05岩石的蠕变
- 格式:ppt
- 大小:1.70 MB
- 文档页数:22
岩石材料的蠕变实验及本构模型研究蠕变是指材料在一定温度和应力条件下,随着时间的推移发生的持续变形。
在地质和工程领域,岩石是一种典型的蠕变材料。
岩石的蠕变行为对工程结构的长期稳定性和可靠性具有重要影响。
因此,对岩石材料的蠕变实验及本构模型研究具有重要的理论和实际意义。
岩石材料的蠕变实验主要分为应力松弛实验和恒定应力蠕变实验两种。
应力松弛实验是通过对材料施加一定的应力后,观察材料的应力随时间的变化,以及应变随时间的变化。
这种实验常常用来研究岩石材料的蠕变速率和蠕变变形的领导指数。
恒定应力蠕变实验则是在一定的应力水平下,观察材料的应变随时间的变化,并且通过实验数据拟合来得到本构模型。
岩石材料的蠕变行为可以通过多种本构模型来描述,其中最常用的是Norton、Burgers、Power-law以及Generalized Kelvin-Voigt模型。
这些模型可以通过实验数据进行参数拟合,从而得到对应的本构关系。
这些本构关系可以用来预测岩石材料在不同应力和温度下的蠕变行为。
此外,还可以通过拟合这些本构模型的参数,来研究岩石材料的蠕变机制。
研究表明,岩石材料的蠕变行为是由多种因素共同影响的,包括温度、应力水平、孔隙水压力、孔隙率等。
因此,在进行蠕变实验时,需要对这些因素进行控制和监测,以保证实验数据的可靠性。
同时,还需要考虑到实际工程环境中的应力和温度条件,从而得到更准确的本构关系。
总之,岩石材料的蠕变实验及本构模型研究对于预测岩石在地下工程中的蠕变行为具有重要的理论和实际意义。
通过研究岩石材料的蠕变行为及其本构关系,可以为地质和工程领域提供重要的科学依据,从而保证工程结构的长期稳定性和可靠性。
岩石材料的蠕变实验及本构模型研究引言:岩石是地球上最基础的构造材料之一,其性质的研究对于地质科学以及岩土工程领域具有重要意义。
岩石在地壳中扮演着起支撑与保护作用,因此了解岩石的变形行为以及蠕变性质对于地质灾害的预测与评估具有重要的指导意义。
本文将就岩石材料的蠕变实验及本构模型研究进行详细阐述。
一、岩石材料的蠕变实验蠕变是指物质在长时间内受到持续应力下的变形现象。
岩石材料由于具有多种类型的孔隙和裂隙,因此其蠕变行为比一般材料更为复杂。
蠕变实验是研究岩石材料蠕变性质的主要手段之一,其目的是了解岩石在不同应力、不同温度和不同时间下的蠕变特性。
1.实验设备蠕变实验一般需要使用蠕变试验机,该仪器能够提供连续加载并测量样品的应力和应变,同时控制温度。
实验所需的试样通常需要根据具体需要制备。
此外,还需要一些测量设备,如蠕变计和应变测量仪等。
2.实验过程蠕变实验的过程包括准备试样、加载试样、施加应力、保持应力和测量应变等步骤。
首先,需要根据实验要求制备符合标准的试样。
然后,将试样放置在蠕变试验机上,施加适当的负载并开始加载。
在加载过程中,需要保持恒定的应力并测量试样的应变,常用的应变测量方法有外部应变计和内部传感器等。
最后,根据实验结果绘制蠕变曲线,分析蠕变行为。
本构模型是描述材料力学性质的数学模型,通过建立岩石材料的本构模型,可以预测岩石的变形行为并进行力学仿真研究。
目前常用的岩石本构模型有线性弹性模型、弹塑性模型和粘弹性模型等。
1.线性弹性模型线性弹性模型是最简单的本构模型,它假设岩石材料的应力应变关系是线性的,即满足胡克定律。
这种模型适用于小应变范围内的岩石变形,但无法描述岩石的时间依赖性和非线性特性。
2.弹塑性模型弹塑性模型考虑了岩石在加载时的弹性变形和塑性变形,常用的模型有Mohr-Coulomb模型、Drucker-Prager模型等。
这些模型能够更准确地描述岩石的变形行为,但在蠕变时间很长的情况下,塑性本构模型可能会失效。
0引言岩石在长时间应力、温度和差应力作用下发生永久变形不断增长的现象,叫做岩石的蠕变。
早在1939年Griggs [1]在对砂岩、泥板岩和粉砂岩等进行大量蠕变试验时就发现,当荷载达到破坏荷载的12.5%~80%时就发生蠕变,它是岩石流变力学中最主要的一种现象,也是岩土工程变形失稳的主要原因。
1980年湖北省盐池磷矿由于岩石的蠕变,160m 高,体积约100万m 3的山体突然崩塌,4层楼被抛掷对岸,造成了巨大的伤亡。
在国外岩石蠕变研究中,Okubo [2](1991)完成了大理岩、砂岩、花岗岩和灰岩等岩石的单轴压缩试验,获得了岩石加速蠕变阶段的应变-时间曲线,结果表明蠕变应变速率与时间成反比例关系。
E.Maranini [3](1999)对石灰岩等进行了单轴和三轴压剪蠕变试验,研究表明,石灰岩的蠕变最主要的表现在是低围压情况下的扩张、裂隙,而在高围压状态下,岩石内部则发生孔隙塌陷,得出石灰岩的蠕变对岩石主要影响是其屈服应力的降低。
Hayano K [4](1999)等进行了沉积软岩的长期蠕变试验。
K.Shina [5](2005)对日本的6种岩石进行了各种条件下单轴和三轴压缩,拉伸试验,统计了各种蠕变影响参数,如蠕变应力对时间的依赖性参数δ,蠕变寿命相关系数α和β等,并对其强度和蠕变寿命做了分析。
由此可见,研究和开展岩石蠕变特性的研基金项目:安徽建筑工业学院2010年度大学生科技创新基金(20101018)。
作者简介:马珂(1987—),男,安徽安庆人,硕士,主要从事岩石力学方面研究。
收稿日期:2011-05-26责任编辑:樊小舟岩石蠕变模型研究进展及若干问题探讨马珂,宛新林,贾伟风,宛传虎(安徽建筑工业学院土木工程学院,安徽合肥230022)摘要:岩石蠕变是岩土工程变形失稳的主要原因之一。
近年来蠕变研究正处于一个探索阶段,本文从四个方面综述了蠕变模型的研究进展。
研究发现,在岩石蠕变的三个阶段中利用经典本构模型均很难描述加速蠕变阶段,研究者们通过新的元件或者改进的非线性黏弹塑性本构模型可以很好的模拟岩石蠕变实际曲线;基于损伤理论的岩石蠕变模型是近年来发展的主要方向,可以很好的解决岩石微观裂纹所带来的蠕变;随着岩石深部工程的发展,岩体受到周围实际环境下的影响是不可忽略的,从而研究含水量的变化与水力和其它应力耦合下的岩石蠕变也是今后的重点。
岩石蠕变的变形机制及其地质意义岩石是地壳的主要组成部分,它们在地壳运动中起着重要的作用。
岩石的变形是地质活动的重要表现形式之一,而岩石蠕变则是岩石变形的一种重要机制。
本文将探讨岩石蠕变的变形机制及其在地质研究中的意义。
一、岩石蠕变的概念和表现形式岩石蠕变是指岩石在长期作用下出现持续缓慢变形的现象。
蠕变是一种时间依赖性的现象,其发生需要较长的时间。
岩石蠕变的主要表现形式有蠕变流动、蠕变滑动和蠕变脆性破裂等。
二、岩石蠕变的机制1. 组分改变岩石蠕变过程中,岩石的成分会发生改变。
矿物的晶体结构可能发生变化,新的矿物相形成。
不同的成分改变对蠕变的机制有着重要的影响。
2. 晶体结构变化岩石蠕变过程中晶体结构会发生变化,主要是晶界运动和晶粒内的位错运动。
晶界运动是指晶界的移动和重构,而位错运动是指晶粒内部位错的滑移和传播。
3. 矿物形态变化岩石蠕变过程中,矿物的形态和组织可能会发生变化。
有些矿物会发生晶界迁移和重构,形成新的结构。
这些变化会导致岩石整体的形态和结构发生变化。
三、岩石蠕变的意义岩石蠕变在地质研究中具有重要的意义。
1. 岩石蠕变是地震活动的重要前兆之一岩石蠕变的发生会伴随着能量的积累,当岩石受到足够的应力时,就会引发地震活动。
因此,研究岩石蠕变有助于预测地震的发生,为地震灾害的防范提供科学依据。
2. 岩石蠕变对巨型工程建设有重要影响岩石蠕变的发生会导致岩石的变形和破裂,对于巨型工程建设如水坝、隧道等有着重要的影响。
因此,在工程建设中对岩石蠕变进行充分的研究和评估,对保证工程安全具有重要意义。
3. 岩石蠕变对地质资源的勘查和开发有指导意义岩石蠕变对地质矿产资源的分布和形成有重要影响。
研究岩石蠕变可以了解地壳中不同岩石中矿物形态和组织的变化规律,为地质资源的勘查和开发提供科学依据。
4. 岩石蠕变对地形变的影响岩石蠕变是地壳运动的重要表现形式之一,它对地形变化有重要的影响。
通过研究岩石蠕变,可以了解地壳的变形规律,对地质灾害的预测和防范具有重要意义。
岩石力学考试试题一、选择题1. 岩石的强度是指:A. 抵抗外力破坏的能力;B. 抵抗应力引起的变形的能力;C. 抵抗应力集中的能力;D. 抵抗化学侵蚀的能力。
2. 岩石的应力是指:A. 引起岩石变形的力;B. 引起岩石破坏的力;C. 施加在岩石表面的外力;D. 施加在岩石内部的外力。
3. 岩石的变形包括:A. 弹性变形;B. 塑性变形;C. 破坏变形;D. 所有选项都正确。
4. 对于岩石的荷载承载能力来说,以下哪个因素最重要?A. 岩石的强度;B. 岩石的应力;C. 岩石的变形;D. 岩石的密度。
5. 岩石的蠕变是指:A. 岩石在长时间作用下的塑性变形;B. 岩石在受到外力瞬间作用时的弹性变形;C. 岩石在受到化学侵蚀作用时的变化;D. 岩石在受到高温和高压作用时的变形。
二、判断题判断以下说法的正误,正确的写“正确”,错误的写“错误”。
1. 岩石的强度与其含水量无关。
2. 岩石的强度与温度无关。
3. 岩石受到应力时会发生变形。
4. 岩石的蠕变是一种短期变形现象。
5. 蠕变现象只会发生在高温高压环境下。
三、填空题1. 岩石的三轴试验是一种常用的____________________方法。
2. 剪切试验可以测定岩石的____________________。
3. 岩石的变形与应力强度成____________________关系。
4. 岩石的强度是由其____________________决定的。
5. 蠕变现象会导致岩石的____________________。
四、简答题1. 解释什么是岩石的弹性模量?2. 什么是主应力与主应力差?3. 请简述岩石的破裂过程。
4. 简述岩石的蠕变现象及其影响。
五、论述题岩石力学是研究岩石的物理力学性质及其应用的学科。
岩石的强度和变形性质对于工程建设和地质灾害防治等方面具有重要意义,请结合实际案例论述岩石力学在工程建设中的应用和价值。
六、应用题某工程需要选择岩石作为基础材料,假设给出了以下岩石样本的力学参数:抗压强度100 MPa,弹性模量50 GPa,剪切强度60 MPa。
三、论述题1、结合岩石力学与工程实际,简要叙述工程岩体结构面的基本力学属性(2003)(看ppt)结构面是指岩体中存在着的各种不同成因和不同特性的地质界面,包括物质的分界面、不连续面如节理、片理、断层、不整合面等。
其工程力学性质主要包含三个方面:法向变形、剪切变形、抗剪强度。
2、论述岩石的流变性以及蠕变变形曲线特征(2004,2006,2009)或:简要说明岩石的流变性(2005,2008)或:简要论述岩石的蠕变特征(2003)岩石的流变性:就是指岩石的应力-应变关系与时间因素有关的性质,包括蠕变、松弛与弹性后效三个方面。
蠕变:当载荷不变时,变形随着时间而增长的现象;松弛:当应变保持不变时,应力随着时间增长而减小的现象;弹性后效:当加载或卸载时,弹性应变滞后于应力的现象。
当岩石在某一较小的恒定载荷持续作用下,其变形量虽然随时间增长而有所增加,但蠕变变形的速率则随时间增长而减小,最后变形趋于一个稳定的极限值,这是稳定蠕变。
当荷载较大时,蠕变不能稳定于某一极限值,而是无限增长直到破坏。
这是不稳定蠕变,根据应变速率不同,分为以下三个阶段:(附上图)1减速蠕变阶段(ab段):应变速率随时间增加而减小2等速蠕变阶段(bc段):应变速率保持恒定3加速蠕变阶段(cd段):应变速率迅速增加直到岩石破坏稳定蠕变和不稳定蠕变的临界应力为岩石的长期强度。
3、论述岩石在复杂应力状态下的破坏类型,并阐述其在工程岩体稳定性研究中的意义(2004)在关于岩石破裂的所有讨论中,破裂面的性质和描述是最重要的,出现的破裂类型可用下图中岩石在各种围压下的行为来说明。
在无围压受压条件下,观测到不规则的纵向裂缝[见图(a)],这个普通现象的解释至今仍然不十分清楚;加中等数量的围压后,图(a)中的不规则性态便由与方向倾斜小于45度角的单一破裂面所代替[图(b)],这是压应力条件下的典型破裂,并将其表述为剪切破坏,它的特征是沿破裂面的剪切位移,对岩石破裂进行分类的Griggs和Handin(1960)称它为断层;因为它符合地质上的断层作用,后来有许多作者追随着他们;然而,更可取的似乎是限制术语断层于地质学范围,保留术语剪切破裂于试验范围更好;如果继续增加围压,使得材料成为完全延性的,则出现剪切破裂的网格[图(c)],并伴有个别晶体的塑性。