地源热泵工程设计和设备选型参考资料
- 格式:docx
- 大小:15.77 KB
- 文档页数:4
浅谈地源热泵的方案选择摘要:介绍了地源热泵的应用。
通过工程实例绿谷天鹅湖项目的方案选择介绍,介绍了北方地区地源热泵的适用范围、方案选择以及注意事项,为后续工程的应用提供参考。
重点讲述地表水源热泵和土壤源热泵。
关键词:地源热泵方案中图分类号:TU 文献标识码:A 文章编号:1008-925X(2012)O9-0134-01 随着经济的发展以及人们对节能、环保意识的提高,具有高效、节能、环保等优点的地源热泵冷暖空调系统愈来愈受到人们的重视。
目前普遍应用的地源热泵能量来源主要为水源和土壤源。
水源热泵种类开发较多,有地下水源、地表水源、海水源、污水源等,目前都有成功应用;土壤源热泵的应用也越来越普遍。
水源热泵的适应性。
具备一定条件的水体可以作为可再生的能源,近几年其技术得到了迅猛的发展。
因其适应性各有特色,发展前景也各不相同。
目前开发成功的水源热泵主要有以下几种:地下水源热泵。
地下水具有水温稳定、换热快的优点,2000年以后在中国得到迅猛发展。
但有的地区存在不顾实际一哄而上的局面。
尤其在中国大部分城区并没有足够的地下水回补空间,回补不及时极易引发地质灾害,因此地下水源热泵的应用有一定的区域局限。
海水源热泵。
海水具有量大、水温稳定的优点,但即便是在沿海城市,也只有在极少数区域能够方便地引取海水,且海水对设备的腐蚀作用,使海水源热泵不能够大面积推广。
地表水源热泵。
由于采用地表水源,不需要打井,可以节省大量的投资。
尤其在广大内陆地区,可因地制宜地利用江河、湖泊、塘坝甚至城市景观水系,开发水体中蕴藏的能量。
由于各地区缺乏完备的水系或水体水温、水质等基础数据,导致近年来地表水水源热泵技术的应用出现盲目性。
按照我国的地理区域分布,夏热冬冷地区(主要为长江、淮河流域)最适合、最有条件采用地表水源热泵系统。
近年来,土壤源热泵技术近年来发展很快,目前已比较成熟,尤其是在京津、山东等地已经成为主流热泵技术,得到广泛应用。
土壤源热泵具有运行稳定可靠,对环境影响小等优点,但地下工程造价较高(需要大量的深井作为地下换热器)。
地源热泵设计方案1. 简介地源热泵系统是一种利用地下热能进行暖通空调的系统设备。
利用地下能源进行换热,实现冷热源的集中供应与分布传输,以提供建筑内的低温供暖、高温供热和空调制冷等功能。
本文将详细介绍地源热泵系统的设计方案,包括系统原理、设备选型、管道布局和系统优势等。
2. 系统原理地源热泵系统利用地下稳定的地温作为能源来源,通过地热换热器取得地热,再通过热泵机组对地热进行加工,实现室内供热与制冷。
其工作原理可分为以下几个步骤:•地热获取:通过埋设在地下的地热换热器,以管道的形式将地热传递到热泵机组。
•热泵循环:通过热泵机组,将地热转化为室内供热或制冷的热能。
•室内传递:将加工后的热能通过系统中的水循环泵,送至室内的暖通设备(暖气片、空调机组等)。
•室内回水:将传递过热能的水回收,再次循环利用。
3. 设备选型在地源热泵系统的设计中,设备的选型是至关重要的。
以下是几个需要考虑的方面:•地热换热器:需要选择性能稳定、散热效果好的地热换热器,如垂直地埋管、水井式地热换热器等。
•热泵机组:选取合适的热泵机组,应考虑制冷、供热量、制冷剂和能效比等因素,以满足实际使用需求。
•暖通设备:根据不同需求,选择合适的暖通设备,如暖气片、空调机组等。
4. 管道布局在地源热泵系统的设计中,管道布局对系统的运行效果有着重要的影响。
以下是几个需要注意的方面:•地热换热器的埋设深度:应考虑地下温度变化规律,合理选择地热换热器的埋设深度,一般在1.5-3米之间。
•管道尺寸和布局:根据热量传递的需要,选择合适尺寸的管道,并合理布局管道,避免过长的管道造成的热能损失。
•水循环泵的设置:根据实际需求,配置适当容量的水循环泵,确保热能的高效传递。
5. 系统优势地源热泵系统相比传统的供暖方式有着许多优势。
以下是几个主要的优点:•环境友好:地源热泵系统利用可再生的地下热能作为能源,并且与室内无直接排放物质,对环境无污染。
•节能高效:地源热泵系统利用地下稳定的地温进行供热与制冷,能效比较高,比传统的供暖方式节能约30%。
离心地源热泵机组选型手册一、引言离心地源热泵机组是一种高效能的供热和供冷装置,可以同时满足建筑物的空调和热水需求。
本手册旨在提供离心地源热泵机组选型的相关指导,以帮助用户选择适合其需求的设备。
二、离心地源热泵机组工作原理离心地源热泵机组利用地下热能进行热泵循环,实现室内空调和热水供应。
其工作原理为:通过地下水源或地下回水井取得水,经过过滤和泵送后进入地源热交换器;地源热交换器通过与地下介质接触,吸收地热能,并传递给制冷剂,制冷剂吸收热能并被蒸发;制冷剂气体通入压缩机,被压缩并加热;热量释放到室内空气或热水供应系统,制冷剂液体再次进入地源热交换器,循环往复。
三、离心地源热泵机组选型关键因素选择适合的离心地源热泵机组需要考虑以下因素:1. 建筑物需求•建筑物的整体面积和体量•不同房间的使用需求,如办公区、会议室、餐厅等的温度要求•建筑物的朝向和隔热性能2. 地下条件•地下水资源的可利用性和水质状况•地下介质的热导率和热容量•地下水和地下介质的温度分布情况3. 设备性能•冷却和供暖能力,包括制冷量和供暖量•能效比和能源利用率,影响设备的能耗情况•噪音水平和振动情况,对于室内舒适度的影响4. 维护和运营•设备的可靠性和寿命•维护保养的成本和工作量•运营管理的自动化程度和便捷性四、离心地源热泵机组选型步骤根据以上关键因素,以下是选择离心地源热泵机组的步骤:1. 收集建筑物数据收集建筑物的面积、体积和房间用途等数据,了解建筑物的热负荷需求,为后续选型做准备。
2. 调研地下条件通过地质勘探和地下水分析,了解地下水资源、地下介质温度和热传导性能等地下条件信息,并作为选型的参考。
3. 确定热负荷需求结合建筑物数据和使用要求,计算出建筑物的冷负荷和热负荷,包括制冷量和供暖量。
4. 选择合适的机组类型根据热负荷需求和设备性能指标,选择合适的离心地源热泵机组类型,如单机组、多机组等。
5. 进行选型计算根据选定的机组类型和热负荷需求,进行选型计算,确定合适的机组规格和数量。
地源热泵中央空调方案XXX环境有限公司2009年08月28日目录一、空调系统方案推荐(一)工程概况(二)可用于本项目的空调方案(三)适用本项目的几类空调方案的比较(四)选用建议二、地源热泵推广及选型设计(一)地源热泵空调系统简介(二)同方地源热泵机组组特点(三)空调设备选型设计(四)地埋管换热系统设计选型(五)土壤换热平衡的分析(六)主要设备表、运行费用分析及工程预算三、地源热泵系统设计与安装(一)地源热泵系统设计与安装关键(二)室外地埋管换热系统的主要施工工序及注意问题(三)室外垂直埋管系统的施工工艺附件一:技术支持单位概况附件二:相关设计图纸一、空调系统方案推荐<一>工程概况城市:XXXX项目名称:XXX国际精品城1#楼中央空调工程项目简介:该建筑集商铺、办公、餐厅、会议为一体多功能国际精品城,建筑面积约8760平方米,空调面积约6473平方米,拟采用地源热泵机组进行夏季供冷,冬季供暖。
室内末端拟用风机盘管系统,局部拟用全空气系统实现室内的冷热需求。
<二>可用于本项目的空调方案1. 冷水机组+燃气锅炉制冷机采用电制冷(压缩式)冷水机组(1台离心1台螺杆制冷机组)。
夏季制冷,由电制冷(压缩式)冷水机组提供冷源;冬季由工业场地锅炉房(或热电厂)提供的0.6Mpa蒸汽经换热器交换进行空调采暖。
大楼空调系统采用风机盘管加新风系统或全空气处理空调系统。
两套水换热器:冷凝器、蒸发器;通过冷却塔冷却主机的冷凝器;通过蒸发器为室内末端提供冷冻水。
空调机组只能制冷,冬季采暖需要别的热源。
2. 风冷冷水热泵机组风冷冷水热泵技术是一种消耗少量清洁能源(电),充分利用空气中的冷、热能资源制成冷热水供空调空间使用的空调方式,已经得到了专家、政府和社会各界人士的肯定,风冷热泵作为替代传统空调方式的优选方式之一,已是不争的事实。
空调机组夏季制冷,冬季采暖,冷暖两用型。
3. 地源热泵空调机组地源热泵是一种利用地下浅层地热资源既能供热又能制冷的高效节能环保型空调系统。
地源热泵设计方案地源热泵是一种利用地下水或土壤中的地热进行供热和供冷的技术。
地源热泵利用地下热量进行热交换,既节能环保,又能满足室内的舒适需求。
下面是一个地源热泵的设计方案,具体内容如下:1. 系统概述:设计一个地源热泵系统,包括室内机组、地源换热器、循环水泵等组成部分。
系统利用地热进行供暖和供冷,提高能源利用效率,降低能源消耗。
2. 设计目标:系统设计目标是满足室内舒适度要求的同时,尽量降低能源消耗和运行成本。
3. 地源换热器设计:选择合适类型和规格的地源换热器,根据实际情况确定地下水或土壤中的地温,通过换热器和地源热交换,将地下热量转移至系统中。
4. 循环水泵设计:选择合适的循环水泵,保证水流量和水压稳定,同时降低能源消耗。
5. 室内机组设计:根据室内面积、热负荷和所需温度范围,选择合适的室内机组。
室内机组应具备供暖和供冷功能,能够满足不同季节和环境条件下的需求。
6. 控制系统设计:设计一个智能控制系统,能够根据室内温度和外部环境变化进行自动调节,保持室内舒适度。
控制系统应具备温度、湿度、风速等参数的监测和调节功能,实现能源的最优利用。
7. 运行和维护:系统投入使用后,需要进行定期的维护和检查,确保系统的正常运行。
同时,根据实际运行情况,进行能效评估和优化,提高能源利用效率。
在设计过程中,需要考虑地下水资源和土壤情况,选择合适的地源换热器,合理安排各个组成部分之间的协调工作,确保系统的高效稳定运行。
同时,还需要考虑系统的经济性和环保性,选择高效节能的设备和材料,减少对环境的影响。
综上所述,地源热泵设计方案需要考虑地源换热器、循环水泵、室内机组和控制系统等多个方面,目标是提高能源利用效率和舒适度,降低能源消耗和运行成本。
系统的设计和运行需要综合考虑水资源、土壤条件和系统的经济性和环保性等因素,确保系统的稳定高效运行。
地源热泵方案设计一、地源热泵系统概述地源热泵是一种利用地下土壤、地下水或地表水等作为冷热源,通过热泵机组进行能量交换,为建筑物提供制冷、供暖和生活热水的系统。
与传统的空调和供暖系统相比,地源热泵系统具有以下显著优势:1、高效节能:地源热泵系统的能效比(COP)通常较高,可大大降低能源消耗和运行成本。
2、环保无污染:不使用化石燃料,减少了温室气体排放和对环境的污染。
3、稳定可靠:地下温度相对稳定,使得系统运行更加稳定可靠,不受外界气候条件的影响。
4、使用寿命长:热泵机组和地下换热器的使用寿命较长,维护成本相对较低。
二、工程场地条件评估在进行地源热泵方案设计之前,首先需要对工程场地的条件进行详细评估。
这包括地质结构、土壤类型、地下水位、水文地质条件等。
不同的场地条件会影响地下换热器的设计和安装方式。
1、地质结构:了解地层的分布、厚度和岩石类型,以确定钻孔的可行性和难度。
2、土壤类型:土壤的热导率和比热容会影响热量传递效率,常见的土壤类型如砂土、黏土和壤土等,其热性能有所差异。
3、地下水位:地下水位的高低会影响换热器的安装深度和防水措施。
4、水文地质条件:包括地下水的流动速度、水质等,这对于选择合适的换热器类型和防止地下水污染至关重要。
三、建筑物负荷计算准确计算建筑物的冷热负荷是地源热泵方案设计的基础。
负荷计算需要考虑建筑物的用途、面积、朝向、围护结构的保温性能、室内人员和设备的发热量等因素。
通过专业的负荷计算软件,可以得到建筑物在不同季节和不同时段的制冷和供暖负荷需求。
1、制冷负荷:主要由室内外温差、太阳辐射、人员散热和设备散热等因素引起。
2、供暖负荷:与室外温度、建筑物的保温性能、通风换气次数等有关。
根据负荷计算结果,可以确定热泵机组的容量和地下换热器的规模,以保证系统能够满足建筑物的冷热需求。
四、地源热泵系统类型选择地源热泵系统主要有三种类型:地下水地源热泵系统、地埋管地源热泵系统和地表水地源热泵系统。
地源热泵方案设计一、工程概况在进行地源热泵方案设计之前,首先需要对工程概况进行详细的了解和分析。
这包括建筑物的用途、面积、层数、高度、朝向、围护结构的热工性能等。
此外,还需要了解当地的气候条件、地质条件、水文条件以及能源价格等因素。
这些信息将为后续的方案设计提供重要的依据。
例如,对于一个位于寒冷地区的办公大楼,其冬季供暖需求较大,而夏季制冷需求相对较小。
在这种情况下,地源热泵系统的设计就需要重点考虑冬季的供暖性能,选择合适的热泵机组和地埋管换热器形式。
二、负荷计算负荷计算是地源热泵方案设计的关键环节之一。
准确的负荷计算可以确保系统在运行过程中能够满足建筑物的冷热需求,同时避免设备的过度选型和能源的浪费。
负荷计算通常采用动态模拟软件进行,如 DOE-2、EnergyPlus 等。
在计算过程中,需要考虑建筑物的围护结构传热、人员、设备、照明等内部得热以及太阳辐射等因素的影响。
通过模拟不同季节、不同时间段的负荷变化情况,为系统的设备选型和运行策略制定提供依据。
例如,对于一个住宅建筑,其负荷在一天内会有较大的变化,白天人员外出,负荷较小,而晚上人员在家,负荷较大。
因此,在设计地源热泵系统时,需要根据负荷的变化特点,合理配置热泵机组的容量和运行时间,以提高系统的运行效率和经济性。
三、地源热泵系统形式选择地源热泵系统根据地下换热器的形式可以分为水平地埋管系统、垂直地埋管系统和地表水系统等。
不同的系统形式具有不同的特点和适用条件,在设计时需要根据工程实际情况进行选择。
水平地埋管系统施工简单、成本较低,但占地面积较大,适用于土地资源丰富、冷热负荷较小的项目。
垂直地埋管系统占地面积小、换热效率高,但施工难度较大、成本较高,适用于土地资源紧张、冷热负荷较大的项目。
地表水系统则适用于附近有河流、湖泊等水资源丰富的项目。
例如,对于一个位于城市中心的商业综合体,由于土地资源紧张,垂直地埋管系统可能是更好的选择。
而对于一个位于郊区的别墅项目,由于土地资源丰富,水平地埋管系统可能更具优势。
地源热泵设计方案摘要:本文旨在介绍地源热泵的设计方案,包括其工作原理、系统组成、设计要点和注意事项等内容。
通过合理设计和优化,地源热泵系统可以实现高效能的供暖和冷却,提高能源利用效率,并减少对环境的影响。
本文介绍的设计方案可以作为地源热泵系统设计的参考和指导。
一、引言地源热泵是一种利用地下稳定温度的能源进行供暖和冷却的系统。
它利用地热能源和空气源热泵的原理,将地下的热能通过地源热交换器传递到热泵设备中,再通过制冷剂的循环来实现供暖和冷却。
二、地源热泵工作原理地源热泵系统主要由地源换热器、地热泵机组、循环水泵和传输管路等组成。
其工作原理如下:1. 地源换热器:地源换热器埋设在地下,通过地下管道与地源相连接,利用地下的稳定温度进行热交换。
2. 地热泵机组:地热泵机组通过制冷剂的循环,将地下的热能传递到室内或室外的换热器,实现供暖或冷却。
3. 循环水泵:循环水泵将热泵机组输出的热水或冷水通过管路输送到供暖或冷却系统中,实现热能的传递和利用。
三、地源热泵设计要点1. 地源换热器的设计:地源换热器的设计应充分考虑地下土壤的热传导系数、孔径和深度等因素。
地下水流和地质条件也需要考虑,以确保地源换热器的热交换效果达到最佳。
2. 地热泵机组的选择:地热泵机组的选择应根据室内、室外的热负荷需求、周围环境温度和湿度等因素进行合理搭配。
机组的额定功率和制冷/供热能力要与实际需求相匹配。
3. 系统管路设计:系统管路的设计应合理布局,管路的直径和长度要满足流体的需求,减小输送阻力。
同时,应注意保温措施,减少能源损失。
4. 室内温控系统设计:室内温控系统是地源热泵系统的重要组成部分。
应根据不同室内区域的温度需求,配备合适的温控设备,提高供暖和冷却的舒适度。
四、地源热泵设计注意事项1. 地源热泵系统的设计应符合国家相关的标准和规范,确保设计的可靠性和安全性。
2. 需要进行详细的现场勘察和数据采集,了解周围地质和气象条件等因素,确保设计的准确性和可行性。
地源热泵系统与主机设备选型浅述一、地源热泵系统概述1、地源热泵的定义《地源热泵系统工程技术规范》(GB50366-2005)规定地源热泵系统以岩土体、地下水和地表水为低温热源,由水源热泵机组、地热能交换系统、建筑物内系统组成的供热空调系统,根据地热能交换形式的不同,地源热泵系统分为地埋管地源热泵系统、地下水地源热泵系统和地表水地源热泵系统。
2、地源热泵的原理及特点1)、地源热泵原理地源热泵是一种利用地下浅层地热资源既能供热又能制冷的高效节能环保型空调系统。
地源热泵通过输入少量的高品位能源(电能),即可实现能量从低温热源向高温热源的转移。
在冬季,把土壤中的热量“取”出来,提高温度后供给室内用于采暖;在夏季,把室内的热量“取”出来释放到土壤中去,并且常年能保证地下温度的均衡。
2)、地源热泵系统的特点地源热泵系统有着突出的技术优点:高效、节能、环保、无污染。
地源热泵系统在冬季供暖时,不需要锅炉或增加辅助加热器,没有氮氧化物、二氧化硫和烟尘的排放,因而环保无污染;由于是分散供暖,大大提高了城市能源运行的安全性;地源热泵系统组成简单,设备控制方法简单易学,系统可靠性强,使得地源热泵系统无需专人看管,也无需经常维护,维护费用低;地源熱泵系统没有冷却塔和其它室外设备,节省占地空间,并改善了建筑物的外部形象;地源热泵系统有较长的使用寿命,通常机组寿命均在20年以上。
3)、地源热泵系统的组成地源热泵系统由地源热泵机组、源水循环水泵、负载循环水泵、直供(冷)循环水泵、制热水泵、热水循环水泵、水处理设备及电器控制组成。
热泵主机是整个系统的“心脏”,负责制冷、制热和置换生活热水。
在一个项目中热泵主机的选型决定了项目的优劣。
下面通过具体项目,简述地源热泵主机的选型方案。
二、项目概况及规划1、项目概况太原高新技术企业孵化基地位于太原小店区,建筑物总面积为98400平米,其中一号楼87202 m2,二号楼11198 m2。
一号楼主要是高新技术企业服性办公区,二号楼为展示展览区,总建筑高度为53.8m。
目录一、地源热泵推广 (2)(一)水/地源热泵空调系统简介 (2)(二)地源热泵机组特点 (7)二、地源热泵机组设备选型 (11)一、项目概况 (11)二、设计依据 (11)三、主要设计参数 (11)1、冷热负荷的确定 (12)2、热泵机组的确定 (12)三、地埋管换热系统设计选型 (12)1、地源热泵换热器最大换热负何的确定 (12)2、地埋管换热器及管井的设计 (13)3、土壤热平衡的分析: (15)四、地源热泵系统设计与安装 (17)(一)地源热泵系统设计与安装关键 (17)(二)室外地埋管换热系统的主要施工工序及注意的问题: (17)(三)室外垂直埋管系统主要施工工艺 (19)五、地源热泵系统中央空调报价 (21)一、地源热泵推广(一)水/地源热泵空调系统简介1、背景环境污染和能源危机已成为当今社会的两大难题,如何在享受的同时付出最少的代价逐渐成为人类的共识,在这种背景下以环保和健康为主要特征的绿色建筑应运而生。
尽可能少地消耗能源为建筑物创造舒适环境已经成为空调的发展方向,开发利用天然的冷/热源能够为空调带来节能和环保双重效益,因而越来越受到人们的重视。
地下土壤层是一个巨大的天然热源,其热惰性极大,全年的温度波动很小,一般说来,地表50m以下可常年维持在该地区年平均温度左右,是一种理想的天然冷热源。
2、水/地源热泵简介水/地源中央空调系统是一种从地下土壤/地下水中提取热量的高效、节能、环保、再生的供热(冷)系统。
该系统是成熟的热泵技术、暖通空调技术配套地质勘察成井技术于一体,在相对稳定的土壤温度下高效、稳定、经济的运行。
地源中央空调系统是由末端(室内空气处理末端等)系统、地源中央空调主机(又称为地源热泵)系统和地埋管或井水换热系统三部分组成。
为用户供热时,水/地源中央空调系统从土壤/地下水中提取低品位热能,通过电能驱动的地源中央空调主机(热泵)“泵”送到高温热源,以满足用户供热需求。
为用户供冷时,中央空调系统的冷凝热量通过地源中央空调主机(制冷)转移到土壤/地下水中,以满足用户制冷需求。
地源热泵空调系统方案****办公楼一、项目概况1.1 项目概况本工程为办公楼项目,总建筑面积约1.7万平米,属于能源改造项目。
1.2 设计依据1)建设设计单位提供的有关数据及要求;2)《民用建筑供暖通风与空气调节设计规范》(GB50736-2012);3)《全国民用建筑工程设计技术措施*暖通动力》(2009);4)《通风与空调工程施工及验收规范》(GB50243-2016);5)《地源热泵系统工程技术规范》(GB50366-2005 2009版);6)其他有关设计规范及规程。
1.3 设计参数****室外设计参数:设计参数:1.4 系统负荷统计建筑负荷选取如下:二、地埋管地源热泵系统方案2.1 地源热泵原理地源热泵是一种利用地下浅层的大地能量,包括土壤、地下水、地表水等天然能源作为冬季热源和夏季冷源,然后再由热泵机组向建筑物供冷供热的系统,是一种利用可再生能源的既可供暖又可制冷的新型中央空调系统。
在国外目前大面积推广使用的是埋管式地源热泵技术,是充分利用浅层地热的最佳技术途径。
目前埋管式地源热泵在欧美国家已得到普遍应用,已被充分证明是成熟可行的技术,在我国,建设部和一些省市的建筑节能政策中明确提出要推广使用地源热泵。
冬季从13~20℃的土壤中将热量“取”出来,用热泵机组将循环水提升到45℃温度后,通过水泵供给室内采暖,此时大地作为“热源”,机组运行效率将远远的高于机组从室外大气环境中提取热量。
夏季通过热泵机组把室内热量提取出来,释放到13~20℃的地下水或土壤中,此时大地作为“冷源”。
此时机组效率将远远高于将热量释放到36℃的空气环境中。
2.2 地埋管地源热泵系统有如下优点:1.属可再生能源利用技术——国家重点推广技术地源热泵是利用了地球岩土体所储藏的太阳能资源作为冷热源,进行能量转换的空调供暖系统。
地表土壤和水体不仅是一个巨大的太阳能集热器,收集了47%的太阳辐射能量,比人类每年利用能量的500倍还多,而且是一个巨大的动态能量平衡系统,地表的土壤和水体自然地保持能量接受和发散的相对的均衡,这使得利用储存于其中的近乎无限的太阳能或地能成为可能。
地源热泵工程设计方法与实例讲解地源热泵是一种利用地球深层热能进行空调和热水供应的技术,主要利用地下温度相对稳定的特点,通过地源热泵将地下的低温热能转化为室内所需要的高温热能。
地源热泵工程的设计方法是实现该技术的关键,本文将对地源热泵工程设计的方法与实例进行探析。
一、地源热泵工程的基本原理地源热泵利用地下的低温热能进行供热和空调,其基本原理可以用以下公式表示:Qc=Qevap/ε1-Qcond/ε2其中,Qc为室内需要的热能,Qevap为地下的低温热能,ε1为蒸发器的效率,Qcond为压缩机所需的电能,ε2为冷凝器的效率。
可以看出,地源热泵实现供热和空调的主要依靠于蒸发器和冷凝器的效率。
蒸发器的效率取决于热水与地下水流经其间的传热面积和传热系数,而冷凝器则主要与空气的流通速度和面积有关。
二、地源热泵工程的设计方法地源热泵工程的设计方法主要由以下几个方面组成:1、地源热泵容量的确定地源热泵的容量主要取决于房间的面积和所需的制冷量或制热量。
在确定地源热泵容量前,需要对房间面积、朝向、地理环境、气象条件等进行综合考虑,以便确定最为适宜的地源热泵容量。
2、蒸发器和冷凝器的设计蒸发器和冷凝器是地源热泵的核心组件,其设计直接影响到热泵的工作效率。
在确定蒸发器和冷凝器的设计时,需要考虑热水的流量和温度变化,进一步通过计算得出两组件的面积和传热系数等参数。
3、管道系统的设计管道系统是地源热泵的重要组成部分,其设计涉及到管道的铺设方式、材料选择、管道长度、连接方式等。
合理的管道设计能够保证地源热泵的稳定运行和长期性能。
4、控制系统的设计控制系统是地源热泵的大脑,其设计是保证热泵工作性能稳定和安全运行的重要环节。
在设计控制系统时,需要考虑控制器的硬件性能和软件功能,并对各个组件进行合理的集成和优化设计。
在确定了地源热泵的容量、蒸发器和冷凝器的设计、管道系统的设计、控制系统的设计等各个参数后,还需要进行相关的预测和分析,以保证热泵的稳定性、高效性和经济性。
地源热泵方案范本(空调系统)第一节工程概况本工程为某市东站站房综合楼,建筑面积5243.95平方米。
本项目室内采暖(制冷)设计为风机盘管中央空调系统,热(冷)源拟采用地源热泵系统。
第二节方案设计依据1.《公共建筑节能设计标准》GB 50189-20052.《民用空调设计规范》GB 50019-20033.《地源热泵系统工程技术规范》GB 50366-20054.《城镇直埋供热管道工程技术规程》CJJ/T81-985.《埋地聚乙烯给水管道工程技术规程》CJJ101-20046《供水水文地质勘察规范》GB 50027-20017 建设单位提供的基本资料8. 甲方提供的设计要求9 某市地区的水文地质资料10某市地区类似工程的数据报告11 配套设备厂家的样本说明第三节有关气象资料某市市位于辽东半岛西北部,西临渤海辽东湾,与锦州、葫芦岛隔海相望;北与大洼、海城为邻;东与岫岩、庄河接壤;南与瓦房店、普兰店相连。
营口南接大连,西临渤海,背靠东北腹地,中国七大水系之一的大辽河从里注入渤海。
营口市属暖温带半湿润气候区,四季分明,气候适宜。
夏季空调室外计算干球温度:30℃:夏季空调室外计算湿球温度:27.3℃夏季通风室外计算温度:28℃夏季室外平均风速:3.5m/s冬季空调室外计算干球温度:-18℃冬季采暖室外计算干球温度:-16℃冬季空调室外计算相对湿度:63%冬季通风室外计算温度:-10℃极端最高温度: 35.3℃极端最低温度:-18.8℃最大冻土深度:111cm采暖天数:143天制冷天数:90第四节工程设计原则地源热泵中央空调系统工程是某站站房综合楼的配套工程,要求空调系统设计与整体工程设计理念结合,与已施工完毕的其他节能系统工程要配比得当,在遵照已完工工程的基础上,合理调整地源热泵部分的设计、施工,以尽快发挥其经济效益和社会效益。
工程方案中应明确的设计原则如下:1、充分利用某市地区地下土壤温度较高的特点,合理设计地埋管侧的水介质供回水温度、流量,达到热泵机组的最佳经济运行状态。
地源热泵策划方案1. 简介地源热泵是利用地下能源进行空调和供暖的一种环保能源利用技术。
它利用地下的恒定温度来加热或冷却建筑物,从而减少能源的消耗和减少对环境的影响。
地源热泵策划方案将详细介绍地源热泵的原理、优势以及在实际应用中的规划和设计。
2. 地源热泵原理地源热泵利用地下能源进行换热,主要分为地源热泵供暖和地源热泵制冷两种模式。
它的工作原理如下:•地源热泵供暖模式:通过地下水或地表水中的热能,利用地源热泵从地表、地下或水源中吸收热量,经过压缩、传递等过程,将热量传递到室内空气中,从而达到供暖的目的。
•地源热泵制冷模式:与供暖模式相反,地源热泵制冷模式通过回收室内的热量,利用地下的低温环境,在制冷剂的作用下实现空调效果。
制冷模式下,地源热泵会将热能从室内吸收,并将其传递到地下,从而将室内冷却。
3. 地源热泵的优势相比传统的空调和供暖系统,地源热泵具有以下优势:•高效节能:地源热泵利用地下恒定的温度进行热能交换,能够高效地转化为室内空调供暖或制冷能源,能效比较高,节能效果显著。
•环保节能:地源热泵不产生燃烧物质和废气,减少了对大气和环境的污染。
同时,地下的热能是可再生的资源,对环境影响小。
•稳定可靠:地下恒定的温度使得地源热泵在供暖和制冷时能够保持相对稳定的操作效果,不受环境温度变化的影响。
•长期投资回报高:虽然地源热泵的安装和初始投资较高,但日常运行和维护成本较低,长期来看,能够获得较高的投资回报。
4. 地源热泵的规划和设计在地源热泵的规划和设计中,需要考虑以下几个重要因素:4.1 地质条件评估:地质条件评估是安装地源热泵前的重要步骤,需要对地下的岩石、土壤类型、地下水位等进行调查和分析,以确定地源热泵系统的设计方案。
4.2 系统类型选择:根据建筑物的规模、用途以及地理环境等因素,选择合适的地源热泵系统类型,如封闭环路系统或开放环路系统。
4.3 设备选型:根据建筑物的热负荷和需要供暖或制冷的面积,选择合适的地源热泵设备。
地源热泵工程设计方法与实例1. 引言地源热泵技术作为一种清洁、高效的能源利用方式,近年来得到广泛应用。
地源热泵是利用地热能和地下水的恒温特性,通过换热交换器将地下热源传递到热泵机组中,进而供暖或制冷。
本文将介绍地源热泵工程的设计方法和实例,以帮助读者更好地理解和应用这一技术。
2. 地源热泵工程设计方法2.1 能源需求分析在地源热泵工程设计前,需要首先进行能源需求分析。
这一步骤包括确定建筑的热负荷和制冷负荷,以及热水需求。
通过收集建筑的用能数据和气候数据,可以计算出建筑的需求参数,为后续的工程设计提供依据。
2.2 地源热泵系统设计地源热泵系统设计包括地源热泵机组的选择、地热能源的利用、热水系统的设计等。
在选择地源热泵机组时,需要考虑其制冷量和供暖量是否满足建筑的需求,以及机组的能效等级。
地热能源的利用方式有地埋管和地下水两种,需要根据实际情况确定最适宜的方式。
热水系统的设计包括热水管道的敷设和热水储存设备的选择,需要考虑供水温度和供水量等参数。
2.3 控制系统设计地源热泵系统的控制系统设计非常重要,可以有效地提高系统的运行效率。
控制系统设计包括温度控制、泵阀控制和换热器控制等。
通过合理地设置控制参数和控制策略,可以实现系统的自动调节和优化运行。
3. 地源热泵工程实例分析3.1 XX大厦地源热泵工程设计实例XX大厦是一座办公楼,面积为10000平方米,需要提供制冷和供暖效劳。
在能源需求分析阶段,通过收集建筑的用能数据和气候数据,计算出其热负荷和制冷负荷。
在地源热泵系统设计阶段,根据建筑的需求参数和机组的性能参数,选择一台制冷量和供暖量适配的地源热泵机组,并确定地热能源利用方式和热水系统设计。
在控制系统设计阶段,设置合理的控制策略,使得地源热泵系统能够自动调节和优化运行。
3.2 YY别墅地源热泵工程设计实例YY别墅是一座高档住宅,面积为500平方米,需要提供制冷和供暖效劳。
在能源需求分析阶段,通过收集建筑的用能数据和气候数据,计算出其热负荷和制冷负荷。
地源热泵工程设计和设备选型参考资料
地源热泵系统设计思路和准备工作:
1、现场勘察了解建筑物概况:建筑的结构、维护和保温、层数、层高、用途、客户现在和未来可能的需求;建筑面积、空调面积、生活热水使用概况、配电情况(功率、电压、电流)、机房空间、机房位置。
2、了解基本地理情况:地理位置、周围地貌、气象参数、未来地域发展规划、地下构造等。
3、建筑冷、热负荷计算。
列出进行负荷计算的标准和依据,对建筑进行冷、热负荷计算。
在确定建筑负荷时,必须考虑到未来较长时间的气候变化情况。
通过对建筑负荷的计算和评估,可以确定水源井换热器的吸热和放热的绝对量值。
地源热泵系统设计和选型问题:
地源热泵系统设计主要包括两大部分:一是建筑物内的空调系统设计,主要有空气处理方案确定及设备选择,水源热泵机组的选择、室内整个空调系统的风系统和水系统设计;二是室外地能换热系统的设计,即地埋管地源热泵系统中的地埋管换热器、地下水热泵系统中的水井系统以及地表水热泵系统中的地表水换热器的设计,这部分是地源热泵系统有别于其他系统之所在。
地埋管换热器管路形式选择
地埋管换热器的埋管主要有两种形式,即水平埋管和垂直埋管。
换热器管路埋置在水平管沟内的地埋管换热器为水平埋管。
换热管路埋置在垂直钻孔内的地埋管换热器为垂直埋管。
地埋管换热器环路形式选择
地埋管换热器中流体流动的环路形式有串联和并联两种。
在串联系统中,几个井(水平管为管沟)只有一个流动通路;并联方式是一个井(管沟)有一个流动通路,数个井有数个流动通路。
地埋管换热器埋管选择
由于地埋管的使用场所特殊、施工较复杂,所选管材必须符合特定的性能才能保证施工顺利进行、系统才能正常运行,对管材特殊性要求如下:
对管材质量的要求;选择地埋管规格;选择地埋管管径;确定地埋管管子长度。
地热管材选择及流体介质问题:
一般来讲,一旦将地下埋管系统换热器埋入地下后,基本不可能进行维修或更换,因此地下的管材应首先要保证其具有良好的化学稳定性、耐腐性。
1、聚乙烯(PE)和聚丁烯(PB)在国外地源热泵系统中得到了广泛应用。
2、PVC(聚氯乙烯)管的导热性差和可塑性不好,不易弯曲,接头处耐压能力差,容易导致泄漏,因此在地源热泵系统中不推荐用PVC 管。
3、为了强化地下埋管的换热,国外有的提出采用薄壁(0.5mm)的不锈钢钢管,但目前实际应用不多。
4、管件公称压力不得小于1.0Mpa,工作温度应在-20℃~50℃范围内。
5、地埋管壁厚宜按外径与壁厚之比为11倍选择。
6、地埋管应能按设计要求长度成捆供应,中间不得有机械接口及金属接头。
连接方式方法:
1、热熔联接(承接联接和对接联接,对于小管径常采用)
2、电熔联结。
流体介质及回填料:
南方地区:由于地温高,冬季地下埋管进水温度在0℃以上,因此多采用水作为工作流体;
北方地区:冬季地温低,地下埋管进水温度一般均低于0℃,因此一般均需使用防冻液。
(①盐类溶液——氯化钙和氯化钠水溶液;②乙二醇水溶液;③酒精水溶液等)。
地埋管水温:
1、热泵机组夏季向末端系统供冷水,设计供回水温度为7—12℃,与普通冷水机组相同。
地埋管中循环水进入U管的最高温度应<37℃,与冷却塔进水温度相同。
2、热泵机组冬季向末端系统供水温度与常规空调不同,在满足供热条件下,应尽量减低供热水温度,这样可改善热泵机组运行工况、减小压缩比、提高cop值,并降低能耗。
地埋管中循环水冬季进水温度,以水不冻结并留安全余地为好,可取3—4℃。
当然为了使地埋管换热器获得更多热量,可加大循环水与大地间温差传热,然而大地的温度是不变的,因此只有将循环水温降至0℃以下,为此循环水必须使用防冻液,如乙二醇溶液或食盐水。
但这样会提高工程造价、增加对设备的腐蚀。
在严寒地区不得不这样做,而在华北地区的工程中用水就可满足要求,不一定要加防冻液。
地温是恒定值,可通过测井实测。
有关资料介绍某地地下约100米的地温是当地年平均气温加4℃左右。
天津市年平均气温是12.2℃,实测天津市地下约100米的地温约为16℃,基本符合以上规律。
回填材料
可以选用浇铸混凝土、回填沙石散料或回填土壤等。
材料选择要兼顾工程造价、传热性能、施工方便等因素。
从实际测试比较浇铸混凝土换热性能最好,但造价高、施工难度大,但可结合建筑物桩基一起施工。
回填沙石或碎石换热效果比较好,而且施工容易、造价低,可广泛采用。
地下埋管系统环路方式:
1、串联方式
优点:
①一个回路具有单一流通通路,管内积存的空气容易排出;
②串联方式一般需采用较大直径的管子,因此对于单位长度埋管换热量来讲,串联方式换热性能略高
缺点:
①串联方式需采用较大管径的管子,因而成本较高;
②由于系统管径大,在冬季气温低地区,系统内需充注的防冻液(如乙醇水溶液)多;
③安装劳动成本增大;
④管路系统不能太长,否则系统阻力损失太大。
2、并联方式
优点:
①由于可用较小管径的管子,因此成本较串联方式低;
②所需防冻液少;
③安装劳动成本低。
缺点:
①设计安装中必须特别注意确保管内流体流速较高,以充分排出空气;
②各并联管道的长度尽量一致(偏差应≤10%),以保证每个并联回路有相同的流量;
③确保每个并联回路的进口与出口有相同的压力,使用较大管径的管子做集箱,可达到此目的。
从国内外工程实践来看,中、深埋管采用并联方式者居多;浅埋管采用串联方式的多。
注意事项:
1、垂直地埋管换热器埋管深度应大于30m,宜为60m~150m;钻孔间距宜为3m~6m。
水平管埋深应不小于1.2m。
2、地埋管换热器水平干管坡度宜为0.3%,不应小于0.2%。
3、地埋管环路之间应并联且同程布置,两端应分别与供、回水管路集管相连接。
每个环路集管连接的环路数宜相同。
4、地埋管换热器宜靠近机房或以机房为中心设置。
铺设供、回水集管的管沟宜分开布置;供、回水集管的间距不应小于0.6m。