶帽子盖在了染色体的两端,作为染色体末端的保护帽。
端粒存在戴帽和非戴帽两种状态,戴帽状态是端粒的功能状态。
细胞可以继续分裂;非戴帽状态会引发细胞周期的阻滞。
在正常的细胞分裂时,端粒可以在两种状态间变换,随着细胞分裂的继续,越来越多的细胞粒处于非戴帽状态,继而出现衰老与细胞死亡。
端粒的功能是完成染色体末端的复制,防止染色体相互融合、重组和降解,维持染色体的完整性。
端粒的DNA序列既有高度的保守性又有种属的特异性。
在生物体内,正常体细胞端粒的长度是有限的,随着细胞的持续分裂,端粒就会缓慢缩短,当端粒再也无法保护染色体免受伤害时,细胞就会停止分裂,或者变得不稳定。
因此,生物体细胞分裂的次数是有限的。
端粒的长度决定了细胞的寿命,所以端粒又被称为“生命的时钟”。
端粒酶的主要成分是RNA和蛋白质,即核糖核酸蛋白质复合体。
是端粒重复序列延伸的反转录DNA聚合酶。
真核细胞染色体末端DNA的复制不是由DNA聚合酶完成的,而是由端粒酶催化合成的。
以其自身RNA组分为模板,并且RNA上含有引物特异识别位点。
蛋白质具有催化活性,以端粒3撇端为引物,通过反复延伸与移位,又反复地将重复片段加到突出的3撇端上,而互补的富含C的延伸像后随链那样复制,未补偿由去除引物引起的末端缩短。
因此在端粒的保护中,端粒酶起着至关重要的作用。
但端粒的延长并非只有端粒酶一种途径,而是存在端粒酶依赖和非端粒酶依赖两种。
人端粒酶结构主要包括3部分:端粒酶RNA(hTR);端粒酶催化亚单位(hTERT)和端粒相关蛋白质(TPI/TLPI)人体细胞中端粒酶合成和延长端粒的作用是在胚胎发育过程中完成的,当胚胎发育完成后,端粒酶活性在大多数组织中消失,除生殖细胞、造血干细胞以及外周淋巴细胞的等少数几种细胞外。
高等植物端粒和端粒酶摘要:端粒是构成真核生物染色体末端重要的DNA-蛋白质复合结构。
端粒对染色体、生物基因组、细胞的稳定性,都具有重要的意义。
本文讲述了高等植物端粒、端粒酶及其在植物生长发育中的调解作用。
关键词:端粒;端粒酶1.端粒、端粒酶的结构与功能1.1端粒的功能端粒DNA主要功能有:1. 保护染色体不被核酸酶降解。
2. 防止染色体相互融合。
3.为端粒酶提供底物,解决DNA复制的末端隐缩,保证染色体的完全复制。
我们知道真核DNA 是线性DNA,复制时由于模板DNA起始端为RNA引物先占据,新生链随之延伸;引物RNA 脱落后,其空缺处的模板DNA无法再度复制成双链。
因此,每复制一次,末端DNA就缩短若干个端粒重复序列,即出现真核细胞分裂中的“末端复制问题”。
当端粒缩短到一定程度时即引起细胞衰老,故端粒又称“细胞分裂计时器”。
端粒、着丝粒和复制原点是染色体保持完整和稳定的三大要素。
同时,端粒又是基因调控的特殊位点,常可抑制位于端粒附近基因的转录活性(称为端粒的位置效应,TPE)。
在大多真核生物中,端粒的延长是由端粒酶催化的,另外,重组机制也介导端粒的延长。
1.2端粒酶的功能端粒酶具有对端粒的延伸作用,在没有端粒酶的细胞中,端粒会逐渐缩短直至损害基因;有端粒酶存在的细胞,则该酶会不断补充新的端粒,使之处于一种不断伸缩的动态平衡中。
正是端粒酶的存在维持了大多数组织的端粒长度,从而抵消了因细胞分裂而导致的端粒DNA 的消耗。
端粒酶的另一个功能是修复断裂的染色体末端。
当断裂的染色体末端有富G、T DNA 存在时,即使没有完整的端粒重复序列存在,它也能被端粒酶作为引物DNA并为之延伸端粒序列。
因修复断端免遭外切酶对染色体DNA的更多切割,端粒酶在某种意义上讲也维护了基因组的稳定性。
此外,在端粒合成中端粒酶还具有去除错配碱基的纠错作用,不仅可以除去错配碱基,还可除去延伸超过模板范围的碱基。
2.植物的端粒和端粒酶端粒DNA序列虽在真核生物中具有相似性,但长度却具有种属间的特异性,从原生动物<c50kb到啮齿动物>>100kb不等,植物的端粒序列长度在2kb-75kb之间。
《癌生物学》第十章(2)端粒和端粒酶前言:上一期我们已经介绍了肿瘤细胞无限增殖面临的两个障碍。
今天我们主要是学习“端粒”和“端粒酶”的相关内容。
相信通过本期的学习,我们对端粒和端粒酶的理解会更上一层楼~端粒的结构在哺乳动物细胞(以及许多其他后生动物细胞)中,端粒由重复的六核苷酸序列组成,其中一条链(富含G)上为5'-TTAGGG-3', 互补链上(富含C)为5'-CCCTAA-3'。
在正常人体细胞中,端粒DNA由数千个重复的六核苷酸序列组成,在染色体末端形成5-10kb 长的序列重复片段。
端粒DNA通常为5-10kb长。
在功能性端粒DNA(中间)与非端粒染色体DNA(最左侧)之间还存在着亚端粒DNA区域。
亚端粒DNA 区域里含有TTAGGG类似片段,但并没有染色体末端保护功能。
然而,由于亚端粒DNA含有端粒类似序列,它通常也是端粒限制性片段(TRF)的组成部分。
但是只有单纯的端粒重复片段能够保护染色体DNA末端:当单纯串联重复片段的重复次数减少到12次以下时就会丧失末端保护功能。
因此,即使仍然有数kb长度的TRF存在,但端粒已经丧失了阻止染色体DNA末端融合的能力。
图1:端粒DNA的结构特殊的是,富G链多出一百至数百个核苷酸,导致该链3'单链端外悬。
这种凸出的链会形成一种最不寻常的分子构型——t环。
当时通过电子显微镜分析端粒DNA时发现了一种环形结构,实质上是套索结构。
这种构型的形成依赖于三链DNA复合体的形成。
有可能所有端粒DNA的末端均含有 t 环,但是由于在电子显微镜下保存和观察此结构的技术上的限制,只有一部分端粒在电子显微镜下可以观察到t 环。
t 环有助于保护线性DNA分子未端,因为单链末端的外悬区被巧妙地塞进双链区域,以保护其免受损伤。
下图为t 环的示意图,显示了3'端凸出的富G链(粉色)与富C链(蓝色)的小段区域退火形成詈换(D环)(粉色链)。
端粒和端粒酶保护染色体的机理1. 概述染色体是细胞中的重要结构,其中包含了细胞的遗传信息。
端粒是染色体末端的重要结构,在维持染色体稳定性和避免染色体融合方面起着重要作用。
端粒酶是一种保护端粒的酶类,其功能是在染色体复制时延长端粒,从而减缓染色体末端的缩短。
在本文中,将探讨端粒和端粒酶的作用机理,以及其对保护染色体的重要性。
2. 端粒的结构和功能端粒是染色体末端的高度特异性序列,它主要由一种重复序列构成,人类的端粒序列重复单位是TTAGGG。
端粒的主要功能是保护染色体末端,防止染色体末端的缩短和融合。
在正常细胞分裂中,染色体末端会随着每次细胞分裂而逐渐缩短,导致染色体稳定性的丧失。
端粒的存在可以延缓染色体末端的缩短,维持染色体的完整性。
3. 端粒酶的结构和功能端粒酶是一种特殊的酶类,在维持端粒长度方面有着重要作用。
端粒酶是由蛋白质和RNA组成的复合物,它能够在染色体复制过程中延长端粒序列,从而保持端粒的长度稳定。
端粒酶通过在DNA末端合成新的端粒序列,来对抗染色体末端的缩短,从而保护染色体的完整性。
4. 端粒和端粒酶在维持染色体稳定性中的作用端粒和端粒酶在维持染色体稳定性中起着重要作用。
在染色体末端缩短的过程中,端粒的存在能够延缓染色体末端的缩短速度,保护染色体不受损伤。
而端粒酶则通过在染色体复制时延长端粒序列,进一步保护染色体末端,延缓染色体末端的缩短速度。
端粒和端粒酶在维持染色体的完整性和稳定性方面具有不可替代的作用。
5. 端粒和端粒酶在衰老和疾病中的作用端粒和端粒酶的功能异常与许多疾病和衰老过程相关。
端粒缩短与衰老的加速和疾病的发生有关;而端粒酶的活性异常也与许多疾病的发生有关,比如癌症和染色体不稳定性疾病。
端粒和端粒酶的功能异常可能会导致染色体不稳定性,从而引发多种疾病的发生和加速衰老。
6. 结语端粒和端粒酶在保护染色体稳定性方面起着重要作用,它们是维持染色体完整性的重要保护机制。
了解端粒和端粒酶的作用机理,对于揭示染色体稳定性的调控机制,以及预防和治疗与染色体稳定性相关的疾病有着重要意义。
植物端粒酶的结构和功能研究植物端粒酶(Plant telomerase)是一种特殊的酶,它能够延长植物端粒的长度,防止染色体末端损失和融合,在保护染色体完整性和稳定性方面起到重要作用。
在过去的几十年里,随着分子生物学技术的发展,对植物端粒酶结构及其机制的研究有了突破性进展,这不仅促进了对植物细胞分裂和生长规律的理解,还为探索植物疾病治疗和遗传学研究提供了理论基础。
一、植物端粒酶的结构植物端粒酶是由两个主要部分组成的复合物,分别是端粒RNA(TER)和端粒酶逆转录酶(TERT)。
TER是一种长链非编码RNA,其序列包含一个保守的端粒序列(TTAGGG),在保护染色体和调控端粒酶活性方面起到关键作用。
TERT是一种蛋白质,具有逆转录酶活性,可在TER的模板作用下合成端粒DNA序列,并延长端粒的长度。
植物端粒酶结构与其他物种的不同,主要体现在TER较长,TERT与TER之间存在一段中间区域,且植物端粒酶的活性与其结构密切相关。
研究表明,TER的稳定性和结构对端粒酶的功能有重要影响,因此对TER结构及其与TERT的相互作用机制的深入探究具有重要意义。
二、植物端粒酶的功能端粒酶的主要功能是维持染色体末端的稳定性和完整性,在细胞分裂和生长中发挥关键作用。
染色体末端的损失和融合是导致组织衰老和肿瘤发生的主要原因之一,而端粒酶能够逆转这一进程,延长端粒的长度,防止其融合和缩短,从而发挥健康细胞的稳定性和可持续性。
在植物中,端粒酶的功能还与植物生长发育紧密相关,通过调控端粒的长度和稳定性,植物能够在细胞分裂和分化过程中保持基因组的完整性和稳定性,进而影响植物体内细胞数量和质量的变化。
此外,植物端粒酶还与植物免疫系统紧密相关,参与抵御病原体入侵和实现逆境生存的过程中发挥着重要作用。
三、植物端粒酶的研究进展植物端粒酶的研究是分子生物学领域的热门研究方向之一,尤其在植物生长发育、遗传学和植物疾病治疗等领域具有重要意义。
端粒与端粒酶及作用机理的应用周梓耘(生物技术 10102117)内容摘要:端粒是线状染色体末端的DNA重复序列,是真核染色体两臂末端有特定的DNA重复序列构成的结构,使正常染色体端部间不发生融合,在不同物种细胞中对于保持染色体稳定性和细胞活性有重要作用。
端粒酶是负责端粒延长的一种酶,可将端粒DNA加至真核细胞染色体末端。
对端粒和端粒酶的研究还加深了人们对衰老和癌症等重大生物医学问题的理解,也为人们寻找和设计药物或手段来延缓衰老和治疗疾病提供了契机。
激活其活性,增加细胞分裂次数,从而延缓衰老;抑制其活性,减少至抑制细胞分裂,从而治疗癌症。
关键词:端粒;端粒酶;衰老;癌症一、端粒1、什么是端粒:端粒是真核细胞染色体末端由特定的DNA重复序列构成的特殊结构,位于线性染色体末端。
端粒DNA包括非特异性DNA和由高度重复序列组成的特异DNA序列。
通常是由富含鸟嘌呤核苷酸的短的串联重复序列组成,伸展到染色体的3'端。
由于复制机制的不完整性,正常细胞线性DNA复制时5'末端消失,故细胞每分裂一次约丢失一个冈崎片断长度的DNA,即25-100对碱基,因此端粒会以一定的速度丢失。
随着体细胞不断增殖,端粒逐渐缩短,当端粒缩至一定程度时,细胞停止分裂,处于静止状态。
因此,严重缩短的端粒是细胞老化的信号。
故有人称端粒为正常细胞的“分裂钟”,端粒长短和稳定性决定了细胞寿命,并与细胞衰老和癌变密切相关。
2、端粒的发现:二十世纪三十年代,Barbava McClintock和Hermann J.Muller发现,染色体的末端有一种能稳定染色体结构和功能的特殊成分。
如果缺少了这种成分,染色体之间就会互相粘连、出现结构的变化或其它错误的行为,以致影响到染色体的生存和正确复制,并进一步威胁到细胞的存亡。
于是从希腊文的"末端"(telos)和"部分"(meros)二词为这种特殊的成分创造了一个全新的术语"端粒"(telomere)。
端粒及端粒酶的主要结构特点及作用
端粒是真核生物线性染色体末端重要的DNA-蛋白质复合结构,由TTAGG重复序列和大量的端粒结合蛋白组成。
主要是由六个端粒结合蛋白TRF1、TRF2、POT1TIN2、TPP1和Rap1组成的复合体起着保护端粒的作用,被称为是遮蔽蛋白。
其中端粒重复序列结合因子TRF1和TRF2是两个主要的端粒结合蛋白,它们通过相互作用来维持端粒的正常结构和功能。
端粒的功能:1、保护染色体末端:真核生物的端粒DNA-蛋白复合物,如帽子一般,保护染色体末端免于被化学修饰或被核酶降解,同时可能还有防止端粒酶对端粒进行进一步延伸的作用。
改变端粒酶的模板序列将导致端粒的改变,从而诱导细胞衰老和死亡。
2、防止染色体复制时末端丢失:细胞分裂、染色体进行半保留复制时,存在染色体末端丢失的问题。
随着细胞的不断分裂,DNA丢失过多,将导致染色体断端彼此发生融合,形成双中心染色体、环状染色体或其他不稳定形式。
端粒的存在可以起到缓冲保护的作用,从而防止染色体在复制过程中发生丢失或形成不稳定结构。
3、决定细胞的寿命:染色体复制的上述特点决定了细胞分裂的次数是有限的,端粒的长度决定了细胞的寿命,故而被称为“生命的时钟”。
4、固定染色体位置:染色体的末端位于细胞核边缘,人类端粒DNA和核基质中的蛋白相互作用,以′TTAGGG′结构附着于细胞核基质。
端粒酶的结构及功能:端粒酶是一种核糖核蛋白复合物,由端粒逆转录酶(hTERT)、端粒酶RNA组分(hTR)以及端粒酶相关蛋白组成。
端粒酶利用其自身hTR所携带的RNA为模板,在hTERT的逆转录催化下,将端粒重复序列合成到染色体末端,延长或稳定了随着细胞分裂而进行性缩短的端粒,在细胞永生化及恶性肿瘤的发生和发展中起到了重要的作用。
总之,端粒酶是一种特殊的反转录酶,是一种能延长端粒末端并保持端粒长度的核糖蛋白酶,由RNA和蛋白质亚单位组成,每个RNA均含有一段短的与端粒互补的序列,能以自身RNA模板合成端粒DNA添加到染色体末端,避免染色体复制丢失端粒DNA以使端粒延长从而延长细胞寿命。
蛋白质的一二三四级结构
一级结构:指多肽中从N-端到C-端的氨基酸序列,包括二硫键的位置。
二级结构:多肽链借助氢键排列自己特有的a螺旋和b折叠片断。
三级结构:指一条多肽链在二级结构或者超二级结构甚至结构域的基础上,进一步盘绕,折叠,依靠共价键的维系固定所形成的特定空间结构成为蛋白质的三级结构。
四级结构:指蛋白质的多条多肽链之间相互作用所形成的更为复杂聚合物的一种结构形式,主要描述蛋白质亚基空间排列以及亚基之间的连接和相互作用,不涉
及亚基内部结构。
蛋白质家族及其进化上的特点
Edman降解法
蛋白质功能分析的方法
B型DNA双螺旋结构的特点
比较a b z型螺旋的结构特点
核小体的主要结构
CpG甲基化及其功能
DNA半保留复制的特点
原核生物和真核生物DNA复制的主要特点DNA复制忠实性的策略
简述常见的突变剂及其引起的突变类型重组修复的定义,重要酶系及功能
Sos修复的过程及特点
简述同源重组的主要过程
参与同源重组主要酶系及其功能
大肠杆菌RNA聚合酶的结构及功能
原核生物终止的主要类型
抗终止和抗终止因子
RNA转录后加工的主要类型
增强子的特点及功能
mRNA加工及修饰
密码子的简并性及其特征
核糖体结构及功能
氨酰tRNA活化的过程
原核真核生物的终因子
蛋白质合成后加工的主要类型
信号肽的特点
蛋白质前体加工的主要类型
简述乳糖操纵子的调控原理的过程色氨酸操纵子中衰减子的作用原理衰减子的普遍性及生物学意义。