2020版导与练第一轮复习理科数学 (41)
- 格式:doc
- 大小:795.00 KB
- 文档页数:10
第1讲集合1.元素与集合(1)集合元素的性质:、、无序性.(2)集合与元素的关系:①属于,记为;②不属于,记为.(3)集合的表示方法:列举法、和.(4)常见数集及记法数集自然数集正整数集整数集有理数集实数集符号2.集合间的基本关系文字语言符号语言记法基本关系子集集合A中的都是集合B中的元素x∈A⇒x∈BA⊆B或集合A是集合B的子集,但集合B中有一个元素不属于AA⊆B,∃x0∈B,x0∉AAB或B⫌A 相等集合A,B的元素完全A⊆B,B⊆A空集任何元素的集合,空集是任何集合的子集∀x,x∉⌀,⌀⊆A⌀3.集合的基本运算表示运算文字语言符号语言图形语言记法交集属于 A属于B的元素组成的集合{x|x∈A,x∈B}并集属于A属于B的元素组成的集合{x|x∈A,x∈B}补集全集U中属于A的元素组成的集合{x|x∈U,xA}4.集合的运算性质(1)并集的性质:A∪⌀=A;A∪A=A;A∪B= ;A∪B= ⇔B⊆A.(2)交集的性质:A∩⌀=⌀;A∩A=A;A∩B=B∩A;A∩B=A⇔A B.(3)补集的性质:A∪(∁U A)=U;A∩(∁U A)= ;∁U(∁U A)= ;∁U(A∪B)=(∁U A)(∁U B);∁U(A∩B)= ∪.常用结论(1)非常规性表示常用数集:如{x|x=2(n-1),n∈Z}为偶数集,{x|x=4n±1,n∈Z}为奇数集等.(2)①一个集合的真子集必是其子集,一个集合的子集不一定是其真子集;②任何一个集合是它本身的子集;③对于集合A,B,C,若A⊆B,B⊆C,则A⊆C(真子集也满足);④若A⊆B,则有A=⌀和A≠⌀两种可能.(3)集合子集的个数:集合A中有n个元素,则集合A有2n个子集、2n-1个真子集、2n-1个非空子集、2n-2个非空真子集.集合元素个数:card(A∪B)=card(A)+card(B)-card(A∩B)(常用在实际问题中).题组一常识题1.[教材改编]已知集合A={0,1,x2-5x},若-4∈A,则实数x的值为.2.[教材改编]已知集合A={a,b},若A∪B={a,b,c},则满足条件的集合B有个.3.[教材改编]设全集U=R,集合A={x|0≤x≤2},B={y|1≤y≤3},则(∁U A)∪B= .4.[教材改编]已知集合A={-1,1},B={a,a2+2}.若A∩B={1},则实数a的值为.题组二常错题◆索引:忽视集合元素的性质致错;对集合的表示方法理解不到位致错;忘记空集的情况导致出错;忽视集合运算中端点取值致错.5.已知集合A={1,3,},B={1,m},若B⊆A,则m= .6.已知x∈N,y∈N,M={(x,y)|x+y≤2},N={(x,y)|x-y≥0},则M∩N中元素的个数是.7.已知集合M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值是.8.设集合A={x||x-a|<1,x∈R},B={x|1<x<5,x∈R},若A⫋B,则a的取值范围为.探究点一集合的含义与表示例1 (1)[2018·全国卷Ⅱ]已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.4(2)设集合A={-4,2a-1,a2},B={9,a-5,1-a},且集合A,B中有唯一的公共元素9,则实数a的值为.[总结反思] 解决集合含义问题的关键有三点:一是确定构成集合的元素;二是确定元素的限制条件;三是根据元素的特征(满足的条件)构造关系式解决相应问题.特别提醒:含字母的集合问题,在求出字母的值后,需要验证集合的元素是否满足互异性.变式题 (1)已知集合A={x|x=3k-1,k∈Z},则下列表示正确的是()A.-1∉AB.-11∈AC.3k2-1∈AD.-34∉A(2)[2018·上海黄浦区二模]已知集合A={1,2,3},B={1,m},若3-m∈A,则非零实数m的值是.探究点二集合间的基本关系例2 (1)[2018·武汉4月调研]已知集合M={x|x2=1},N={x|ax=1},若N⊆M,则实数a的取值集合为()A.{1}B.{-1,1}C.{1,0}D.{1,-1,0}(2)设集合M={x|x=5-4a+a2,a∈R},N={y|y=4b2+4b+2,b∈R},则下列关系中正确的是()A.M=NB.M⫋NC.N⫋MD.M∈N[总结反思] (1)一般利用数轴法、Venn图法以及结构法判断两集合间的关系,如果集合中含有参数,需要对式子进行变形,有时需要进一步对参数分类讨论.(2)确定非空集合A的子集的个数,需先确定集合A中的元素的个数.特别提醒:不能忽略任何非空集合是它自身的子集.(3)根据集合间的关系求参数值(或取值范围)的关键是将条件转化为元素满足的式子或区间端点间的关系,常用数轴法、Venn图法.变式题 (1)设x,y∈R,集合A={(x,y)|y=x},B=(x,y)=1,则集合A,B间的关系为() A.A⫋B B.B⫋AC.A=BD.A∩B=⌀(2)已知集合M={x|x≤1},N={x|a≤x≤3a+1},若M∩N=⌀,则a的取值范围是.探究点三集合的基本运算角度1集合的运算例3 (1)[2018·长沙周南中学月考]已知集合A={x|x<1},B={x|e x<1},则()A.A∩B={x|x<1}B.A∪B={x|x<e}C.A∪(∁R B)=RD.(∁R A)∩B={x|0<x<1}(2)[2018·山西大学附中5月调研]已知集合A={x|2x≤1},B={x|ln x<1},则A∪B=()A.{x|x<e}B.{x|0≤x≤e}C.{x|x≤e}D.{x|x>e}[总结反思] 对于已知集合的运算,可根据集合的交集和并集的定义直接求解,必要时可结合数轴以及Venn图求解.角度2利用集合运算求参数例4 (1)已知集合A={x∈Z|x2-4x-5<0},B={x|4x>2m},若A∩B中有三个元素,则实数m的取值范围是()A.[3,6)B.[1,2)C.[2,4)D.(2,4](2)设全集U=R,集合A={x|x>1},集合B={x|x>p},若(∁U A)∩B=⌀,则p应该满足的条件是()A.p>1B.p≥1C.p<1D.p≤1[总结反思] 根据集合运算求参数,要把集合语言转换为方程或不等式,然后解方程或不等式,再利用数形结合法求解.角度3集合语言的运用例5 (1)已知集合S={0,1,2,3,4,5},A是S的一个子集,当x∈A时,若有x-1∉A且x+1∉A,则称x为A的一个“孤立元素”,那么S的无“孤立元素”的非空子集的个数为 ()A.16B.17C.18D.20(2)对于a,b∈N,规定a*b=与的奇偶性相同与的奇偶性不同集合M={(a,b)|a*b=36,a,b∈N*},则M中的元素个数为.[总结反思] 解决集合新定义问题的关键是:(1)准确转化:解决新定义问题时,一定要读懂新定义的本质含义,紧扣题目所给定义,结合题目的要求进行恰当转化,切忌同已有概念或定义相混淆.(2)方法选取:对于新定义问题,可恰当选用特例法、筛选法、一般逻辑推理等方法,并结合集合的相关性质求解.第1讲集合考试说明 1.集合的含义与表示:(1)了解集合的含义、元素与集合的属于关系;(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系:(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算:(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用韦恩(Venn)图表达集合间的关系及运算.【课前双基巩固】知识聚焦1.(1)确定性互异性(2)∈∉(3)描述法图示法(4)N N*或N+Z Q R2.任意一个元素B⊇A 至少⫋相同A=B 不含3.且且A∩B 或或A∪B 不∉∁U A4.(1)B∪A A (2)⊆(3)⌀ A ∩(∁U A)(∁U B)对点演练1.4或1[解析] 因为-4∈A,所以x2-5x=-4,解得x=1或x=4.2.4[解析] 因为(A∪B)⊇B,A={a,b},所以满足条件的集合B可以是{c},{a,c},{b,c},{a,b,c},所以满足条件的集合B有4个.3.(-∞,0)∪[1,+∞)[解析] 因为∁U A={x|x>2或x<0},B={y|1≤y≤3},所以(∁U A)∪B=(-∞,0)∪[1,+∞).4.1[解析] 由题意可得1∈B,又a2+2≥2,故a=1,此时B={1,3},符合题意.5.0或3[解析] 因为B⊆A,所以m=3或m=,即m=3或m=0或m=1,根据集合元素的互异性可知,m≠1,所以m=0或3.6.4[解析] 依题意得M={(0,2),(0,1),(1,1),(0,0),(1,0),(2,0)},所以M∩N={(1,1),(0,0),(1,0),(2,0)},所以M∩N中有4个元素.7.0或1或-1[解析] 易得M={a}.∵M∩N=N,∴N⊆M,∴N=⌀或N=M,∴a=0或a=±1.8.2≤a≤4[解析] 由|x-a|<1得-1<x-a<1,∴a-1<x<a+1,由A⫋B得-或-∴2≤a≤4.【课堂考点探究】例1[思路点拨] (1)根据列举法,确定圆及其内部整数点的个数;(2)因为9∈A,所以依据2a-1=9或a2=9分类求解,但要注意集合元素的互异性.(1)A(2)-3[解析] (1)当x=-1时,y=-1,0,1;当x=0时,y=-1,0,1;当x=1时,y=-1,0,1.所以集合A={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)},共有9个元素.(2)∵集合A,B中有唯一的公共元素9,∴9∈A.若2a-1=9,即a=5,此时A={-4,9,25},B={9,0,-4},则集合A,B中有两个公共元素-4,9,与已知矛盾,舍去.若a2=9,则a=±3,当a=3时,A={-4,9,5},B={-2,-2,9},B中有两个元素均为-2,与集合中元素的互异性矛盾,应舍去;当a=-3时,A={-4,-7,9},B={9,-8,4},符合题意.综上所述,a=-3.变式题(1)C(2)2[解析] (1)当k=0时,x=-1,所以-1∈A,所以A错误;令-11=3k-1,得k=-∉Z,所以-11∉A,所以B错误;令-34=3k-1,得k=-11,所以-34∈A,所以D错误;因为k∈Z,所以k2∈Z,则3k2-1∈A,所以C正确.(2)由题知,若3-m=2,则m=1,此时集合B不符合元素的互异性,故m≠1;若3-m=1,则m=2,符合题意;若3-m=3,则m=0,不符合题意.故答案为2.例2[思路点拨] (1)先求出集合M={x|x2=1}={-1,1},当a=0和a≠0时,分析集合N,再根据集合M,N的关系求a;(2)把集合对应的函数化简,求出集合M,N,即可得M,N的关系.(1)D(2)A[解析] (1)∵集合M={x|x2=1}={-1,1},N={x|ax=1},N⊆M,∴当a=0时,N=⌀,成立;当a≠0时,N=,则=-1或=1,解得a=-1或a=1.综上,实数a的取值集合为{1,-1,0}.故选D.(2)集合M={x|x=5-4a+a2,a∈R}={x|x=(a-2)2+1,a∈R}={x|x≥1},N={y|y=4b2+4b+2,b∈R}={y|y=(2b+1)2+1,b∈R}={y|y≥1},∴M=N.变式题(1)B(2)a<-或a>1[解析] (1)由题意得,集合A={(x,y)|y=x}表示直线y=x上的所有点,集合B=(x,y)=1表示直线y=x上除点(0,0)外的所有点,所以B⫋A.故选B.(2)当N=⌀时,由a>3a+1得a<-,满足M∩N=⌀;当N≠⌀时,由M∩N=⌀得解得a>1.所以a的取值范围是a<-或a>1.例3[思路点拨] (1)先求出∁R A,∁R B,再判断各选项是否正确;(2)先求出A,B中不等式的解集,确定出集合A,B,再求出两集合的并集即可.(1)C(2)A[解析] (1)∵集合A={x|x<1},B={x|e x<1}={x|x<0},∴∁R B={x|x≥0},∁R A={x|x≥1}.易知A∩B={x|x<0},故A错误;A∪B={x|x<1},故B错误;A∪(∁R B)=R,故C正确;(∁R A)∩B=⌀,故D错误.故选C.(2)集合A={x|2x≤1}={x|x≤0},B={x|ln x<1}={x|0<x<e},∴A∪B={x|x<e},故选A.例4[思路点拨] (1)分别求出集合A和B,根据A∩B中有三个元素,求出实数m的取值范围;(2)根据补集、交集和空集的定义即可得出p满足的条件.(1)C(2)B[解析] (1)集合A={x∈Z|x2-4x-5<0}={0,1,2,3,4},B={x|4x>2m}=,∵A ∩B中有三个元素,∴1≤<2,解得2≤m<4,∴实数m的取值范围是[2,4).(2)∵全集U=R,集合A={x|x>1},集合B={x|x>p},∴∁U A={x|x≤1},又(∁U A)∩B=⌀,∴p≥1.例5[思路点拨] (1)按照S的无“孤立元素”的非空子集所含元素个数的多少分类讨论,可得出结果;(2)根据定义分情况讨论满足条件的点(a,b)的个数,从而得出M中的元素个数.(1)D(2)41[解析] (1)根据“孤立元素”的定义知,单元素集合都含“孤立元素”.S的无“孤立元素”且含2个元素的子集为{0,1},{1,2},{2,3},{3,4},{4,5},共5个;S的无“孤立元素”且含3个元素的子集为{0,1,2},{1,2,3},{2,3,4},{3,4,5},共4个;S的无“孤立元素”且含4个元素的子集为{0,1,2,3},{0,1,3,4},{0,1,4,5},{1,2,3,4},{1,2,4,5},{2,3,4,5},共6个;S的无“孤立元素”且含5个元素的子集为{0,1,2,3,4},{1,2,3,4,5},{0,1,2,4,5},{0,1,3,4,5},共4个;S的无“孤立元素”且含6个元素的子集为{0,1,2,3,4,5},共1个.故S的无“孤立元素”的非空子集有5+4+6+4+1=20(个).(2)由a*b=36,a,b∈N*知,若a和b一奇一偶,则a×b=36,满足此条件的有1×36=3×12=4×9,故点(a,b)有6个;若a和b同奇同偶,则a+b=36,满足此条件的有1+35=2+34=3+33=4+32=…=18+18,共18组,故点(a,b)有35个.所以M中的元素个数为41.【备选理由】例1考查对两集合之间关系以及元素与集合之间关系的理解;例2考查集合的运算及集合子集个数的计算;例3考查集合的运算;例4为根据集合运算求参数问题,重点关注区间端点的取值情况.例1[配合例2使用] [2018·陕西黄陵中学三模]已知集合M={x|y=(-x2+2x+3,x∈N},Q={z|z=x+y,x∈M,y∈M},则下列运算正确的是 ()A.M∩Q=⌀B.M∪Q=ZC.M∪Q=QD.M∩Q=Q[解析] C由-x2+2x+3>0,得-1<x<3,∵x∈N,∴x=0,1,2,∴M={0,1,2}.∵Q={z|z=x+y,x∈M,y∈M},∴Q={0,1,2,3,4},∴M∩Q=M,M∪Q=Q,故选C.例2[配合例3使用] [2018·佛山南海中学模拟]已知集合A={x∈N|x2-2x≤0},B={x|-1≤x≤2},则A∩B的子集的个数为()A.3B.4C.7D.8[解析] D∵A={x∈N|x2-2x≤0}={0,1,2},B={x|-1≤x≤2},∴A∩B={0,1,2},∴A∩B的子集的个数为23=8,故选D.例3[配合例3使用] 设集合A={x||x-1|≥2},B={x|y=lg(-x-3)},则A∩B=()A.(-4,+∞)B.[-4,+∞)C.(-∞,-3)D.(-∞,-3)∪[3,+∞)[解析] C由|x-1|≥2,得x-1≥2或x-1≤-2,即x≥3或x≤-1.由-x-3>0,得x<-3,所以A∩B={x|x≥3或x≤-1}∩{x|x<-3}={x|x<-3},故选C.例4[配合例4使用] 已知集合A={x|y=-},B={x|a≤x≤a+1},若A∪B=A,则实数a的取值范围为()A.(-∞,-3]∪[2,+∞)B.[-1,2]C.[-2,1]D.[2,+∞)[解析] C要使函数y=-有意义,则4-x2≥0,据此可得A={x|-2≤x≤2}.若A∪B=A,则集合B是集合A的子集,据此有-求解不等式组可得,实数a的取值范围为[-2,1].第2讲命题及其关系、充分条件与必要条件1.命题(1)命题的概念:数学中把用语言、符号或式子表达的,能够判断的陈述句叫作命题.其中的语句叫作真命题,的语句叫作假命题.(2)四种命题及其相互关系图1-2-1特别提醒:若两个命题互为逆否命题,则它们有相同的真假性.2.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的条件.(2)如果q⇒p,则p是q的条件.(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的条件.常用结论1.充要条件的两个结论:(1)若p是q的充分不必要条件,q是r的充分不必要条件,则p是r的充分不必要条件;(2)若p是q的充分不必要条件,则q是p的充分不必要条件.2.充分、必要条件与集合的关系使p成立的对象构成的集合为A,使q成立的对象构成的集合为Bp是q的充分条件A⊆Bp是q的必要条件B⊆Ap是q的充分不必要条件A⫋Bp是q的必要不充分条件B⫋Ap是q的充要条件A=B题组一常识题1.[教材改编]对于下列语句:①垂直于同一直线的两条直线必平行吗?②作△ABC∽△A'B'C'.③x2+2x-3<0.④四边形的内角和是 6 °.其中是命题的是.(填序号)2.[教材改编]有下面4个命题:①集合N中最小的数是1;②若-a不属于N,则a属于N;③若a∈N,b∈N,则a+b的最小值为2;④x2+1=2x的解集可表示为{1,1}.其中真命题的个数为.3.[教材改编]命题“若整数a不能被2整除,则a是奇数”的逆否命题是.4.[教材改编]“点P(x,y)在第一象限”是“x+y>1”的条件.题组二常错题◆索引:命题的条件与结论不明确;含有大前提的命题的否命题易出现否定大前提的情况;真、假命题的推理考虑不全面;对充分必要条件判断错误.5.命题“若a2+b2=0,a,b∈R,则a=b=0”的逆否命题是.6.已知命题“对任意a,b∈R,若ab>0,则a>0”,则它的否命题是.7.若命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是.8.条件p:x>a,条件q:x≥2.①若p是q的充分不必要条件,则a的取值范围是;②若p是q的必要不充分条件,则a的取值范围是.9.已知p是r的充分不必要条件,s是r的必要条件,q是s的必要条件,那么p是q的条件.探究点一四种命题及其相互关系例1 (1)对于命题“单调函数不是周期函数”,下列说法正确的是()A.逆命题为“周期函数不是单调函数”B.否命题为“单调函数是周期函数”C.逆否命题为“周期函数是单调函数”D.以上都不正确(2)给出以下四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤-1,则x2+x+q=0有实根”的逆否命题;④若ab是正整数,则a,b都是正整数.其中为真命题的是.(写出所有真命题的序号)[总结反思] (1)求一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写为“若p,则q”的形式;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题为假命题,只需举出反例.(3)当不易直接判断一个命题的真假时,根据互为逆否命题的两个命题同真同假,可转化为判断其等价命题的真假.变式题 (1)已知命题p:正数a的平方不等于0,命题q:若a不是正数,则它的平方等于0,则q是p的()A.逆命题B.否命题C.逆否命题D.否定(2)以下关于命题的说法正确的是.(填写所有正确说法的序号)①“若log2(a+1)>1,则函数f(x)=log a x(a>0,a≠1)在其定义域内是增函数”是真命题;②命题“若a≠0,则a(b+1)≠0”的否命题是“若a=0,则a(b+1)=0”;③命题“若x,y都是偶数,则(x+1)(y+1)是偶数”的逆命题为真命题;④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.探究点二充分、必要条件的判定例 2 (1)[2018·北京卷]设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)“函数f(x)=a+ln x(x≥e)存在零点”是“a<-1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[总结反思] 充分条件、必要条件的判定方法有定义法、集合法和等价转化法.三种不同的方法适用于不同的类型:定义法适用于定义、定理的判断问题;集合法多适用于命题中涉及参数的取值范围的推断问题;等价转化法适用于条件和结论中带有否定性词语的命题.变式题 (1)[2018·深圳一模]已知数列{a n}是等比数列,则“a2>a1”是“数列{a n}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)“α=”是“sin 2α-cos 2α=1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件探究点三充分、必要条件的应用例3 方程ax2+2x+1=0至少有一个负实根的充要条件是 ()A.0<a≤1B.a<1C.a≤1D.0<a≤1或a<0[总结反思] 充分条件、必要条件的应用一般表现在参数问题的求解上,解题时通常把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.解题过程中要注意检验区间端点值.变式题 (1)下面四个条件中,使a>b成立的必要而不充分条件是 ()A.a-1>bB.a+1>bC.|a|>|b|D.a3>b3(2)[2018·衡阳4月调研]已知p:实数m满足m2+12a2<7am(a>0),q:方程-+-=1表示焦点在y轴上的椭圆,且p是q的充分不必要条件,则a的取值范围为.第2讲命题及其关系、充分条件与必要条件考试说明 1.理解命题的概念;2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;3.理解必要条件、充分条件与充要条件的含义.【课前双基巩固】知识聚焦1.真假判断为真判断为假2.(1)充分(2)必要(3)充要对点演练1.④[解析] ①是疑问句,不是命题;②是祈使句,不是命题;③不能判断真假,不是命题;④是命题.2.0[解析] ①为假命题,集合N中最小的数是0;②为假命题,如a=不满足;③为假命题,如a=0,b=1,则a+b=1,比2小;④为假命题,所给集合中的元素不满足互异性.3.若整数a不是奇数,则a能被2整除[解析] 以原命题结论的否定作条件、原命题条件的否定作结论得出逆否命题.4.既不充分也不必要[解析] 取x=,y=,知充分性不成立;取x=-1,y=3,知必要性不成立.故为既不充分也不必要条件.5.若a≠0或b≠0,a,b∈R,则a2+b2≠0[解析] “若p,则q”的逆否命题为“若q,则p”,又a=b=0的实质为a=0且b=0,故其否定为a≠0或b≠0.6.对任意a,b∈R,若ab≤0,则a≤0[解析] “对任意a,b∈R”是大前提,在否命题中不变,又因为ab>0,a>0的否定分别为ab≤0,a≤0,所以原命题的否命题为“对任意a,b∈R,若ab ≤0,则a≤0”.7.[-3,0][解析] 由已知可得ax2-2ax-3≤0恒成立.当a=0时,-3≤0恒成立;当a≠0时,得解得-3≤a<0.故-3≤a≤0.8.①a≥2②a<2[解析] ①因为p是q的充分不必要条件,所以{x|x>a}⫋{x|x≥2},则a 的取值范围是a≥2.②因为p是q的必要不充分条件,所以{x|x≥2}⫋{x|x>a},则a的取值范围是a<2.9.充分不必要[解析] 依题意有p⇒r,r⇒s,s⇒q,∴p⇒r⇒s⇒q.又∵r⇒/p,∴q⇒/p.故p是q的充分不必要条件.【课堂考点探究】例1[思路点拨] (1)根据四种命题的构成判断即可.(2)对于①②,按照要求写出相应的逆命题、否命题,再判断真假;对于③,可直接利用原命题与逆否命题的等价性判断原命题的真假;对于④,直接判断.(1)D(2)①③[解析] (1)根据四种命题的构成可知,选项A,B,C均不正确.故选D.(2)①“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,显然为真命题;②否命题为“不全等的三角形的面积不相等”,而不全等的三角形的面积也可能相等,故为假命题;③原命题为真,所以它的逆否命题也为真,故③为真命题;④ab是正整数,但a,b 不一定都是正整数,例如a=-1,b=-2,故④为假命题.所以答案是①③.变式题(1)B(2)①②④[解析] (1)“正数a的平方不等于0”即“若a是一个正数,则它的平方不等于0”,其否命题为“若a不是正数,则它的平方等于0”,所以选B.(2)①正确,由log2(a+1)>1,得a+1>2,所以a>1,所以f(x)=log a x在其定义域内是增函数.②正确,由命题的否命题的定义知,该说法正确.③不正确,原命题的逆命题为“若(x+1)(y+1)是偶数,则x,y都是偶数”,是假命题,如(3+1)×(4+1)=20为偶数,但x=3,y=4.④正确,两者互为逆否命题,因此两命题等价.例2[思路点拨] (1)将已知等式两边同时平方,可得出向量a,b的关系,从而得出结论;(2)通过研究单调性,求出函数存在零点的充要条件为a≤-1,从而得出结论.(1)C(2)B[解析] (1)将|a-3b|=|3a+b|两边平方,得a2-6a·b+9b2=9a2+6a·b+b2.∵a,b 均为单位向量,∴a·b=0,即a⊥b.反之,由a⊥b可得|a-3b|=|3a+b|.故为充分必要条件. (2)因为f'(x)=>0,所以若函数f(x)=a+ln x(x≥e)存在零点,则f(e)≤0,即a≤-1,因此“函数f(x)=a+ln x(x≥e)存在零点”是“a<-1”的必要不充分条件,故选B.变式题(1)B(2)A[解析] (1)当a1=-1,a2=2,公比q=-2时,虽然有a1<a2,但是数列{a n}不是递增数列,所以充分性不成立;反之,当数列{a n}是递增数列时,必有a1<a2,因此必要性成立.故选B.(2)由sin 2α-cos 2α=1得sin-=,所以2α-=2kπ+6,k∈Z或2α-=2kπ+6,k∈Z,即α=kπ+,k∈Z或α=kπ+,k∈Z,所以“α=”是“sin 2α-cos 2α=1”的充分而不必要条件,故选A.例3[思路点拨] 直接法,分情况讨论;特例法,结合选项取特殊值验证.C[解析] 方法一(直接法):当a=0时,x=-,符合题意.当a≠0时,若方程的两根为一正一负,则-⇒⇒a<0;若方程的两根均为负,则--⇒⇒0<a≤1.综上所述,所求充要条件是a≤1.方法二(排除法):当a=0时,原方程有一个负实根,可以排除A,D;当a=1时,原方程有两个相等的负实根,可以排除B.所以选C.变式题(1)B(2)[解析] (1)“a>b”不能推出“a-1>b”,故选项A不是“a>b”的必要条件,不满足题意;“a>b”能推出“a+1>b”,但“a+1>b”不能推出“a>b”,故满足题意;“a>b”不能推出“|a|>|b|”,故选项C不是“a>b”的必要条件,不满足题意;“a>b”能推出“a3>b3”,且“a3>b3”能推出“a>b”,故是充要条件,不满足题意.故选B. (2)由a>0,m2-7am+12a2<0,得3a<m<4a,即p:3a<m<4a,a>0.由方程-+-=1表示焦点在y轴上的椭圆,可得2-m>m-1>0,解得1<m<,即q:1<m<.因为p是q的充分不必要条件,所以或解得≤a≤,所以实数a的取值范围是.【备选理由】例1考查对命题真假的判断,是一个开放式命题,答案不唯一,有利于学生发散思维;例2强化了充分、必要条件的判断方法和余弦定理、基本不等式的应用;例3主要考查了充要条件的判断;例4是以简单不等式的方式考查充分、必要条件的应用.例1[配合例1使用][2018·北京通州区三模]能够说明“设a,b,c是任意实数,若a>b>c,则a2>ab>c2”是假命题的一组整数a,b,c的值依次为.[答案] 1,0,-1(此题答案不唯一)[解析] 当a=1,b=0,c=-1时,满足a>b>c,不满足a2>ab>c2,∴命题是假命题.故答案可以为1,0,-1.例2[配合例2使用][2018·武汉4月调研]在△ABC中,内角A,B,C的对边分别为a,b,c.已知条件p:a≤,条件q:A≤,那么p是q成立的 ()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件[解析] A由条件p:a≤,知cos A=-≥-=-≥6-=,当且仅当b=c=a时取等号,又A∈(0,π),∴0<A≤,∴A≤,即q成立.取A=,C=,B=6,满足条件q,但是a>.∴p是q成立的充分而不必要条件.故选A.例3[配合例2使用] [2018·莆田六中三模]在等比数列{a n}中,a2=-2,则“a4,a12是方程x2+3x+1=0的两根”是“a8=-1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件[解析] C因为a4,a12是方程x2+3x+1=0的两根,所以a4a12=1,因此=1,又因为a2=-2<0,所以a8<0,即a8=-1.从而“a4,a12是方程x2+3x+1=0的两根”是“a8=-1”的充要条件,故选C.例4[配合例3使用][2018·南昌模拟]在实数范围内,使得不等式>1成立的一个充分而不必要条件是()A.x>0B.x<1C.0<x<1D.0<x<[解析] D∵>1,∴-<0,∴0<x<1.∵ ⫋(0,1),∴0<x<为不等式>1成立的一个充分而不必要条件,故选D.第3讲简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词命题中的、、叫作逻辑联结词,分别表示为、、.2.全称量词与存在量词(1)短语“对所有的”“对任意一个”在逻辑中通常叫作,用符号“”表示.(2)短语“存在一个”“至少有一个”在逻辑中通常叫作,用符号“”表示.(3)含有一个量词的命题的否定:全称命题p:∀x∈M,p(x),它的否定是.特称命题q:∃x0∈M,q(x0),它的否定是.常用结论1.否命题是把原命题的条件与结论都否定,命题的否定只需否定命题的结论.2.记忆口诀:(1)“p或q”,有真则真;(2)“p且q”,有假则假;(3)“非p”,真假相反.3.命题p∧q的否定是(p)∨(q);命题p∨q的否定是(p)∧(q).题组一常识题1.[教材改编]命题p:x∈R,x2+1≥0,命题q:函数y=ax2+x的图像是抛物线,则p∨q是命题,p∧(q)是命题,(p)∨(q)是命题,(p)∧(q)是命题.(以上各空填“真”或“假”)2.[教材改编]命题“∃x0∈R,log2x0+2<0”的否定是.3.[教材改编]命题“表面积相等的三棱锥体积也相等”的否定是.4.[教材改编]在一次驾照考试中,甲、乙两名学员各试驾一次.设p是“甲试驾成功”,q是“乙试驾成功”,则“两名学员至少有一人没有试驾成功”可表示为.题组二常错题◆索引:全称命题或特称命题的否定出错;不会利用真值表判断命题的真假;复合命题的否定中出现逻辑联结词错误;判断命题真假时忽视对参数的讨论.5.命题“所有奇数的立方都是奇数”的否定是.6.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题中为真命题的是.(填序号)①(p)∨q;②p∧q;③(p)∧(q);④(p)∨(q).7.已知命题“若ab=0,则a=0或b=0”,则其否命题为.8.已知p:∀x∈R,ax2+4x+1>0,则p:.若p是假命题,则实数a的取值范围是.探究点一含逻辑联结词的命题及其真假例1 (1)在一次射击训练中,甲、乙两位运动员各射击一次.设命题p是“甲击中目标”,q 是“乙击中目标”,则命题“两位运动员都没有击中目标”可表示为 ()A.(p)∨(q)B.p∨(q)C.p∨qD.(p)∧(q)(2)[2018·福建三明5月质检]已知函数f(x)=cos2x+.命题p:f(x)的图像关于点-对称,命题q:f(x)在区间-上为减函数,则()6A.p∧q为真命题B.(p)∧q为假命题C.p∨q为真命题D.(p)∨q为假命题[总结反思] 判断含有逻辑联结词的命题真假的一般步骤:(1)判断复合命题的结构;(2)判断构成复合命题的每个简单命题的真假;(3)依据“‘或’:一真即真;‘且’:一假即假;‘非’:真假相反”作出判断即可.变式题 (1)[2018·太原三模]设命题p:函数y=sin 2x的最小正周期为π,命题q:函数y=cos x的图像关于直线x=对称,则下列结论正确的是()A.p为假命题B.q为假命题C.p∨q为假命题D.p∧q为假命题(2)已知命题p:方程e x-1=0有实数根,命题q:不等式x2-x+1≤0有解,则p∧q,p∨q,(p)∨q,p∧(q)这四个命题中真命题的个数为()A.1B.2C.3D.4探究点二全称命题与特称命题例2 (1)命题p:对任意x∈R,都存在m>1,使得mx>e x成立,则p为()A.对任意x∈R,都存在m>1,使得mx≤e x成立B.对任意x∈R,不存在m>1,使得mx>e x成立C.存在x0∈R,对任意m>1,都有mx0≤ 成立D.存在x0∈R,对任意m>1,都有mx0>成立(2)[2018·大同质检]下列说法正确的是()A.命题“∃x0∈R且x0≠1,-<0”的否定是“∀x∈R,-≥0”B.∀x>0,ln(x+1)>0C.∀φ∈R,函数f(x)=sin(2x+φ)都不是偶函数D.∀x∈R,2x>x2[总结反思] (1)全称命题与特称命题的否定:①改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写.②否定结论:对原命题的结论进行否定.(2)全称命题与特称命题真假的判断方法:命题名称真假判断方法一判断方法二全称命题真所有对象使命题真否定为假假存在一个对象使命题假否定为真特称命题真存在一个对象使命题真否定为假变式题 [2018·西安质检]已知命题p:∃x0∈R,log2(+1)≤0,则()A.p是假命题;p:∀x∈R,log2(3x+1)≤0B.p是假命题;p:∀x∈R,log2(3x+1)>0C.p是真命题;p:∀x∈R,log2(3x+1)≤0D.p是真命题;p:∀x∈R,log2(3x+1)>0探究点三根据命题的真假求参数的取值范围例 3 (1)已知命题p:∃x0∈[1,e],ln x0-a≥0,若p是真命题,则实数a的取值范围是()A.(-∞,0)B.(0,1)C.(1,e)D.(1,+∞)(2)已知命题p:∃x0∈R,m+1≤0,命题q:∀x∈R,x2+mx+1>0,若p∧q为真命题,则实数m的取值范围是()A.(-∞,-2)B.[-2,0)C.(0,2)D.(-2,0)[总结反思] 根据命题真假求参数的方法步骤:(1)根据题目条件,推出每一个命题的真假(有时不一定只有一种情况);(2)求出每个命题是真命题时参数的取值范围;(3)根据每个命题的真假情况,求出参数的取值范围.变式题 (1)若命题“∀x∈(0,+∞),x+≥m”是假命题,则实数m的取值范围是.(2)设p:∃x0∈,g(x0)=log2(t+2x0-2)有意义,若p为假命题,则t的取值范围为.。
课时作业51 圆的方程1.(2019·福建厦门联考)若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( B )A .0B .1C .2D .3解析:方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆的条件为a 2+4a 2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23.又a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,∴仅当a =0时,方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,故选B.2.若圆x 2+y 2+2ax -b 2=0的半径为2,则点(a ,b )到原点的距离为( B )A .1B .2 C. 2D .4解析:由半径r =12D 2+E 2-4F =124a 2+4b 2=2,得a 2+b 2=2.∴点(a ,b )到原点的距离d =a 2+b 2=2,故选B.3.(2019·广东珠海四校联考)已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的标准方程为( B )A .(x +1)2+(y -1)2=2B .(x -1)2+(y +1)2=2C .(x -1)2+(y -1)2=2D .(x +1)2+(y +1)2=2解析:由题意设圆心坐标为(a ,-a ),则有|a -(-a )|2=|a -(-a )-4|2,即|a |=|a -2|,解得a =1.故圆心坐标为(1,-1),半径r =22=2,所以圆C 的标准方程为(x -1)2+(y +1)2=2,故选B.4.圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b 的最小值是( D )A .2 3 B.203 C .4D.163解析:由圆x 2+y 2+2x -6y +1=0知,其标准方程为(x +1)2+(y -3)2=9,∵圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,∴该直线经过圆心(-1,3),即-a -3b +3=0,∴a +3b =3(a >0,b >0),∴1a +3b =13(a +3b )⎝⎛⎭⎪⎫1a +3b=13⎝ ⎛⎭⎪⎫1+3a b +3b a +9≥13⎝ ⎛⎭⎪⎫10+2 3a b ·3b a =163, 当且仅当3b a =3ab ,即a =b 时取等号,故选D.5.(2019·河南豫西五校联考)在平面直角坐标系xOy 中,以点(0,1)为圆心且与直线x -by +2b +1=0相切的所有圆中,半径最大的圆的标准方程为( B )A .x 2+(y -1)2=4B .x 2+(y -1)2=2C .x 2+(y -1)2=8D .x 2+(y -1)2=16解析:法一 由题意可得圆心(0,1)到直线x -by +2b +1=0的距离d =|1+b |1+b2=(1+b )21+b 2=1+2b 1+b 2≤ 1+2|b |1+b 2≤2,当且仅当b =1时取等号,所以半径最大的圆的半径r =2,此时圆的标准方程为x 2+(y -1)2=2.法二 直线x -by +2b +1=0过定点P (-1,2),如图.∴圆与直线x -by +2b +1=0相切于点P 时,圆的半径最大,为2,此时圆的标准方程为x 2+(y -1)2=2,故选B.6.(2019·福建三明第一中学月考)若对圆(x -1)2+(y -1)2=1上任意一点P (x ,y ),|3x -4y +a |+|3x -4y -9|的取值与x ,y 无关,则实数a 的取值范围是( D )A .(-∞,-4]B .[-4,6]C .(-∞,-4]∪[6,+∞)D .[6,+∞)解析:设z =|3x -4y +a |+|3x -4y -9|=5⎝⎛⎭⎪⎪⎫|3x -4y +a |9+16+|3x -4y -9|9+16,故|3x -4y +a |+|3x -4y -9|可看作点P 到直线m :3x -4y +a =0与直线l :3x -4y -9=0距离之和的5倍,∵取值与x ,y 无关,∴这个距离之和与P 无关,如图所示,可知直线m 向上平移时,P 点到直线m ,l 间的距离之和均为m ,l 间的距离,即此时与x ,y 的值无关,当直线m 与圆相切时,|3-4+a |9+16=1,化简得|a -1|=5,解得a =6或a =-4(舍去),∴a ≥6,故选D.7.(2019·河南新乡模拟)若圆C :x 2+⎝⎛⎭⎪⎫y +12m 2=n 的圆心为椭圆M :x 2+my 2=1的一个焦点,且圆C 经过M 的另一个焦点,则圆C 的标准方程为 x 2+(y +1)2=4 .解析:∵圆C 的圆心为⎝ ⎛⎭⎪⎫0,-12m , ∴1m -1=12m ,m =12.又圆C 经过M 的另一个焦点, 则圆C 经过点(0,1),从而n =4. 故圆C 的标准方程为x 2+(y +1)2=4.8.(2019·东北三省四校联考)已知圆C :(x -3)2+(y -4)2=1,设点P 是圆C 上的动点.记d =|PB |2+|P A |2,其中A (0,1),B (0,-1),则d 的最大值为 74 .解析:设P (x 0,y 0),d =|PB |2+|P A |2=x 20+(y 0+1)2+x 20+(y 0-1)2=2(x 20+y 20)+2.x 20+y 20为圆上任一点到原点距离的平方, ∴(x 20+y 20)max=(5+1)2=36,∴d max =74.9.设点P 是函数y =-4-(x -1)2图象上的任意一点,点Q 坐标为(2a ,a -3)(a ∈R ),则|PQ |解析:函数y =-4-(x -1)2的图象表示圆(x -1)2+y 2=4在x 轴及下方的部分,令点Q 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =2a ,y =a -3,得y =x 2-3,即x -2y -6=0,作出图象如图所示,由于圆心(1,0)到直线x -2y -6=0的距离d =|1-2×0-6|12+(-2)2=5>2,所以直线x -2y -6=0与圆(x -1)2+y 2=4相离, 因此|PQ |的最小值是5-2.10.(2019·安徽“江南十校”联考)已知圆C 的圆心在直线x +y =0上,圆C 与直线x -y =0相切,且在直线x -y -3=0上截得的弦长为6,则圆C 的方程为 (x -1)2+(y +1)2=2 .解析:解法一:∵所求圆的圆心在直线x +y =0上, ∴设所求圆的圆心为(a ,-a ). 又∵所求圆与直线x -y =0相切, ∴半径r =2|a |2=2|a |.又所求圆在直线x -y -3=0上截得的弦长为6,圆心(a ,-a )到直线x -y -3=0的距离d =|2a -3|2,∴d 2+⎝ ⎛⎭⎪⎫622=r 2,即(2a -3)22+32=2a 2,解得a =1. ∴圆C 的方程为(x -1)2+(y +1)2=2.解法二:设所求圆的方程为(x -a )2+(y -b )2=r 2(r >0),则圆心(a ,b )到直线x -y -3=0的距离d =|a -b -3|2.∴r 2=(a -b -3)22+32, 即2r 2=(a -b -3)2+3.①由于所求圆与直线x -y =0相切,∴(a -b )2=2r 2.②又∵圆心在直线x +y =0上,∴a +b =0.③ 联立①②③,解得⎩⎪⎨⎪⎧a =1,b =-1,r =2,故圆C 的方程为(x -1)2+(y +1)2=2.解法三:设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心为⎝ ⎛⎭⎪⎫-D 2,-E 2,半径r =12D 2+E 2-4F ,∵圆心在直线x +y =0上, ∴-D 2-E2=0,即D +E =0,① 又∵圆C 与直线x -y =0相切, ∴⎪⎪⎪⎪⎪⎪-D 2+E 22=12D 2+E 2-4F ,即(D -E )2=2(D 2+E 2-4F ), ∴D 2+E 2+2DE -8F =0.②又知圆心⎝ ⎛⎭⎪⎫-D2,-E 2到直线x -y -3=0的距离d =⎪⎪⎪⎪⎪⎪-D 2+E 2-32,由已知得d 2+⎝ ⎛⎭⎪⎫622=r 2,∴(D -E +6)2+12=2(D 2+E 2-4F ),③ 联立①②③,解得⎩⎪⎨⎪⎧D =-2,E =2,F =0,故所求圆的方程为x 2+y 2-2x +2y =0,即(x -1)2+(y +1)2=2.11.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程. 解:(1)设P (x ,y ),圆P 的半径为r .由题设y 2+2=r 2,x 2+3=r 2,从而y 2+2=x 2+3. 故P 点的轨迹方程为y 2-x 2=1. (2)设P (x 0,y 0).由已知得|x 0-y 0|2=22.又P 点在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧ |x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧ x 0-y 0=1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=-1.此时,圆P 的半径r = 3.由⎩⎪⎨⎪⎧ x 0-y 0=-1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=1.此时,圆P 的半径r = 3.故圆P 的方程为x 2+(y -1)2=3或x 2+(y +1)2=3.12.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求|MQ |的最大值和最小值;(2)若M (m ,n ),求n -3m +2的最大值和最小值.解:(1)由圆C :x 2+y 2-4x -14y +45=0, 可得(x -2)2+(y -7)2=8,所以圆心C 的坐标为(2,7),半径r =2 2. 又|QC |=(2+2)2+(7-3)2=42>2 2. 所以点Q 在圆C 外,所以|MQ |max =42+22=62,|MQ |min =42-22=2 2.(2)可知n -3m +2表示直线MQ 的斜率,设n -3m +2=k ,则直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0, 因为直线MQ 与圆C 有交点,所以|2k -7+2k +3|1+k 2≤22,可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3.13.已知点P (t ,t ),t ∈R ,点M 是圆x 2+(y -1)2=14上的动点,点N 是圆(x -2)2+y 2=14上的动点,则|PN |-|PM |的最大值是( B )A.5-1 B .2 C .3D. 5解析:易知圆x 2+(y -1)2=14的圆心为A (0,1),圆(x -2)2+y 2=14的圆心为B (2,0),P (t ,t )在直线y =x 上,A (0,1)关于直线y =x 的对称点为A ′(1,0),则|PN |-|PM |≤|PB |+12-⎝ ⎛⎭⎪⎫|P A |-12=|PB |-|P A |+1=|PB |-|P A ′|+1≤|A ′B |+1=2,故选B.14.(2019·厦门模拟)已知两点A (0,-3),B (4,0),若点P 是圆C :x 2+y 2-2y =0上的动点,则△ABP 的面积的最小值为( B )A .6 B.112 C .8D.212解析:x 2+y 2-2y =0可化为x 2+(y -1)2=1,则圆C 为以(0,1)为圆心,1为半径的圆. 如图,过圆心C 向直线AB 作垂线交圆于点P ,连接BP ,AP ,这时△ABP 的面积最小,直线AB 的方程为x 4+y-3=1,即3x -4y -12=0,圆心C 到直线AB 的距离d =165,又|AB |=32+42=5,∴△ABP 的面积的最小值为12×5×⎝ ⎛⎭⎪⎫165-1=112.15.如图,在等腰△ABC 中,已知|AB |=|AC |,B (-1,0),AC 边的中点为D (2,0),则点C 的轨迹所包围的图形的面积为 4π .解析:由已知|AB |=2|AD |,设点A (x ,y ), 则(x +1)2+y 2=4[(x -2)2+y 2],所以点A 的轨迹方程为(x -3)2+y 2=4(y ≠0),设C (x ′,y ′),由AC 边的中点为D (2,0)知A (4-x ′,-y ′), 所以C 的轨迹方程为(4-x ′-3)2+(-y ′)2=4, 即(x -1)2+y 2=4(y ≠0),所以点C 的轨迹所包围的图形面积为4π.16.(2017·全国卷Ⅲ)已知抛物线C :y 2=2x ,过点(2,0)的直线l交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程. 解:(1)证明:设A (x 1,y 1),B (x 2,y 2),l :x =my +2.由⎩⎪⎨⎪⎧x =my +2,y 2=2x可得y 2-2my -4=0,则y 1y 2=-4. 又x 1=y 212,x 2=y 222,故x 1x 2=(y 1y 2)24=4.因此OA 的斜率与OB 的斜率之积为y 1x 1·y 2x 2=-44=-1,所以OA ⊥OB .故坐标原点O 在圆M 上.(2)由(1)可得y 1+y 2=2m ,x 1+x 2=m (y 1+y 2)+4=2m 2+4. 故圆心M 的坐标为(m 2+2,m ),圆M 的半径r =(m 2+2)2+m 2. 由于圆M 过点P (4,-2),因此AP →·BP →=0, 故(x 1-4)(x 2-4)+(y 1+2)(y 2+2)=0, 即x 1x 2-4(x 1+x 2)+y 1y 2+2(y 1+y 2)+20=0. 由(1)可得y 1y 2=-4,x 1x 2=4.所以2m 2-m -1=0,解得m =1或m =-12.当m =1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M 的半径为10,圆M 的方程为(x -3)2+(y -1)2=10.当m =-12时,直线l 的方程为2x +y -4=0,圆心M 的坐标为⎝ ⎛⎭⎪⎫94,-12,圆M 的半径为854,圆M 的方程为⎝ ⎛⎭⎪⎫x -942+⎝ ⎛⎭⎪⎫y +122=8516.。
第5节函数y=Asin(ωx+ )的图象及应用【选题明细表】基础巩固(建议用时:25分钟)1.要得到函数y=sin(4x-)的图象,只需将函数y=sin 4x的图象( B )(A)向左平移个单位(B)向右平移个单位(C)向左平移个单位 (D)向右平移个单位解析:sin(4x-)=sin[4(x-)],故只需将函数y=sin 4x的图象向右平移个单位即可得到函数y=sin(4x-)的图象.2.将函数f(x)=sin ωx(其中ω>0)的图象向右平移个单位长度,所得图象经过点(,0),则ω的最小值是( D )(A)(B)1 (C)(D)2解析:函数f(x)=sin ωx的图象向右平移个单位长度得函数f(x)=sin ω(x-)的图象.因为由题意得sin ω(-)=0,所以=kπ(k∈Z),所以ω=2k(k∈Z).又因为ω>0,所以ω的最小值为2.故选D.3.(2018·四川广元模拟)若将函数y=sin 2x+cos 2x的图象向左平移个单位长度,则平移后图象的对称轴方程为( A )(A)x=-(k∈Z) (B)x=+(k∈Z)(C)x=(k∈Z) (D)x=+(k∈Z)解析:将函数y=sin 2x+cos 2x=2sin(2x+)的图象向左平移个单位长度,可得y=2sin(2x++)=2sin(2x+)的图象,令2x+=kπ+,可得x=-,k∈Z,则平移后图象的对称轴方程为x=-,k∈Z,故选A.4.(2018·陕西榆林一模)已知曲线C1:y=sin x,C2:y=cos(x-),则下列说法正确的是( B )(A)把C1上各点横坐标伸长到原来的2倍,再把得到的曲线向右平移,得到曲线C2(B)把C1上各点横坐标伸长到原来的2倍,再把得到的曲线向右平移,得到曲线C2(C)把C1向右平移,再把得到的曲线上各点横坐标缩短到原来的,得到曲线C2(D)把C1向右平移,再把得到的曲线上各点横坐标缩短到原来的,得到曲线C2解析:根据曲线C1:y=sin x,C2:y=cos(x-)=sin(x-),把C1上各点横坐标伸长到原来的2倍,可得y=sin (x)的图象;再把得到的曲线向右平移,得到曲线C2:y=sin (x-) 的图象,故选B.5.将函数f(x)=2cos2x-2sin xcos x-的图象向左平移t(t>0)个单位,所得图象对应的函数为奇函数,则t的最小值为( D )(A) (B)(C)(D)解析:将函数f(x)=2cos2x-2sin xcos x-=cos 2x-sin 2x=2cos(2x+)的图象向左平移t(t>0)个单位,可得y=2cos(2x+2t+)的图象.由于所得图象对应的函数为奇函数,则2t+=kπ+,k∈Z,则t 的最小值为,故选D.6.(2018·江西南昌模拟)将函数y=sin(x-)的图象上所有的点向右平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得图象的解析式为( C )(A)y=sin(2x-) (B)y=sin(+)(C)y=sin(-) (D)y=sin(-)解析:函数y=sin(x-)的图象上所有的点向右平移个单位长度,得y=sin [(x-)-]=sin(x-)的图象,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),得y=sin (x-)的图象;所以函数的解析式为y=sin(-).故选C.7.已知函数f(x)=2sin ωx在区间[-,]上的最小值为-2,则ω的取值范围是( D )(A)(-∞,- ]∪[6,+∞)(B)(-∞,-]∪[,+∞)(C)(-∞,-2]∪[6,+∞)(D)(-∞,-2]∪[,+∞)解析:法一当ω>0时,-ω≤ωx≤ω,由题意知-ω≤-,即ω≥;当ω<0时,ω≤ωx≤-ω,由题意知ω≤-,所以ω≤-2.综上可知,ω的取值范围是(-∞,-2]∪[,+∞).故选D.法二ω=时,f(x)在[-,]上单调递增,f(x)的最小值为f(-)=-2,符合题意,排除A,C.ω=-2时,f(x)在[-,]上最小值为-2,符合题意,排除B.故选D.8.设k∈R,则函数f(x)=sin(kx+)+k的部分图象不可能是( D )解析:k=0时,y=,图象为A,A正确;k=2时,f(x)=sin(2x+)+2,图象为B,B正确;k=-1时,f(x)=sin(-x+)-1,图象为C,C正确;k=1时,f(x)=sin(x+)+1,x∈(0,),函数单调递增,D不正确.故选D.9.(2018·北京朝阳区模拟)游乐场中的摩天轮按逆时针方向匀速旋转,每8 min旋转一周,其最低点M距地面2 m,摩天轮的中心为O,半径为10 m.若人从M点处登上摩天轮,运动t min后位于点P处,此时相对于地面的高度为h m.则高度h(单位:m)与时间t(单位:min)的函数解析式h(t)= ;在摩天轮转动的第一圈内,在min的时间里,此人相对于地面的高度不超过17 m.解析:由题意可设:h(t)=Asin (ωt+ )+k,A,ω>0.则-A+k=2,A+k=22,=8,解得A=10,k=12,ω=.h(0)=10sin ϕ+12=2.取ϕ=-.所以h(t)=10sin(t-)+12=-10cos t+12.由-10cos t+12≤17.可得cos t≥-,0≤t≤8,解得0≤t≤,或≤t≤8.答案:-10cos t+12;[0,]∪[,8].能力提升(建议用时:25分钟)10.(2018·福建三明模拟)已知函数f(x)=+x2+2的最小值为a,将函数g(x)=sin(x+)(x∈R)的图象向左平移个单位长度得到函数h(x)的图象,则下面结论正确的是( C )(A)函数h(x)是奇函数(B)函数h(x)在区间[-π,π]上是增函数(C)函数h(x)图象关于(2π,0)对称(D)函数h(x)图象关于直线x=2π对称解析:因为f(x)=+x2+2≥2+2=4,当且仅当=x2,即x=±1时,上式“=”成立.所以a=4.则g(x)=sin (x+).将函数g(x)的图象向左平移个单位长度,得到函数h(x)的图象,则h(x)=sin[(x+π)+]=sin(x+)=cos x. 因为h(2π)=cos=0,所以函数h(x)图象关于(2π,0)对称.故选C.11.(2018·湖南岳阳二模)若将函数y=sin 2x的图象向左平移个单位长度,则平移后图象的对称轴方程为( D )(A)x=-(k∈Z)(B)x=+(k∈Z)(C)x=(k∈Z)(D)x=+(k∈Z)解析:将函数y=sin 2x的图象向左平移个单位长度,则平移后图象对应的函数解析式为y=sin(2x+),令2x+=kπ+,求得x=+,k∈Z,故所得图象的对称轴方程为x=+,k∈Z,故选D.12.若函数f(x)=3sin ωx+cos ωx(x∈R),又f(α)=-2,f(β)=0,且|α-β|的最小值为,则正数ω的值是( A )(A)2 (B)(C)(D)解析:函数f(x)=3sin ωx+cos ωx(x∈R)=2(sin ωx+cos ωx)=2sin(ωx+),又f(α)=-2,f(β)=0,且|α-β|的最小值为,所以T=4×=π, 所以正数ω==2.故选A.13.(2018·沈阳二模)将函数f(x)=cos x(2sin x-cos x)+sin 2x的图象向左平移个单位长度后得到函数g(x),则g(x)具有性质( A )(A)在(0,)上单调递增,为奇函数(B)周期为π,图象关于(,0)对称(C)最大值为,图象关于直线x=对称(D)在(-,0)上单调递增,为偶函数解析:函数f(x)=cos x(2sin x-cos x)+sin2x=2sin xcos x-cos2x+sin2x=sin 2x-cos 2x=sin(2x-);f(x)的图象向左平移个单位长度,得y=f(x+)=sin[2(x+)-]=sin 2x的图象;所以函数g(x)=sin 2x,所以g(x)在(0,)上单调递增,为奇函数,A正确;g ()=sin =≠0,函数图象不关于(,0)对称,B错误;g()=sin π=0,函数图象不关于x=对称,C错误;x∈(-,0)时,2x∈(-π,0),所以g(x)在(-,0)上不是单调递增函数,D错误.故选A.14.(2018·西宁二模)已知函数y=Asin(x+ )(A>0)在一个周期内的图象如图所示,其中P,Q分别是这段图象的最高点和最低点,M,N是图象与x轴的交点,且∠PMQ=90°,则A的值为( C )(A)2 (B)1 (C) (D)解析:过Q,P分别作x轴的垂线于B,C,如图所示;函数y的周期为T==4,所以MN=2,CN=1,又∠PMQ=90°,所以PQ=2MN=4,即PN=2,则PC===,即A=.故选C.15.已知函数f(x)=Asin(ωx+ϕ),x∈R(其中A>0,ω>0,-<ϕ<),其部分图象如图所示.(1)求f(x)的解析式;(2)求函数g(x)=f(x+)·f(x-)在区间[0,]上的最大值及相应的x值.解:(1)由题图可知,A=1,=,所以T=2π,所以ω=1,又f()=sin(+ϕ)=1,且-<ϕ<,所以ϕ=,所以f(x)=sin(x+).(2)已求得f(x)=sin(x+),所以g(x)=f(x+)·f(x-)=sin(x++)·sin(x+-)=sin(x+)sin x=cos x·sin x=sin 2x.因为x∈[0,],所以2x∈[0,π],sin 2x∈[0,1], 故sin 2x∈[0,],当x=时,g(x)取得最大值.。
第3节三角恒等变换【选题明细表】基础巩固(建议用时:25分钟)1.若cos=,则sin 2α等于( D )(A) (B)(C)- (D)-解析:cos=(cos α+sin α)=⇒cos α+sin α=⇒1+sin 2α=,所以sin 2α=-.故选D.2.若tan α=,则cos2α+2sin 2α等于( A )(A) (B) (C)1 (D)解析:当tan α=时,原式=cos2α+4sin αcos α====,故选A.3.已知在△ABC中,3sin A+4cos B=6,3cos A+4sin B=1,则角C的大小为( A )(A)(B) (C)或 (D)或解析:已知式平方和得9+16+24sin(A+B)=37,因而sin(A+B)=.在△ABC中,sin C=sin[π-(A+B)]=sin(A+B)=,因而C=或,又3cos A+4sin B=1化为4sin B=1-3cos A>0,所以cos A<<,则A>,故C=,故选A.4.(2018·安阳二模)已知α为第二象限角,且sin 2α=-,则cos α-sin α的值为( B )(A)(B)- (C)(D)-解析:因为sin 2α=2sin αcos α=-,即1-2sin αcos α=,所以(sin α-cos α)2=,又α为第二象限角,所以cos α<sin α,则cos α-sin α=-.故选B.5.(2018·湖北黄冈二模)若cos(α-)=-,则cos(α-)+cos α等于( C )(A)- (B)± (C)-1 (D)±1解析:由cos(α-)+cos α=cos α+sin α+cos α=cos(α-)= -1,故选C.6.已知向量m=(sin ,1),n=(cos ,cos2),f(x)=m·n,若f(x)=1,则cos(x+)的值为( A )(A) (B) (C)-(D)-解析:因为f(x)=m·n=sin cos +cos2=sin +cos +=sin(+)+,而f(x)=1,所以sin(+)=,所以cos(x+)=cos 2(+)=1-2sin2(+)=.故选A.7.已知α,β为锐角,且cos(α+β)=,sin α=,则cos β的值为( A )(A) (B) (C) (D)解析:根据题意,α,β为锐角,且sin α=,则cos α=,若cos(α+β)=,则α+β也为锐角,则sin(α+β)=,则cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=×+×=,故选A.8.(2018·昆明质检)已知0<θ<,-<φ<0,cos(θ+)=,cos(-)=,则cos(θ+)= .解析:因为0<θ<,-<φ<0,所以<θ+<,<-<,又cos(θ+)=, cos(-)=,所以sin(θ+)=,sin(-)=,则cos(θ+)=cos[(θ+ )-(-)]=.答案:9. 如图,☉O与x轴的正半轴的交点为A,点B,C在☉O上,且B(,-),点C在第一象限,∠AOC=α,BC=1,则cos(-α)= .解析:由B(,-),得OB=OC=1,又BC=1,所以∠BOC=,由三角函数的定义,得sin∠AOB=,cos∠AOB=,所以sin α=sin(-∠AOB)=sin ·cos∠AOB-cos sin∠AOB=×-×=,同理cos α=,所以cos(-α)=cos cos α+sin ·sin α=-×+×=-.答案:-能力提升(建议用时:25分钟)10.已知在△ABC中,sin Asin B=cos2,则下列结论一定成立的是( A )(A)A=B (B)A=C(C)B=C (D)A=B=C解析:因为sin Asin B=cos2==,所以2sin Asin B=1-cos Acos B+sin Asin B,所以cos(A-B)=1,又0<A<π,0<B<π,所以-π< A-B<π,所以A=B.故选A.11.若a=(sin 56°-cos 56°),b=cos 50°cos 128°+cos 40°cos 38°,c=,d=(cos 80°-2cos250°+1),则a,b,c,d大小关系为( B )(A)a>b>c>d (B)b>a>d>c(C)d>a>b>c (D)c>a>d>b解析:a=(sin 56°-cos 56°)=sin(56°-45°)=sin 11°,b=cos 50°cos 128°+cos 40°cos 38°=sin 50°cos 38°- cos 50°sin 38°=sin 12°,c==cos 81°=sin 9°,d=(cos 80°-2cos250°+1)=(cos 80°-cos 100°)=sin 10°.得b>a>d>c.故选B.12.(2018·岳阳质检)若tan cos=sin-msin,则实数m的值为( A )(A)2(B)(C)2 (D)3解析:由tan cos=sin-msin,可得sin cos=cos sin-msin cos⇔sin(-)=-msin cos⇔2sin=msin⇔m=2.故选A.13.(2018·洛阳二模)已知tan(α+)=,且α为第二象限角,若β=,则sin(α-2β)cos 2β-cos(α-2β)sin 2β等于( D )(A)- (B)(C)- (D)解析:tan(α+)==,所以tan α=-,又α为第二象限角,所以cos α=-,sin(α-2β)cos 2β-cos(α-2β)sin 2β=sin(α-4β)= sin(α-)=-cos α=,故选D.14.已知sin α=,cos(α+β)=-,若α,β是锐角,则β= .解析:sin α=,cos(α+β)=-,α,β是锐角,则cos α=,sin(α+β )=, 所以cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β) sin α=,所以β=.答案:15.(2018·长春二模)已知关于x 的方程2x 2-(+1)x+m=0的两个根为sin θ和cos θ,θ∈(0,2π),求: (1)+的值;(2)m 的值;(3)方程的两根及θ的值.解:(1)+=+==sin θ+cos θ=.(2)将①式两边平方得1+2sin θcos θ=. 所以sin θcos θ=.由②式得=,所以m=.(3)由(2)可知原方程变为2x2-(+1)x+=0,解得x1=,x2=.所以或又θ∈(0,2π),所以θ=或θ=.。
2020届高考理科数学一轮复习要点+题型解析导数及其应用一、导数的运算问题【要点解析】1.基本初等函数的导数公式表2.导数的四则运算法则设f(x),g(x)是可导的,则(1)(f(x)±g(x))′=f′(x)±g′(x);(2)[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x);(3)'⎥⎦⎤⎢⎣⎡)()(xgxf=g(x)f′(x)-f(x)g′(x)g2(x)(g(x)≠0).(g(x)≠0).3.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′·u x′,即y 对x的导数等于y对u的导数与u对x的导数的乘积.【题型解析】【例1】.f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A .e 2 B .1 C .ln 2D .e解析:选B f ′(x )=2 018+ln x +x ×1x =2 019+ln x ,故由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1.【例2】.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)·2x +x 2,则f ′(2)=( ) A.12-8ln 21-2ln 2 B.21-2ln 2 C.41-2ln 2D .-2【解析】:选C 因为f ′(x )=f ′(1)·2x ln 2+2x ,所以f ′(1)=f ′(1)·2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2·2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2.【例3】.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=________. 【解析】:f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2, ∴f ′(-1)=-2. 【答案】:-2二、导数的几何意义【要点解析】函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).(1)斜率:αtan )(0='=x f k(2)切点:())(00x f x ',在切线上,也在曲线上。
第1节集合【选题明细表】基础巩固(时间:30分钟)1.(2018·全国Ⅰ卷)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B等于( A )(A){0,2} (B){1,2}(C){0} (D){-2,-1,0,1,2}解析:A∩B={0,2}∩{-2,-1,0,1,2}={0,2}.故选A.2.已知集合A={x|lg x>0},B={x|x≤1},则( B )(A)A∩B≠∅(B)A∪B=R(C)B⊆A (D)A⊆B解析:由B={x|x≤1},且A={x|lg x>0}=(1,+∞),所以A∪B=R.3.(2018·西安一模改编)已知集合M={-1,0,1},N={x|x=ab,a,b∈M,且a≠b},则集合M与集合N的关系是( B )(A)M=N (B)N M(C)M⊆N (D)M∩N=∅解析:因为M={-1,0,1},N={x|x=ab,a,b∈M,且a≠b},所以N={-1,0},于是N M.4.若x∈A,则∈A,就称A是伙伴关系集合,集合M={-1,0,,2,3}的所有非空子集中具有伙伴关系的集合的个数是( B )(A)1 (B)3 (C)7 (D)31解析:具有伙伴关系的元素组是-1,,2,所以具有伙伴关系的集合有3个:{-1},{,2},{-1,,2}.5.(2018·石家庄模拟)设全集U={x|x∈N*,x<6},集合A={1,3},B= {3,5},则∁U(A∪B)等于( D )(A){1,4} (B){1,5}(C){2,5} (D){2,4}解析:由题意得A∪B={1,3}∪{3,5}={1,3,5}.又U={1,2,3,4,5},所以∁U(A∪B)={2,4}.6.试分别用描述法、列举法两种方法表示“所有不小于3,且不大于200的奇数”所构成的集合.(1)描述法 ;(2)列举法 . 答案:(1){x|x=2n+1,n∈N,1≤n<100}(2){3,5,7,9, (199)7.(2017·江苏卷)已知集合A={1,2},B={a,a2+3},若A∩B={1},则实数a的值为.解析:因为A∩B={1},A={1,2},所以1∈B且2∉B.若a=1,则a2+3=4,符合题意.又a2+3≥3≠1,故a=1.答案:18.(2018·成都检测)已知集合A={x|x2-2 018x-2 019≤0},B={x|x< m+1},若A⊆B,则实数m的取值范围是.解析:由x2-2 018x-2 019≤0,得A=[-1,2 019],又B={x|x<m+1},且A⊆B.所以m+1>2 019,则m>2 018.答案:(2 018,+∞)9.集合A={x|x<0},B={x|y=lg[x(x+1)]},若A-B={x|x∈A,且x∉B},则A-B= .解析:由x(x+1)>0,得x<-1或x>0.所以B=(-∞,-1)∪(0,+∞),所以A-B=[-1,0).答案:[-1,0)能力提升(时间:15分钟)10.(2016·全国Ⅲ卷改编)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则(∁R S)∩T等于( C )(A)[2,3](B)(-∞,-2)∪[3,+∞)(C)(2,3)(D)(0,+∞)解析:易知S=(-∞,2]∪[3,+∞),所以∁R S=(2,3),因此(∁R S)∩T= (2,3).11.设集合A={(x,y)|x+y=1},B={(x,y)|x-y=3},则满足M⊆(A∩B)的集合M的个数是( C )(A)0 (B)1 (C)2 (D)3解析:由得所以A∩B={(2,-1)}.由M⊆(A∩B),知M= 或M={(2,-1)}.12.(2018·江西省红色七校联考)如图,设全集U=R,集合A,B分别用椭圆内图形表示,若集合A={x|x2<2x},B={x|y=ln(1-x)},则阴影部分图形表示的集合为( D )(A){x|x≤1} (B){x|x≥1}(C){x|0<x≤1} (D){x|1≤x<2}解析:因为A={x|x2<2x}={x|0<x<2},B={x|y=ln(1-x)}={x|1-x>0}={x|x<1},所以∁U B={x|x≥1},则阴影部分为A∩(∁U B)={x|0<x<2}∩{x|x≥1}={x|1≤x<2}.故选D.13.若集合A={-1,1},B={x|mx=1},且A∪B=A,则m的值为( D )(A)1 (B)-1(C)1或-1 (D)1或-1或0解析:由A∪B=A,可知B A,故B={1}或{-1}或 ,此时m=1或-1或0.故选D.14.(2017·山东卷改编)设函数y=的定义域为A,函数y=ln(1-x)的定义域为B,全集U=R,则∁U(A∩B)= .解析:因为4-x2≥0,所以-2≤x≤2,所以A=[-2,2].因为1-x>0,所以x<1,所以B=(-∞,1),因此A∩B=[-2,1),于是∁U(A∩B)=(-∞,-2)∪[1,+∞).答案:(-∞,-2)∪[1,+∞)第2节命题及其关系、充分条件与必要条件【选题明细表】基础巩固(时间:30分钟)1.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是( D )(A)若方程x2+x-m=0有实根,则m>0(B)若方程x2+x-m=0有实根,则m≤0(C)若方程x2+x-m=0没有实根,则m>0(D)若方程x2+x-m=0没有实根,则m≤0解析:根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.2.(2018·河南八市联考)命题“若a>b,则a+c>b+c”的否命题是( A )(A)若a≤b,则a+c≤b+c(B)若a+c≤b+c,则a≤b(C)若a+c>b+c,则a>b(D)若a>b,则a+c≤b+c解析:将条件、结论都否定.命题的否命题是“若a≤b,则a+c≤b+c”.3.(2018·山东省日照市模拟)命题p:sin 2x=1,命题q:tan x=1,则p 是q的( C )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件解析:由sin 2x=1,得2x=+2kπ,k∈Z,则x=+kπ,k∈Z,由tan x=1,得x=+kπ,k∈Z,所以p是q的充要条件.故选C.4.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b 相交”是“平面α和平面β相交”的( A )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件解析:由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.5.(2018·云南玉溪模拟)设a>0且a≠1,则“函数f(x)=a x在R上是减函数”是“函数g(x)=(2-a)x3在R上是增函数”的( A )(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件解析:若函数f(x)=a x在R上是减函数,则a∈(0,1),若函数g(x)=(2-a)x3在R上是增函数,则a∈(0,2).则“函数f(x)=a x在R上是减函数”是“函数g(x)=(2-a)x3在R上是增函数”的充分不必要条件.6.(2018·江西九江十校联考)已知函数f(x)=则“x=0”是“f(x)=1”的( B )(A)充要条件(B)充分不必要条件(C)必要不充分条件(D)既不充分也不必要条件解析:若x=0,则f(0)=e0=1;若f(x)=1,则e x=1或ln(-x)=1,解得x=0或x=-e.故“x=0”是“f(x)=1”的充分不必要条件.故选B.7.(2018·北京卷)能说明“若a>b,则<”为假命题的一组a,b的值依次为.解析:只要保证a为正b为负即可满足要求.当a>0>b时,>0>.答案:1,-1(答案不唯一)8.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是.解析:①原命题的否命题为“若a≤b,则a2≤b2”,错误.②原命题的逆命题为“若x,y互为相反数,则x+y=0”,正确.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.答案:②③9.直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的充要条件是.解析:直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点等价于<,解之得-1<k<3.答案:-1<k<3能力提升(时间:15分钟)10.(2018·天津卷)设x∈R,则“|x-|<”是“x3<1”的( A )(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件解析:由“|x-|<”等价于0<x<1,而x3<1,即x<1,所以“|x-|<”是“x3<1”的充分而不必要条件.故选A.11.已知命题p:x2+2x-3>0;命题q:x>a,且﹁q的一个充分不必要条件是﹁p,则a的取值范围是( A )(A)[1,+∞) (B)(-∞,1](C)[-1,+∞) (D)(-∞,-3]解析:由x2+2x-3>0,得x<-3或x>1,由﹁q的一个充分不必要条件是﹁p,可知﹁p是﹁q的充分不必要条件,等价于q是p的充分不必要条件,故a≥1.12.函数f(x)=log a x-x+2(a>0且a≠1)有且仅有两个零点的充要条件是 .解析:若函数f(x)=log a x-x+2(a>0,且a≠1)有两个零点,即函数y=log a x的图象与直线y=x-2有两个交点,结合图象易知,此时a>1.可以检验,当a>1时,函数f(x)=log a x-x+2(a>0,且a≠1)有两个零点, 所以函数f(x)=log a x-x+2(a>0,且a≠1)有且仅有两个零点的充要条件是a>1.答案:a>113.(2018·湖南十校联考)已知数列{a n}的前n项和S n=Aq n+B(q≠0),则“A=-B”是“数列{a n}为等比数列”的条件.解析:若A=B=0,则S n=0,数列{a n}不是等比数列.如果{a n}是等比数列,由a1=S1=Aq+B得a2=S2-a1=Aq2-Aq,a3=S3-S2=Aq3-Aq2,由a1a3=,从而可得A=-B,故“A=-B”是“数列{a n}为等比数列”的必要不充分条件.答案:必要不充分14.(2018·山西五校联考)已知p:(x-m)2>3(x-m)是q:x2+3x-4<0的必要不充分条件,则实数m的取值范围为.解析:p对应的集合A={x|x<m或x>m+3},q对应的集合B={x|-4<x<1}.由p是q的必要不充分条件可知B A,所以m≥1或m+3≤-4,即m≥1或m≤-7.答案:(-∞,-7]∪[1,+∞)第3节简单的逻辑联结词、全称量词与存在量词【选题明细表】基础巩固(时间:30分钟)1.(2018·咸阳模拟)命题p:∀x<0,x2≥2x,则命题﹁p为( C )(A)∃x0<0,≥(B)∃x0≥0,<(C)∃x0<0,< (D)∃x0≥0,≥解析:全称命题的否定,应先改写量词,再否定结论,所以﹁p:∃x0<0,<.2.(2018·郑州调研)命题p:函数y=log2(x-2)的单调增区间是[1,+∞),命题q:函数y=的值域为(0,1).下列命题是真命题的为( B )(A)p∧q (B)p∨q(C)p∧(﹁q) (D)﹁q解析:由于y=log2(x-2)在(2,+∞)上是增函数,所以命题p是假命题.由3x>0,得3x+1>1,所以0<<1,所以函数y=的值域为(0,1),故命题q为真命题.所以p∧q为假命题,p∨q为真命题,p∧(﹁q)为假命题,﹁q为假命题.3.(2018·贵阳调研)下列命题中的假命题是( C )(A)∃x0∈R,lg x0=1 (B)∃x0∈R,sin x0=0(C)∀x∈R,x3>0 (D)∀x∈R,2x>0解析:当x=10时,lg 10=1,则A为真命题;当x=0时,sin 0=0,则B为真命题;当x<0时,x3<0,则C为假命题;由指数函数的性质知,∀x∈R,2x>0,则D为真命题.4.第十三届全运会于2017年8月27日在天津市隆重开幕,在体操预赛中,有甲、乙两位队员参加.设命题p是“甲落地站稳”,q是“乙落地站稳”,则命题“至少有一位队员落地没有站稳”可表示为( A ) (A)(﹁p)∨(﹁q) (B)p∨(﹁q)(C)(﹁p)∧(﹁q) (D)p∨q解析:命题“至少有一位队员落地没有站稳”包含以下三种情况:“甲、乙落地均没有站稳”“甲落地没站稳,乙落地站稳”“乙落地没有站稳,甲落地站稳”,故可表示为(﹁p)∨(﹁q).或者,命题“至少有一位队员落地没有站稳”等价于命题“甲、乙均落地站稳”的否定,即“p∧q”的否定.选A.5.(2018·河北省石家庄二中模拟)已知命题p:∃x0∈(0,+∞), ln x0=1-x0,则命题p的真假及﹁p依次为( B )(A)真;∃x0∈(0,+∞),ln x0≠1-x0(B)真;∀x∈(0,+∞),ln x≠1-x(C)假;∀x∈(0,+∞),ln x≠1-x(D)假;∃x0∈(0,+∞),ln x0≠1-x0解析:当x0=1时,ln x0=1-x0=0,故命题p为真命题;因为p:∃x0∈(0,+∞),ln x0=1-x0,所以﹁p:∀x∈(0,+∞),ln x≠1-x.6.命题p“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是( D )(A)∀x∈R,∃n∈N*,使得n<x2(B)∀x∈R,∀n∈N*,使得n<x2(C)∃x∈R,∃n∈N*,使得n<x2(D)∃x0∈R,∀n∈N*,使得n<解析:改变量词,否定结论.所以﹁p应为∃x0∈R,∀n∈N*,使得n<.7.(2018·河北“五个一”名校联考)命题“∃x0∈R,1<f(x0)≤2”的否定是.答案:∀x∈R,f(x)≤1或f(x)>28.若命题“∃x0∈R,使得+(a-1)x0+1<0”是真命题,则实数a的取值范围是.解析:因为“∃x0∈R,使得+(a-1)x0+1<0”是真命题,所以Δ=(a-1)2-4>0,即(a-1)2>4,所以a-1>2或a-1<-2,所以a>3或a<-1.答案:(-∞,-1)∪(3,+∞)9.已知命题p:x2+2x-3>0;命题q:>1,若“(﹁q)∧p”为真,则x的取值范围是.解析:因为“(﹁q)∧p”为真,即q假p真,又q为真命题时,<0,即2<x<3,所以q为假命题时,有x≥3或x≤2.p为真命题时,由x2+2x-3>0,解得x>1或x<-3.由得x≥3或1<x≤2或x<-3,所以x的取值范围是{x|x≥3或1<x≤2或x<-3}.答案:(-∞,-3)∪(1,2]∪[3,+∞)能力提升(时间:15分钟)10.下列命题中,真命题是( D )(A)∃x0∈R,使得≤0(B)sin2x+≥3(x≠kπ,k∈Z)(C)∀x∈R,2x>x2(D)a>1,b>1是ab>1的充分不必要条件解析:对∀x∈R都有e x>0,所以A错误;当x=-时,sin2x+=-1<3,所以B错误;当x=2时,2x=x2,所以C错误;a>1,b>1⇒ab>1,而当a=b=-2时,ab>1成立,a>1,b>1不成立,所以D 正确.11.(2018·北京朝阳区模拟)已知函数f(x)=a2x-2a+1.若命题“∀x∈(0,1),f(x)≠0”是假命题,则实数a的取值范围是( D ) (A)(,1) (B)(1,+∞)(C)(,+∞) (D)(,1)∪(1,+∞)解析:因为函数f(x)=a2x-2a+1,命题“∀x∈(0,1),f(x)≠0”是假命题,所以原命题的否定“∃x0∈(0,1),使f(x0)=0”是真命题,所以f(1)f(0)<0,即(a2-2a+1)(-2a+1)<0,所以(a-1)2(2a-1)>0,解得a>,且a≠1.所以实数a的取值范围是(,1)∪(1,+∞).12.(2018·江西红色七校联考)已知函数f(x)=给出下列两个命题:命题p:∃m∈(-∞,0),方程f(x)=0有解,命题q:若m=,则f(f(-1))=0.那么,下列命题为真命题的是( B )(A)p∧q (B)(﹁p)∧q(C)p∧(﹁q) (D)(﹁p)∧(﹁q)解析:因为3x>0,当m<0时,m-x2<0,所以命题p为假命题;当m=时,因为f(-1)=3-1=,所以f(f(-1))=f()=-()2=0,所以命题q为真命题,逐项检验可知,只有(﹁p)∧q为真命题.13.(2018·广东汕头一模)已知命题p:关于x的方程x2+ax+1=0没有实根;命题q:∀x>0,2x-a>0.若“﹁p”和“p∧q”都是假命题,则实数a的取值范围是( C )(A)(-∞,-2)∪(1,+∞) (B)(-2,1](C)(1,2) (D)(1,+∞)解析:因为“﹁p”和“p∧q”都是假命题,所以p真,q假.由p真,得Δ=a2-4<0,解之得-2<a<2.∀x>0,2x-a>0等价于a<2x恒成立,则a≤1.所以q假时,a>1.由得1<a<2,则a的取值范围是(1,2).14.(2018·郑州质量预测)已知函数f(x)=x+,g(x)=2x+a,若∀x1∈[,1],∃x2∈[2,3],使得f(x1)≤g(x2),则实数a的取值范围是.解析:依题意知f(x)max≤g(x)max.因为f(x)=x+在[,1]上是减函数,所以f(x)max=f()=.又g(x)=2x+a在[2,3]上是增函数,所以g(x)max=g(3)=8+a,因此≤8+a,则a≥.答案:[,+∞)第1节函数及其表示【选题明细表】基础巩固(时间:30分钟)1.函数g(x)=+log2(6-x)的定义域是( D )(A){x|x>6} (B){x|-3<x<6}(C){x|x>-3} (D){x|-3≤x<6}解析:由解得-3≤x<6,故函数的定义域为{x|-3≤x<6}.故选D.2.设f(x)=则f(f(-2))等于( C )(A)-1 (B) (C) (D)解析:因为-2<0,所以f(-2)=2-2=>0,所以f(f(-2))=f()=1-=1-=.故选C.3.如果f()=,则当x≠0且x≠1时,f(x)等于( B )(A)(x≠0且x≠1) (B)(x≠0且x≠1)(C)(x≠0且x≠1) (D)-1(x≠0且x≠1)解析:令t=,t≠0,则x=,则f()=可化为f(t)==(t≠1),所以f(x)=(x≠0,x≠1).故选B.4.(2016·全国Ⅱ卷)下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是( D )(A)y=x (B)y=lg x(C)y=2x(D)y=解析:由y=10lg x定义域值域均为(0,+∞),与D符合.故选D.5.下列函数中,与y=x相同的函数是( B )(A)y=(B)y=lg 10x(C)y=(D)y=()2+1解析:对于A,与函数y=x的对应关系不同;对于B,与函数y=x的定义域相同,对应关系也相同,是同一函数;对于C,与函数y=x的定义域不同;对于D,与函数y=x的定义域不同.故选B.6.(2018·西安联考)已知函数f(x)=-x2+4x,x∈[m,5]的值域是[-5,4],则实数m的取值范围是( C )(A)(-∞,-1) (B)(-1,2](C)[-1,2] (D)[2,5]解析:因为f(x)=-x2+4x=-(x-2)2+4,所以当x=2时,f(2)=4,由f(x)=-x2+4x=-5,解得x=5或x=-1,所以要使函数在[m,5]的值域是[-5,4],则-1≤m≤2,故选C.7.(2018·石家庄质检)设函数f(x)=若f(f())=2,则实数a为( D )(A)- (B)- (C)(D)解析:易得f()=2×+a=+a.当+a<1时,f(f())=f(+a)=3+3a,所以3+3a=2,a=-,不满足+a<1,舍去.当+a≥1,即a≥-时,f(f())=log2(+a)=2,解得a=.故选D.8.(2018·西安铁中检测)已知函数f(2x)的定义域为[-1,1],则函数y=f(log2x)的定义域为.解析:由-1≤x≤1,知≤2x≤2,所以在函数y=f(log2x)中,有≤log2x≤2,因此≤x≤4,即y=f(log2x)的定义域为[,4].答案:[,4]能力提升(时间:15分钟)9.已知函数f(x)=且f(a)=-3,则f(6-a)等于( A )(A)- (B)- (C)- (D)-解析:当a≤1时,f(a)=2a-1-2=-3,即2a-1=-1,不成立,舍去;当a>1时,f(a)=-log2(a+1)=-3,即log2(a+1)=3,解得a=7,此时f(6-a)=f(-1)=2-2-2=-.故选A.10.已知函数f(x)=则f(x)的值域是( B )(A)[1,+∞) (B)[0,+∞)(C)(1,+∞) (D)[0,1)∪(1,+∞)解析:由f(x)=知当x≤1时,x2≥0;当x>1时,x+-3≥2-3=4-3=1,当且仅当x=,即x=2时取“=”,取并集得f(x)的值域是[0,+∞).故选B.11.已知f(x)是一次函数,且f[f(x)]=x+2,则 f(x)等于( A )(A)x+1 (B)2x-1(C)-x+1 (D)x+1或-x-1解析:设f(x)=kx+b(k≠0),又f[f(x)]=x+2,得k(kx+b)+b=x+2,即k2x+kb+b=x+2.所以k2=1,且kb+b=2,解得k=b=1,则f(x)=x+1.故选A.12.(2018·河南八市联合检测)设函数f(x)=若对任意的a∈R都有f(f(a))=2f(a)成立,则λ的取值范围是( C )(A)(0,2] (B)[0,2](C)[2,+∞) (D)(-∞,2)解析:当a≥1时,2a≥2,所以f(f(a))=f(2a)==2f(a)恒成立,当a<1时,f(f(a))=f(-a+λ)=2f(a)=2λ-a,所以λ-a≥1,即λ≥a+1恒成立,由题意,λ≥(a+1)max,λ≥2,综上,λ的取值范围是[2,+∞).故选C.13.(2018·江西上饶质检)已知函数f(x)=若a[f(a)- f(-a)]>0,则实数a的取值范围为( D )(A)(1,+∞)(B)(2,+∞)(C)(-∞,-1)∪(1,+∞)(D)(-∞,-2)∪(2,+∞)解析:当a>0时,不等式a[f(a)-f(-a)]>0可化为a2+a-3a>0,解得a>2,当a<0时,不等式a[f(a)-f(-a)]>0可化为-a2-2a<0,解得a<-2,综上所述,a的取值范围为(-∞,-2)∪(2,+∞).故选D.14.设函数f(x)=则使得f(x)≤2成立的x的取值范围是.解析:当x<1时,e x-1≤2,解得x≤1+ln 2,所以x<1.当x≥1时,≤2,解得x≤8,所以1≤x≤8.综上可知x的取值范围是(-∞,8].答案:(-∞,8]第2节函数的单调性与最值【选题明细表】基础巩固(时间:30分钟)1.(2018·湖北省高三调研)函数f(x)=log a(x2-4x-5)(a>1)的单调递增区间是( D )(A)(-∞,-2) (B)(-∞,-1)(C)(2,+∞) (D)(5,+∞)解析:由t=x2-4x-5>0,得x<-1或x>5,且函数t=x2-4x-5(x<-1或x>5)在区间(5,+∞)上单调递增,又函数y=log a t(a>1)为单调递增函数,故函数f(x)的单调递增区间是(5,+∞).故选D.2.(2018·郑州质检)下列函数中,在区间(-1,1)上为减函数的是( D )(A)y= (B)y=cos x(C)y=ln(x+1) (D)y=2-x解析:因为y=与y=ln(x+1)在(-1,1)上为增函数,且y=cos x在(-1,1)上不具备单调性,所以A,B,C不满足题意;只有y=2-x=()x在(-1,1)上是减函数.故选D.3.(2018·湖师附中)如果f(x)=ax2-(2-a)x+1在区间(-∞,]上为减函数,则a的取值范围是( C )(A)(0,1] (B)[0,1) (C)[0,1] (D)(0,1)解析:a=0时,f(x)=-2x+1在区间(-∞,]上为减函数,符合题意;当a≠0时,如果f(x)=ax2-(2-a)x+1在区间(-∞,]上为减函数,必有解得0<a≤1.综上所述,a的取值范围是[0,1],故选C.4.(2018·唐山二模)函数y=,x∈(m,n]的最小值为0,则m的取值范围是( D )(A)(1,2) (B)(-1,2) (C)[1,2) (D)[-1,2)解析:函数y===-1在区间(-1,+∞)上是减函数,且f(2)=0,所以n=2,根据题意,x ∈(m,n]时,y min =0, 所以m 的取值范围是[-1,2).故选D. 5.设函数f(x)=若f(a+1)≥f(2a-1),则实数a 的取值范围是( B )(A)(-∞,1] (B)(-∞,2] (C)[2,6] (D)[2,+∞)解析:易知函数f(x)在定义域(-∞,+∞)上是增函数, 因为f(a+1)≥f(2a-1), 所以a+1≥2a-1,解得a ≤2.故实数a 的取值范围是(-∞,2].故选B. 6.已知f(x)=2x ,a=(),b=(),c=log 2,则 f(a),f(b),f(c)的大小顺序为( B )(A)f(b)<f(a)<f(c) (B)f(c)<f(b)<f(a) (C)f(c)<f(a)<f(b) (D)f(b)<f(c)<f(a) 解析:易知f(x)=2x 在(-∞,+∞)上是增函数, 又a=()=()>()=b>0,c=log 2<0,所以f(a)>f(b)>f(c).故选B.7.(2018·石家庄调研)函数f(x)=()x-log2(x+2)在区间[-1,1]上的最大值为.解析:由于y=()x在R上递减,y=log2(x+2)在[-1,1]上递增,所以f(x)在[-1,1]上单调递减,故f(x)在[-1,1]上的最大值为f(-1)=3.答案:38.设函数f(x)=g(x)=x2f(x-1),则函数g(x)的递减区间是.解析:由题意知g(x)=函数的图象为如图所示的实线部分,根据图象,g(x)的减区间是[0,1).答案:[0,1)9.对于任意实数a,b,定义min{a,b}=设函数f(x)=-x+3,g(x)=log2x,则函数h(x)=min{f(x),g(x)}的最大值是.解析:法一在同一坐标系中,作函数f(x),g(x)图象,依题意,h(x)的图象如图所示.易知点A(2,1)为图象的最高点,因此h(x)的最大值为h(2)=1.法二依题意,h(x)=当0<x≤2时,h(x)=log2x是增函数,当x>2时,h(x)=3-x是减函数.所以当x=2时,h(x)取最大值h(2)=1.答案:1能力提升(时间:15分钟)10.(2017·全国Ⅰ卷)函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是( D ) (A)[-2,2] (B)[-1,1] (C)[0,4] (D)[1,3]解析:因为f(x)是奇函数,且f(1)=-1,所以f(-1)=-f(1)=1.所以f(1)≤f(x-2)≤f(-1).又因为f(x)在(-∞,+∞)上单调递减,所以-1≤x-2≤1.所以1≤x≤3.故选D.11.(2018·北京海淀期中)若函数f(x)=的值域为[-1,1],则实数a的取值范围是( A )(A)[1,+∞) (B)(-∞,-1](C)(0,1] (D)(-1,0)解析:当x≤a时,f(x)=cos x∈[-1,1],则当x>a时,-1≤≤1,即x≤-1或x≥1,所以a≥1.故选A.12.已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上单调递增,若实数a满足f(2|a-1|)>f(-),则a的取值范围是.解析:因为f(x)在R上是偶函数,且在区间(-∞,0)上单调递增,所以f(x)在(0,+∞)上是减函数.则f(2|a-1|)>f(-)=f(),因此2|a-1|<=,又y=2x是增函数,所以|a-1|<,解得<a<.答案:(,)13.(2018·大理月考)已知f(x)是定义在[-1,1]上的奇函数且f(1)=1,当x1,x2∈[-1,1],且x1+x2≠0时,有>0,若f(x)≤m2-2am+1对所有x∈[-1,1],a∈[-1,1]恒成立,则实数m的取值范围是.解析:用-x2替换x2,得>0,由于f(x)是奇函数,所以>0,等价于函数f(x)是定义域上的增函数,所以f(x)max=f(1)=1.不等式f(x)≤m2-2am+1对所有x∈[-1,1]恒成立,即m2-2am+1≥1对任意a∈[-1,1]恒成立,即2ma-m2≤0对任意a∈[-1,1]恒成立,令g(a)=2ma-m2,则只要即可,解得m≤-2或者m≥2或者m=0.故所求的m的取值范围是(-∞,-2]∪{0}∪[2,+∞).答案:(-∞,-2]∪{0}∪[2,+∞)14.(2018·成都七中调研)已知函数f(x)=a-.(1)求f(0);(2)探究f(x)的单调性,并证明你的结论;(3)若f(x)为奇函数,求满足f(ax)<f(2)的x的范围.解:(1)f(0)=a-=a-1.(2)f(x)在R上单调递增.理由如下:因为f(x)的定义域为R,所以任取x1,x2∈R且x1<x2,则f(x1)-f(x2)=a--a+=, 因为y=2x在R上单调递增且x1<x2,所以0<<,所以-<0,+1>0,+1>0.所以f(x1)-f(x2)<0,即f(x1)<f(x2).所以f(x)在R上单调递增.(3)因为f(x)是奇函数,所以f(-x)=-f(x),则a-=-a+,解得a=1(或用f(0)=0去解).所以f(ax)<f(2)即 f(x)<f(2),又因为f(x)在R上单调递增,所以x<2.所以不等式的解集为(-∞,2).第3节函数的奇偶性与周期性【选题明细表】基础巩固(时间:30分钟)1.(2018·云南玉溪模拟)下列函数中,既是偶函数,又在(0,1)上单调递增的函数是( C )(A)y=|log3x| (B)y=x3(C)y=e|x| (D)y=cos |x|解析:对于A选项,函数定义域是(0,+∞),故是非奇非偶函数;对于B 选项,函数y=x3是一个奇函数,不正确;对于C选项,函数的定义域是R,是偶函数,且当x∈(0,+∞)时,函数是增函数,故在(0,1)上单调递增,选项C正确;对于D选项,函数y=cos |x|是偶函数,在(0,1)上单调递减,不正确.故选C.2.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(-2,0)时,f(x)=2x2,则f(2 019)等于( B )(A)-2 (B)2 (C)-98 (D)98解析:由f(x+4)=f(x)知,f(x)是周期为4的周期函数,f(2 019)=f(504×4+3)=f(3)=f(-1).由-1∈(-2,0)得f(-1)=2,所以f(2 019)=2.故选B.3.(2018·石家庄一模)已知f(x)为偶函数,且当x∈[0,2)时,f(x)=2sin x,当x∈[2,+∞)时,f(x)=log2x,则f(-)+f(4)等于( D )(A)-+2 (B)1(C)3 (D)+2解析:因为f(-)=f()=2sin =,f(4)=log24=2,所以f(-)+f(4)=+2.4.设函数f(x)=,则下列结论错误的是( D )(A)|f(x)|是偶函数(B)-f(x)是奇函数(C)f(x)·|f(x)|是奇函数(D)f(|x|)·f(x)是偶函数解析:f(-x)==-f(x),所以函数f(x)是奇函数,|f(-x)|=|f(x)|,函数|f(x)|是偶函数,-f(x)是奇函数,f(x)·|f(x)|为奇函数,f(|x|)是偶函数,所以f(|x|)·f(x)是奇函数,所以错的是D.故选D.5.(2018·河北“五个一”名校联盟二模)设函数f(x)是定义在R上的奇函数,且f(x)=则g(-8)等于( A )(A)-2 (B)-3 (C)2 (D)3解析:法一当x<0时,-x>0,且f(x)为奇函数,则f(-x)=log3(1-x),所以f(x)=-log3(1-x).因此g(x)=-log3(1-x),x<0,故g(-8)=-log39=-2.法二由题意知,g(-8)=f(-8)=-f(8)=-log39=-2.故选A.6.(2018·南昌模拟)若定义域为R的函数f(x)在(4,+∞)上为减函数,且函数y=f(x+4)为偶函数,则( D )(A)f(2)>f(3) (B)f(2)>f(5)(C)f(3)>f(5) (D)f(3)>f(6)解析:因为y=f(x+4)为偶函数,所以f(-x+4)=f(x+4),因此y=f(x)的图象关于直线x=4对称,所以f(2)=f(6),f(3)=f(5).又y=f(x)在(4,+∞)上为减函数,所以f(5)>f(6),所以f(3)>f(6).故选D.7.若f(x)=ln(e3x+1)+ax是偶函数,则a= .解析:由于f(-x)=f(x),所以ln(e-3x+1)-ax=ln(e3x+1)+ax,化简得2ax+3x=0(x∈R),则2a+3=0.所以a=-.答案:-8.已知f(x)是定义在R上的偶函数,且f(x+2)=-,当2≤x≤3时,f(x)=x,则f(105.5)= .解析:f(x+4)=f[(x+2)+2]=-=f(x).故函数的周期为4,所以f(105.5)=f(4×27-2.5)=f(-2.5)=f(2.5),因为2≤2.5≤3,由题意,得f(2.5)=2.5,所以f(105.5)=2.5.答案:2.59.设函数f(x)=ln(1+|x|)-,则使得f(x)>f(2x-1)成立的x的取值范围是.解析:由f(x)=ln(1+|x|)-,知f(x)为R上的偶函数,于是f(x)> f(2x-1),即为f(|x|)>f(|2x-1|).当x≥0时,f(x)=ln(1+x)-,所以f(x)为[0,+∞)上的增函数,则由f(|x|)>f(|2x-1|)得|x|>|2x-1|,两边平方,整理得3x2-4x+1<0,解得<x<1.答案:(,1)能力提升(时间:15分钟)10.(2018·吉林省实验中学模拟)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x),当x∈[-2,0]时,f(x)=-2x,则f(1)+f(4)等于( D ) (A)(B)1 (C)-1 (D)-解析:因为f(x)是定义在R上的偶函数,且f(x+4)=f(x),所以f(x)是以4为周期的周期函数,又因为x∈[-2,0]时,f(x)=-2x,所以f(1)+f(4)=f(-1)+f(0)=-2-1-20=--1=-.故选D.11.(2018·山东、湖北部分重点中学模拟)已知定义在R上的函数f(x)在[1,+∞)上单调递减,且f(x+1)是偶函数,不等式f(m+2)≥f(x-1)对任意的x∈[-1,0]恒成立,则实数m的取值范围是( A )(A)[-3,1](B)[-4,2](C)(-∞,-3]∪[1,+∞)(D)(-∞,-4]∪[2,+∞)解析:f(x+1)是偶函数,所以f(-x+1)=f(x+1),所以f(x)的图象关于x=1对称,由f(m+2)≥f(x-1)得|(m+2)-1|≤|(x-1)-1|,所以|m+1|≤2,解得-3≤m≤1.故选A.12.(2017·安徽马鞍山三模)函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,则f(5)等于( B )(A)-1 (B)0 (C)1 (D)5解析:因为函数f(x+1),f(x-1)都是奇函数,所以f(1)=f(-1)=0,函数f(x)既关于(1,0)对称,又关于(-1,0)对称, 即f(2-x)=-f(x),f(-2-x)=-f(x),那么f(2-x)=f(-2-x),即f(2+x)=f(-2+x),所以f(x)=f(x+4),因此函数的周期是4,f(5)=f(1)=0.故选B.13.已知奇函数f(x)=则f(-2)的值等于.解析:因为函数f(x)为奇函数,所以f(0)=0,则30-a=0,所以a=1,所以当x≥0时,f(x)=3x-1,则f(2)=32-1=8,因此f(-2)=-f(2)=-8.答案:-814.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为.解析:因为当0≤x<2时,f(x)=x3-x,又f(x)是R上最小正周期为2的周期函数,且f(0)=0,则f(6)=f(4)=f(2)=f(0)=0.又f(1)=0,所以f(3)=f(5)=f(1)=0,故函数y=f(x)的图象在区间[0,6]上与x轴的交点有7个.答案:715.(2018·湖北荆州中学质检)若函数f(x)=为奇函数,g(x)=则不等式g(x)>1的解集为.解析:因为f(x)=为奇函数且定义域为R,所以f(0)=0,即=0,解得a=-1,所以g(x)=所以当x>0时,由-ln x>1,解得x∈(0,);当x≤0时,由e-x>1,解得x∈(-∞,0),所以不等式g(x)>1的解集为(-∞,0)∪(0,).答案:(-∞,0)∪(0,)第4节幂函数与二次函数【选题明细表】基础巩固(时间:30分钟)1.幂函数f(x)=(m2-4m+4)·在(0,+∞)上为增函数,则m的值为( B )(A)1或3 (B)1 (C)3 (D)2解析:由题意知解得m=1.2.(2018·山东济宁一中检测)下列命题正确的是( D )(A)y=x0的图象是一条直线(B)幂函数的图象都经过点(0,0),(1,1)(C)若幂函数y=x n是奇函数,则y=x n是增函数(D)幂函数的图象不可能出现在第四象限解析:A中,当α=0时,函数y=xα的定义域为{x|x≠0,x∈R},其图象为一条直线上挖去一点,A错;B中,y=x n,当n<0时,图象不过原点,B不正确.C中,当n<0,y=x n在(-∞,0),(0,+∞)上为减函数,C错误.幂函数图象一定过第一象限,一定不过第四象限,D正确.3.(2018·郑州检测)若函数f(x)=x2+ax+b的图象与x轴的交点为(1,0)和(3,0),则函数f(x)( A )(A)在(-∞,2]上递减,在[2,+∞)上递增(B)在(-∞,3)上递增(C)在[1,3]上递增(D)单调性不能确定解析:由已知可得该函数图象的对称轴为x=2,又二次项系数为1>0,所以f(x)在(-∞,2]上是递减的,在[2,+∞)上是递增的.4.设a=(),b=(),c=(),则a,b,c的大小关系是( B )(A)a<c<b (B)b<c<a(C)b<a<c (D)c<b<a解析:令函数f(x)=,易知函数f(x)=在(0,+∞)上为增函数,又>,所以a=()>()=c,令函数g(x)=()x,易知函数g(x)=()x在(0,+∞)上为减函数,又>,所以b=()<()=c.综上可知,b<c<a,故选B.5.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1,给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的是( B )(A)②④(B)①④(C)②③(D)①③解析:因为图象与x轴交于两点,所以b2-4ac>0,即b2>4ac,①正确;对称轴为x=-1,即-=-1,2a-b=0,②错误;结合图象,当x=-1时,y=a-b+c>0,③错误;由对称轴为x=-1知,b=2a,又函数图象开口向下,所以a<0,所以5a<2a,即5a<b,④正确.故选B.6.若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a的取值范围是( A )(A)(-∞,-2) (B)(-2,+∞)(C)(-6,+∞) (D)(-∞,-6)解析:不等式x2-4x-2-a>0在区间(1,4)内有解等价于a<(x2-4x-2)max, 令f(x)=x2-4x-2,x∈(1,4),f(x)<f(4)=-2,所以a<-2.7.二次函数f(x)=2x2+bx+c满足{x|f(x)=x}={1},则f(x)在区间[-2,2]上的最大值为( C )(A)4 (B)8 (C)16 (D)20解析:由题方程2x2+bx+c=x仅有一个根1,即2x2+(b-1)x+c=0仅有一个根.得b=-3,c=2.f(x)=2x2-3x+2,对称轴为x=,f(x)max=f(-2)=16.故选C.8.(2018·武汉模拟)若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)= .解析:由f(x)是偶函数知f(x)的图象关于y轴对称,所以b=-2,所以f(x)=-2x2+2a2,又f(x)的值域为(-∞,4],所以2a2=4,故f(x)=-2x2+4.答案:-2x2+49.(2018·泉州质检)若二次函数f(x)=ax2-x+b(a≠0)的最小值为0,则a+4b的取值范围是.解析:依题意,知a>0,且Δ=1-4ab=0,所以4ab=1,且b>0.故a+4b≥2=2.当且仅当a=4b,即a=1,b=时等号成立.所以a+4b的取值范围是[2,+∞).答案:[2,+∞)能力提升(时间:15分钟)10.在同一坐标系内,函数y=x a(a≠0)和y=ax+的图象可能是( B )解析:若a<0,由y=x a的图象知排除C,D选项,由y=ax+的图象知选项B有可能;若a>0,由y=x a的图象知排除A,B选项,但y=ax+的图象均不适合.综上选B.11.(2018·秦皇岛模拟)已知函数f(x)=ax2+bx+c(a≠0),且2是f(x)的一个零点,-1是f(x)的一个极小值点,那么不等式f(x)>0的解集是( C )(A)(-4,2)(B)(-2,4)(C)(-∞,-4)∪(2,+∞)(D)(-∞,-2)∪(4,+∞)解析:依题意,f(x)是二次函数,其图象是抛物线,开口向上,对称轴为x=-1,方程ax2+bx+c=0的一个根是2,另一个根是-4.因此f(x)= a(x+4)(x-2)(a>0),于是f(x)>0,解得x>2或x<-4.12.(2018·浙江“超级全能生”模拟)已知在(-∞,1]上递减的函数f(x)=x2-2tx+1,且对任意的x1,x2∈[0,t+1],总有|f(x1)-f(x2)|≤2,则实数t的取值范围是( B )(A)[-,] (B)[1,](C)[2,3] (D)[1,2]解析:由于f(x)=x2-2tx+1的图象的对称轴为x=t.又y=f(x)在(-∞,1]上是减函数,所以t≥1.则在区间[0,t+1]上,f(x)max=f(0)=1,f(x)min=f(t)=t2-2t2+1=-t2+1,要使对任意的x1,x2∈[0,t+1],都有|f(x1)-f(x2)|≤2,只需1-(-t2+1)≤2,解得-≤t≤.又t≥1,所以1≤t≤.13.已知二次函数f(x)满足f(2+x)=f(2-x),且f(x)在[0,2]上是增函数,若f(a)≥f(0),则实数a的取值范围是.解析:由题意可知函数f(x)的图象开口向下,对称轴为x=2(如图),若f(a)≥f(0),从图象观察可知0≤a≤4.答案:[0,4]14.如果函数f(x)=ax2+2x-3在区间(-∞,4)上单调递增,则实数a的取值范围是.解析:当a=0时,f(x)=2x-3在(-∞,4)上单调递增.当a≠0时,若f(x)在(-∞,4)上单调递增.则解之得-≤a<0.综上可知,实数a的取值范围是[-,0].答案:[-,0]15.已知函数f(x)=ax2+bx+c(a>0,b,c∈R).(1)若函数f(x)的最小值是f(-1)=0,且c=1,F(x)=求F(2)+F(-2)的值;(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.解:(1)由已知c=1,a-b+c=0,且-=-1,解得a=1,b=2,所以f(x)=(x+1)2.所以F(x)=所以F(2)+F(-2)=(2+1)2+[-(-2+1)2]=8.(2)由a=1,c=0,得f(x)=x2+bx,从而|f(x)|≤1在区间(0,1]上恒成立等价于-1≤x2+bx≤1在区间(0,1]上恒成立,即b≤-x且b≥--x在(0,1]上恒成立.又-x的最小值为0,--x的最大值为-2.所以-2≤b≤0.故b的取值范围是[-2,0].第5节指数与指数函数【选题明细表】基础巩固(时间:30分钟)1.函数y=a x-(a>0,且a≠1)的图象可能是( D )解析:若a>1时,y=a x-是增函数;当x=0时,y=1-∈(0,1),A,B不满足;若0<a<1时,y=a x-在R上是减函数;当x=0时,y=1-<0,C错,D项满足.故选D.2.(2018·湖南永州第三次模拟)下列函数中,与函数y=2x-2-x的定义域、单调性与奇偶性均一致的是( B )(A)y=sin x (B)y=x3(C)y=()x (D)y=log2x解析:y=2x-2-x在(-∞,+∞)上是增函数且是奇函数,y=sin x不单调,y=log2x定义域为(0,+∞),y=()x是减函数,三者不满足,只有y=x3的定义域、单调性、奇偶性与之一致.3.函数f(x)=a x-1(a>0,a≠1)的图象恒过点A,下列函数中图象不经过点A的是( A )(A)y= (B)y=|x-2|(C)y=2x-1 (D)y=log2(2x)解析:由题意,得点A(1,1),将点A(1,1)代入四个选项,y=的图象不过点A(1,1).4.设x>0,且1<b x<a x,则( C )(A)0<b<a<1 (B)0<a<b<1(C)1<b<a (D)1<a<b解析:因为x>0时,1<b x,所以b>1.因为x>0时,b x<a x,所以x>0时,()x>1.所以>1,所以a>b.所以1<b<a.5.函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是( D )(A)a>1,b<0(B)a>1,b>0(C)0<a<1,b>0(D)0<a<1,b<0解析:由f(x)=a x-b的图象可以观察出,函数f(x)=a x-b在定义域上单调递减,所以0<a<1.函数f(x)=a x-b的图象是在f(x)=a x的基础上向左平移得到的,所以b<0.6.已知f(x)=2x+2-x,f(m)=3,且m>0,若a=f(2m),b=2f(m),c=f(m+2),则a,b,c的大小关系为( D )(A)c<b<a (B)a<c<b(C)a<b<c (D)b<a<c解析:因为f(m)=2m+2-m=3,m>0,所以2m=3-2-m>2,b=2f(m)=2×3=6,a=f(2m)=22m+2-2m=(2m+2-m)2-2=7,c=f(m+2)=2m+2+2-m-2=4·2m+·2-m>8,所以b<a<c.故选D.7.下列说法正确的序号是.①函数y=的值域是[0,4);②(a>0,b>0)化简结果是-24;③+的值是2π-9;④若x<0,则=-x.解析:由于y=≥0(当x=2时取等号),又因为4x>0,所以16-4x<16得y<,即y<4,所以①正确;②中原式====-24,正确;由于+=|π-4|+π-5=4-π+π-5=-1,所以③不正确.由于x<0,所以④正确.答案:①②④8.不等式<4的解集为.解析:因为<4,所以<22,所以x2-x<2,即x2-x-2<0,解得-1<x<2.答案:{x|-1<x<2}9.(2018·鸡西模拟)已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[-1,0],则a+b= .解析:若a>1,则f(x)=a x+b在[-1,0]上是增函数,所以则a-1=0,无解.当0<a<1时,则f(x)=a x+b在[-1,0]上是减函数,所以解得因此a+b=-.答案:-能力提升(时间:15分钟)10.若函数f(x)=a|2x-4|(a>0,且a≠1),满足f(1)=,则f(x)的单调递减区间是( B )(A)(-∞,2] (B)[2,+∞)(C)[-2,+∞) (D)(-∞,-2]解析:由f(1)=,得a2=,解得a=或a=-(舍去),即f(x)=()|2x-4|.由于y=|2x-4|在(-∞,2]上递减,在[2,+∞)上递增,所以f(x)在(-∞,2]上递增,在[2,+∞)上递减.11.(2018·湖南郴州第二次教学质量检测)已知函数f(x)=e x-,其中e是自然对数的底数,则关于x的不等式f(2x-1)+f(-x-1)>0的解集为( B )(A)(-∞,-)∪(2,+∞) (B)(2,+∞)(C)(-∞,)∪(2,+∞) (D)(-∞,2)解析:易知f(x)=e x-在R上是增函数,且f(-x)=e-x-=-(e x-)=-f(x),所以f(x)是奇函数.由f(2x-1)+f(-x-1)>0,得f(2x-1)>f(x+1),因此2x-1>x+1,所以x>2.12.(2018·衡阳三中模拟)当x∈(-∞,-1]时,不等式(m2-m)·4x-2x<0恒成立,则实数m的取值范围是( D )。
第6节空间向量的运算及应用【选题明细表】基础巩固(建议用时:25分钟)1.在下列命题中:①若向量a,b共线,则向量a,b所在的直线平行;②若向量a,b所在的直线为异面直线,则向量a,b一定不共面;③若三个向量a,b,c两两共面,则向量a,b,c共面;④已知空间的三个向量a,b,c,则对于空间的任意一个向量p总存在实数x,y,z使得p=xa+yb+zc.其中正确命题的个数是( A )(A)0 (B)1 (C)2 (D)3解析: a与b共线,a,b所在直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a,b都共面,故②不正确;三个向量a,b,c中任两个一定共面,但它们三个却不一定共面,故③不正确;只有当a,b,c不共面时,空间任意一向量p才能表示为p=xa+yb+zc,故④不正确.综上可知四个命题中正确的个数为0,故选A.2.如图,在空间四边形OABC中,=a,=b,=c,点M在OA上,且OM=2MA,N为BC中点,则等于( B )(A)a-b+c(B)-a+b+c(C)a+b-c(D)a+b-c解析:=++=a+(b-a)+(c-b)=-a+b+c.故选B.3.已知向量a=(1,1,0),b=(-1,0,2),且ka+b与2a-b互相垂直,则k 的值是( D )(A)1 (B)(C)(D)解析:依题意得(ka+b)·(2a-b)=0,所以2k|a|2-ka·b+2a·b-|b|2=0,而|a|2=2,|b|2=5,a·b=-1,所以4k+k-2-5=0,解得k=.故选D.4.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a,b,c三向量共面,则λ等于( B )(A)9 (B)-9 (C)-3 (D)3解析:由题意知c=xa+yb,即(7,6,λ)=x(2,1,-3)+y(-1,2,3),所以解得λ=-9.故选B.5.已知空间四边形ABCD的每条边和对角线的长都等于a,点E,F分别是BC,AD的中点,则·的值为( C )(A)a2(B)a2(C)a2(D)a2解析:如图,设=a,=b,=c,则|a|=|b|=|c|=a,且a,b,c三向量两两夹角为60°.=(a+b),=c,所以·=(a+b)·c=(a·c+b·c)=(a2cos 60°+a2cos 60°)=a2.6.若A(m+1,n-1,3),B(2m,n,m-2n),C(m+3,n-3,9)三点共线,则m+n= .解析:=(m-1,1,m-2n-3),=(2,-2,6),由题意得∥,所以==,所以m=0,n=0,所以m+n=0.答案:07.已知空间三点A(1,1,1),B(-1,0,4),C(2,-2,3),则与的夹角θ的大小是.解析:=(-2,-1,3),=(-1,3,-2),·=-7,||=,||=, 所以cos θ==-,又因为θ∈[0,π],所以θ=π.答案:π8.已知点A(1,0,0),B(0,1,0),C(0,0,2),则满足DB∥AC,DC∥AB的点D的坐标为.解析:设点D(x,y,z),易知=(-x,1-y,-z),=(-1,0,2),=(-x,-y,2-z),=(-1,1,0),因为DB∥AC,DC∥AB,所以∥,∥,则解得所以D(-1,1,2).答案:(-1,1,2)能力提升(建议用时:25分钟)9.O为空间任意一点,若=++,则A,B,C,P四点( B )(A)一定不共面(B)一定共面(C)不一定共面 (D)无法判断解析: 因为=++,且++=1.所以P,A,B,C四点共面. 10.正方体ABCD A1B1C1D1的棱长为a,点M在AC1上且=,N为B1B 的中点,则||为( A )(A) a (B) a (C) a (D) a解析:以D为原点建立如图所示的空间直角坐标系Dxyz,则A(a,0,0),C1(0,a,a),N(a,a,).设M(x,y,z),因为点M在AC1上且=,所以(x-a,y,z)=(-x,a-y,a-z),所以x=a,y=,z=.所以M(,,),所以||== a.11.(2018·上海交大附中模拟)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,P i(i=1,2,…,16)是上、下底面上其余十六个点,则·(i=1,2,…,8)的不同值的个数为.解析:由题意得,=+(i=1,2,…,8),则·=·(+)=||2+·,因为⊥,所以·=||2=1,所以·(i=1,2,…,8)的不同的值的个数为1.答案:112.(2017·江苏徐州模拟)已知O点为空间直角坐标系的原点,向量=(1,2,3),=(2,1,2),=(1,1,2),且点Q在直线OP上运动,当·取得最小值时,的坐标是.解析:因为点Q在直线OP上,所以设点Q(λ,λ,2λ),则=(1-λ,2-λ,3-2λ),=(2-λ,1-λ,2-2λ),·=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)·(2-2λ)=6λ2-16λ+10=6(λ-)2-.即当λ=时,·取得最小值-.此时=(,,).答案:(,,)13.已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设a=,b=.(1)若|c|=3,c∥.求c;(2)若ka+b与ka-2b互相垂直,求k.解:(1)因为=(-2,-1,2),且c∥,所以设c=λ=(-2λ,-λ,2λ),得|c|==3|λ|=3,解得λ=±1.即c=(-2,-1,2)或c=(2,1,-2).(2)因为a==(1,1,0),b==(-1,0,2),所以ka+b=(k-1,k,2),ka-2b=(k+2,k,-4).又因为(ka+b)⊥(ka-2b),所以(ka+b)·(ka-2b)=0.即(k-1,k,2)·(k+2,k,-4)=2k2+k-10=0.解得k=2或k=-.14.棱长为1的正方体ABCD-A1B1C1D1中,E,F,G分别是DD1,BD,BB1的中点.(1)求证:EF⊥CF;(2)求与所成角的余弦值;(3)求CE的长.解:建立如图所示的空间直角坐标系Dxyz,则D(0,0,0),E(0,0,),C(0,1,0),F(,,0),G(1,1,).所以=(,,-),=(,-,0),=(1,0,),=(0,-1,).(1)因为·=×+×(-)+(-)×0=0,所以⊥,即EF⊥CF.(2)因为·=×1+×0+(-)×=,||==,||==,所以cos<,>===.(3)|CE|=||==.。
第5节古典概型与几何概型
【选题明细表】
基础巩固(建议用时:25分钟)
1.在[-6,9]内任取一个实数m,设f(x)=-x2+mx+m,则函数f(x)的图象与x轴有公共点的概率等于( D )
(A) (B) (C) (D)
解析:因为f(x)=-x2+mx+m的图象与x轴有公共点,
所以Δ=m2+4m≥0,
所以m≤-4或m≥0,
所以在[-6,9]内任取一个实数m,函数f(x)的图象与x轴有公共点的概率等于=.故选D.
2.七把椅子排成一排,甲、乙二人随机去坐,则每人两边都有空位的概率为( B )
(A)(B)(C)(D)
解析:七把椅子排成一排,甲、乙二人随机去坐,基本事件总数n==42,
每人两边都有空位包含的基本事件个数m==12,
所以每人两边都有空位的概率为P===.故选B.
3.男女生共8人,从中任选3人,出现2个男生,1个女生的概率为,则其中女生人数是( C )
(A)2人 (B)3人
(C)2人或3人(D)4人
解析:设女生人数是x人,则男生(8-x)人,又因为从中任选3人,出现2个男生,1个女生的概率为,
所以=,所以x=2或3.故选C.
4.已知f(x)=在区间(0,4)内任取一个为x,则不等式log2x-[lo(4x)-1]f(log3x+1)≤的概率为( B )
(A)(B) (C)(D)
解析:由题意,log3x+1≥1且log2x-[lo(4x)-1]≤,或0<log3x+1<1且log2x+2[lo(4x)-1]≤,
解得1≤x≤2或<x<1,
所以原不等式的解集为(,2],
所求概率为=.故选B.
5.某值日小组共有3名男生和2名女生,现安排这5名同学负责周一至周五擦黑板,每天1名同学,则这5 名同学值日日期恰好男生与女生间隔的概率为( B )
(A) (B) (C)(D)
解析:5名同学所有的值日方法有=120种,其中男生女生间隔的方法有=12种,
所以所求的概率为=.故选B.
6.在二项式(+)n的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( D ) (A)(B)(C)(D)
解析:注意到二项式(+)n的展开式的通项是
T r+1=()n-r()r=.
依题意有+=2=n,
即n2-9n+8=0,(n-1)(n-8)=0(n≥2),因此n=8.
因为二项式(+)8的展开式的通项是T r+1=2-r,其展开式中的有理项共有3项,
所求的概率等于=.故选D.
7.(2018·贵阳市一模)某校选定4名教师去3个边远地区支教(每地至少1人),则甲、乙两人不在同一边远地区的概率是.
解析:某校选定4名教师去3个边远地区支教(每地至少1人),
基本事件总数n=·=36,
甲、乙两人在同一边远地区包含的基本事件个数
m==6,
所以甲、乙两人不在同一边远地区的概率是
P=1-=1-=.
答案:
8.(2018·济南市一模)在平面直角坐标系内任取一个点P(x,y)满足
则点P落在曲线y=与直线x=2,y=2围成的阴影区域(如图所示)内的概率为.
解析:S阴影=2×(2-)-dx=3-ln x
=3-(ln 2-ln )
=3-ln 4
S正方形=4,则点P落在曲线y=与直线x=2,y=2围成的阴影区域内的概率为.
答案:
能力提升(建议用时:25分钟)
9.如图,将半径为1的圆分成相等的四段弧,再将四段弧围成星形放在圆内(阴影部分).现在往圆内任投一点,此点落在星形区域内的概率为( A )
(A)-1 (B) (C)1- (D)
解析:作圆的外接正方形,并连接星形的对角线,可知正方形内圆外部分面积与星形面积相等,则星形区域的面积等于22-π=4-π,又因为圆的面积等于π×12=π,因此所求的概率等于=-1.故选A.
10.在《周易》中,长横“”表示阳爻,两个短横“”表示阴爻.有放回地取阳爻和阴爻三次合成一卦,共有23=8种组合方法,这便是
《系辞传》所说“太极生两仪,两仪生四象,四象生八卦”.有放回地取阳爻和阴爻一次有2种不同的情况,有放回地取阳爻和阴爻两次有四种情况,有放回地取阳爻和阴爻三次,八种情况.所谓的“算卦”,
就是两个八卦的叠合,即有放回地取阳爻和阴爻六次,得到六爻,然后对应不同的解析.在一次所谓“算卦”中得到六爻,这六爻恰好有三个阳爻三个阴爻的概率是( B )
(A)(B) (C) (D)
解析:在一次所谓“算卦”中得到六爻,基本事件总数
n=26=64,
这六爻恰好有三个阳爻三个阴爻包含的基本事件个数
m==20,
所以这六爻恰好有三个阳爻三个阴爻的概率是P===.故选B. 11.张先生订了一份《南昌晚报》,送报人在早上6:30~7:30之间把报纸送到他家,张先生离开家去上班的时间在早上7:00~8:00之间,则张先生在离开家之前能拿到报纸的概率是.
解析:以横坐标x表示报纸送到时间,以纵坐标y表示张先生离家时间,建立平面直角坐标系,如图.因为随机试验落在正方形区域内任何一
点是等可能的,所以符合几何概型的条件.根据题意只要点落在阴影
部分,就表示张先生在离开家之前能拿到报纸,即所求事件A发生,
所以P(A)==.
答案:
12.在某项大型活动中,甲、乙等五名志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.
(1)求甲、乙两人同时参加A岗位服务的概率;
(2)求甲、乙两人不在同一个岗位服务的概率;
(3)求五名志愿者中仅有一人参加A岗位服务的概率.
解:(1)记“甲、乙两人同时参加A岗位服务”为事件E A,
那么P(E A)==,即甲、乙两人同时参加A岗位服务的概率是.
(2)记“甲、乙两人同时参加同一岗位服务”为事件E,那么
P(E)==,所以甲、乙两人不在同一岗位服务的概率是
P()=1-P(E)=.
(3)有两人同时参加A岗位服务的概率P2==,
所以仅有一人参加A岗位服务的概率P1=1-P2=.
13.设关于x的一元二次方程x2+2ax+b2=0.
(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;
(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.
解:设事件A为“方程x2+2ax+b2=0有实根”.
当a≥0,b≥0时,方程x2+2ax+b2=0有实根的充要条件为a≥b.
(1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2), (2,0),(2,1),(2,2),(3,0),(3,1),(3,2).
其中第一个数表示a的取值,第二个数表示b的取值.事件A中包含9个基本事件,故事件A发生的概率为P(A)==.
(2)试验的全部结果所构成的区域为
{(a,b)|0≤a≤3,0≤b≤2},
构成事件A的区域为
{(a,b)|0≤a≤3,0≤b≤2,a≥b},如图.
所以所求的概率为
P(A)==.
14.甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.
(1)如果甲船和乙船的停泊的时间都是4小时,求它们中的任何一艘船不需要等待码头空出的概率;
(2)如果甲船的停泊时间为4小时,乙船的停泊时间为2小时,求它们中的任何一艘船不需要等待码头空出的概率.
解:(1)设甲、乙两船到达时间分别为x,y,
则0≤x<24,0≤y<24且y-x>4或y-x<-4.
作出区域
设“两船无需等待码头空出”为事件A,
则P(A)==.
(2)当甲船的停泊时间为4小时,乙船停泊时间为2小时,两船不需等待码头空出,则满足x-y>2或y-x>4,设在上述条件时“两船不需等待码头空出”为事件B,画出区域
P(B)===.。