大学物理基础学(习岗)第二章 气体动理论 能量均分定理
- 格式:ppt
- 大小:588.50 KB
- 文档页数:18
一、自由度力学中要确定一个物体在空间的位置所需要的独立坐标数目,叫做这个物体的自由度。
在热力学中一般不涉及原子内部的运动,仍将原子当作质点而将分子当作是由原子质点构成的。
一个要确定一个自由运动质点的空间位置需要3个独立坐标,因此单原子分子的自由度是3,即它有3个平动自由度。
对于刚性(原子间的相对位置不变)双原子分子气体,可看作两个原子(质点)被一条直线连接,需要用3个坐标确定其质心的位置,再用2个坐标确定其连线的方位,因此刚性双原子分子气体的自由度为5。
对于刚性多原子分子,具有3个平移自由度和3个转动自由度,总自由度为6。
二、能量按自由度均分定理1.能量按自由度均分定理理想气体分子平均平动动能 kT k 23=ε 222221212121z y x k v m v m v m v m ++==ε 又 222231v v v v z y x === 有 kT v m v m v m z y x 21212121222===这表明,气体分子沿x 、y 、z 三个方向的平均平动动能都相等,且都等于kT /2。
因为在温度公式中的分子是看作质点的,它只有三个自由度,而这个结果说明,每个分子的平均平动动能是均匀地分配给每个自由度,即每个自由度都均匀地分配了kT /2的能量。
这个现象可以这样解释:气体平衡态的建立和维持,是靠分子无规则运动和频繁碰撞实现的,在碰撞过程中,能量可以从一个分子传到另一个分子,也可以由一种运动形式转化成另一种运动形式,也可以从一个自由度转移到另一个自由度,这些转变是无规则的,但总的趋势是各种形式的平均能量趋于相等,这一结论是否可以推广到转动和振动上呢?经典统计物理已经证明了这一点:在温度为T 的平衡状态下,分子的每一个自由度上都具有相同的平均能量,其大小都为kT /2。
2.说明:1)能量均分定理是统计规律,是大量分子的整体表现。
对单个分子而言,分子的能量并不一定是均分分配的,但由于分子间的相互碰撞,在相互碰撞中分子可以交换能量;对于某一自由度来说,其上的能量也不一定均匀的,但由于分子的无规则运动和分子间的相互碰撞,使得在各个自由度上的能量不断“搅拌”,最后达到均匀。
能量均分定理能量均分定理1能量均分定理2理想气体的内能2t 12m ε=v kT 23=222212121z y x m m m v v v ==kT 21=2kT 在温度为T 的平衡态下,物质(气体、液体和固体)分子的每一个自由度都具有相同的平均动能,其值为这一结论称为能量按自由度均分定理。
12kT 一个分子的平均平动动能为一、能量均分定理(Theorem of equi-partition ofenergy )(1) 能量按自由度均分是大量分子统计平均的结果,是分子 间的频繁碰撞而致。
说明(3) 若某种气体分子具有t 个平动自由度和r 个转动自由度, s 个振动自由度,1()2t r s kT ++则每个气体分子的平均总动能为每个气体分子的平均势能为 ,2s kT 因此(2) 一般也适用液体和固体。
1(2)22i t r s kT kT ε=++=一个气体分子的平均总能量为对于刚性分子(常温)0s =1()2t r kT ε=+二、理想气体的内能理想气体的内能:气体内所有分子的动能和分子内原子间振动势能的总和。
1mol 理想气体的内能为 质量为m 、摩尔质量为M m 的理想气体的内能为m 2m i U RT M =m A A 22i i U N N kT RT ε==⋅=说明一定质量的理想气体内能完全取决于分子运动的自由度数和气体的温度,而与气体的体积和压强无关。
对于给定气体,i 是确定的,所以其内能就只与温度有关,这与宏观的实验观测结果是一致的。
焦耳定律单原子分子气体 ,32V m C R =双原子分子气体 ,52V mC R =多原子分子气体 ,3V m C R=Ø理想气体的摩尔热容理想气体的定体摩尔热容为,d d 2m V m U i C R T ==2m i U RT =理想气体的摩尔内能为在温度为T 的平衡态下,物质(气体、液体和固体)分子的每一个自由度都具有相同的平均动能,其值为这一结论称为能量按自由度均分定理。
第2章气体动理论♦本章学习目标了解:玻耳兹曼分布率;范德瓦耳斯方程和输运过程。
理解:理想气体的压强,温度的微观意义;能量均分定理,麦克斯韦速率分布律及其统计意义;麦克斯韦速率分布律的实验验证,实际气体等温线;气体分子的平均自由程的概念。
掌握:理想气体的压强,能量均分定理,麦克斯韦速率分布律及其统计意义;实际气体等温线;气体分子的平均自由程的概念。
♦本章教学内容1、理想气体压强公式2、温度的微观意义3、能量均分定理4、麦克斯韦速率分布律5、麦克斯韦速率分布律的实验验证*6、玻尔兹曼分布率♦本章重点压强和温度的微观实质和意义、理想气体的内能、速率分布函数以及理想气体平衡态的特征速率等。
♦本章难点压强和温度的微观实质和意义速率分布函数的物理意义以及相关的计算2.1 理想气体的压强一、理想气体模型1.关于单个分子的力学性质的假设在宏观上我们知道,理想气体是一种在任何情况下都遵守玻意耳定律、盖-吕萨克定律和查理定律的气体。
但从微观上看什么样的分子组成的气体才具有这种宏观特性呢?气体分子的运动是肉眼看不见的,所以理想气体的微观模型是通过对宏观实验结果的分析和综合提出的一个假说。
通过这个假说得到的结论与宏观实验结果进行比较来判断模型的正确性。
通过前人多年的努力,我们现在知道理想气体的微观模型具有以下特征:(1 )分子与容器壁和分子与分子之间只有在碰撞的瞬间才由相互作用,其它时候的相互作用可以忽略不计。
(2)分子本身的体积在气体中可以忽略不计,即对分子可采用质点模型。
(3 )而分子与容器壁以及分子与分子之间的碰撞属于牛顿力学中的完全弹性碰撞。
实验证明,实际气体中分子本身占的体积约只占气体体积的千分之一,在气体中分子之间的平均距离远大于分子的几何尺寸,所以将分子看成质点是完全合理的从另一个方面看,对已达到平衡态的气体如果没有外界影响,其温度、压强等态参量都不会因分子与容器壁以及分子与分子之间的碰撞而发生改变,气体分子的速度分布也保持不变,因而分子与容器壁以及分子与分子之间的碰撞是完全弹性碰撞也是理所当然的。