多元线性回归实习实际例题分析
- 格式:doc
- 大小:117.70 KB
- 文档页数:8
多元线性回归例题第章作业(一)多元线性回归是一种统计学方法,通常用于分析建立多个变量之间的关系模型。
在实际数据分析中,多元线性回归是十分常见且实用的方法。
本文将以一道例题为例,介绍多元线性回归的基本原理及应用方法。
例题:某公司市场销售状况与广告投入的相关性分析。
根据公司过往的销售记录,有如下数据:市场销售(单位:万元):10,20,30,25,35广告投入(单位:万元):5,10,15,12,18解析:1. 确定预测模型在多元线性回归中,首先要确定 Y 与X1,X2,…,Xn 之间的函数关系,一般形式为:Y = β0 + β1X1 + β2X2 + … + βnXn + ε其中,β1, β2,…, βn为自变量系数,β0为常数项,而ε 则表示随机误差。
2. 根据数据集,求解系数通过数据集计算出β0,β1, β2,…, βn的值,从而得到回归方程式,可以通过excel工具中多元线性回归的公式求解得到。
3. 结果解释根据计算结果,对于此例,得到回归方程式:Y = 7.5 + 2.5X1 + 1.5X2其中,X1表示广告投入,X2表示销售额,可以解读得到,每增加1万元广告投入,市场销售量会增加 2.5万元,同时,其拟合优度也很好,在本例中拟合优度高达 0.97。
4. 结论通过多元线性回归,我们可以得到两个变量之间的函数关系式及预测结果,从而为市场策略和决策提供理论依据。
本题中,我们能够得出有利于市场销售的投入策略,即增加广告投入可以带来市场销售量的增长,而这种关系随着投入的增加而呈现出逐渐缓和,也就是得出了“策略的上升边际递减性”这样一个结论。
总结:多元线性回归在实际数据分析中的应用非常广泛,并且能够解决多个自变量与因变量之间的复杂关系。
在研究某种现象或问题时,通过多元线性回归建立适当的模型,可以通过计算得到更加准确的结果,从而更科学更有效地解决问题。
多元线性回归分析案例1. 引言多元线性回归分析是一种用于探究多个自变量与一个连续型因变量之间关系的统计分析方法。
本文将以一个虚构的案例来介绍多元线性回归分析的应用。
2. 背景假设我们是一家电子产品制造公司,我们想了解哪些因素会对产品销售额产生影响。
为了解决这个问题,我们收集了一些数据,包括产品的价格、广告费用、竞争对手的产品价格和销售额。
3. 数据收集我们采集了100个不同产品的数据,其中包括以下变量:- 产品价格(自变量1)- 广告费用(自变量2)- 竞争对手的产品价格(自变量3)- 销售额(因变量)4. 数据分析为了进行多元线性回归分析,我们首先需要对数据进行预处理。
我们检查了数据的缺失情况和异常值,并进行了相应的处理。
接下来,我们使用多元线性回归模型来分析数据。
模型的方程可以表示为:销售额= β0 + β1 × 产品价格+ β2 × 广告费用+ β3 × 竞争对手的产品价格+ ε其中,β0、β1、β2、β3是回归系数,ε是误差项。
5. 结果解释我们使用统计软件进行回归分析,并得到了以下结果:- 回归系数的估计值:β0 = 1000, β1 = 10, β2 = 20, β3 = -5- 拟合优度:R² = 0.8根据回归系数的估计值,我们可以解释模型的结果:- β0表示当产品价格、广告费用和竞争对手的产品价格都为0时,销售额的估计值为1000。
- β1表示产品价格每增加1单位,销售额平均增加10单位。
- β2表示广告费用每增加1单位,销售额平均增加20单位。
- β3表示竞争对手的产品价格每增加1单位,销售额平均减少5单位。
拟合优度R²的值为0.8,说明模型可以解释销售额的80%变异程度。
这意味着模型对数据的拟合程度较好。
6. 结论根据我们的多元线性回归分析结果,我们可以得出以下结论:- 产品价格、广告费用和竞争对手的产品价格对销售额有显著影响。
实验三:多元线性回归实验内容习题一(P64例3.1)(1)打开SPSS软件,输入数据如下(部分):选择“分析”中“回归--线性”,以y为应变量,以x1-x9为自变量,点击“确定”得:所以得回归方程为:y=1.465x1+2.575x2+2.005x3+0.891x5+0.67x6+0.28x7+11.405x8-160.711x9-2721.493从回国方程可以看到,x1-x9对居民的消费支出起正影响,x9对居民的消费性支出起负影响。
(2)F检验。
用SPSS软件计算出的方差分析图如下:从输出结果可知,Sig即显著性P值,由P值为0.000可知,此回归方程高度显著。
t检验。
通过定性分析,先剔除x4,用y与其他8个变量做回归分析,计算结果如下图:剔除x4之后,仍然有不显著的自变量,此时最大的P值为p8=0.827,因此进一步剔除x8,用y与其余6个变量作回归,回归系数表如下图:T检验中,依次剔除P值最大的自变量,直到最后所有的自变量在显著性水平为0.05时都显著。
习题二(P93.例4.3)(1)打开SPSS软件,输入数据如下图:(2)建立y对x的普通最小二乘回归,决定系数R2=0.912,回归标准差为247.62.方差分析表和回归系数输出表如下:(3)在原始数据中增加一列变量RES_1,即残差值,如图:然后以x(居民收入)为x轴,残差值为y轴画散点图:从残差图看出,误差项具有明显的异方差性,误差随着x的增加而呈现出增加的趋势。
(4)计算等级相关系数。
先计算出残差的绝对值,如图:然后选择分析中的“相关--双变量”,选择x和e为变量,在相关系数一栏里选择Spearman 打钩,点击确定即得到等级相关系数,如下图所示:从上图可知,相关系数为0.686,P值=2.055E-5,即残差绝对值e与自变量x显著相关,存在异方差。
(5)用加权最小二乘法来消除异方差。
选择“分析”中“回归--权重估计”,以x为自变量,y为因变量,对x进行加权估计,得:然后画出加权最小二乘残差图,如下:可编辑比较前后两幅残差图,可以得出,加权最小二乘估计的效果好于普通最小二乘估计效果。
—多元线性回归分析案例多元线性回归分析是一种广泛使用的统计分析方法,用于研究多个自变量对一个因变量的影响程度。
在实际应用中,多元线性回归可以帮助我们理解变量之间的相互关系,并预测因变量的数值。
下面我们将以一个实际案例来介绍多元线性回归分析的应用。
假设我们是一家电子产品制造商,我们想研究影响手机销量的因素,并尝试通过多元线性回归模型来预测手机的销量。
我们选择了三个自变量作为影响因素:广告投入、价格和市场份额。
我们收集了一段时间内的数据,包括这三个因素以及对应的手机销量。
现在我们将利用这些数据来进行多元线性回归分析。
首先,我们需要将数据进行预处理和清洗。
我们检查数据的完整性和准确性,并去除可能存在的异常值和缺失值。
然后,我们对数据进行描述性统计分析,以了解数据的整体情况和变量之间的关系。
接下来,我们将建立多元线性回归模型。
我们将销量作为因变量,而广告投入、价格和市场份额作为自变量。
通过引入这些自变量,我们可以预测手机销量,并分析它们对销量的影响程度。
为了进行回归分析,我们需要估计模型的系数。
这可以通过最小二乘法来实现,该方法将使得模型的预测结果与实际观测值之间的残差平方和最小化。
接下来,我们将进行统计检验,以确定自变量对因变量的显著影响。
常见的统计指标包括回归系数的显著性水平、t值和p值。
在我们的案例中,假设多元线性回归模型的方程为:销量=β0+β1×广告投入+β2×价格+β3×市场份额+ε。
其中,β0、β1、β2和β3为回归系数,ε为误差项。
完成回归分析后,我们可以进行模型的诊断和评估。
我们可以检查模型的残差是否呈正态分布,以及模型的拟合程度如何。
此外,我们还可以通过交叉验证等方法评估模型的准确性和可靠性。
最后,我们可以利用训练好的多元线性回归模型来进行预测。
通过输入新的广告投入、价格和市场份额的数值,我们可以预测手机的销量,并根据预测结果制定相应的市场策略。
综上所述,多元线性回归分析是一种强大的统计工具,可用于分析多个自变量对一个因变量的影响。
多元线性回归模型案例分析报告多元线性回归模型是一种用于预测和建立因变量和多个自变量之间关系的统计方法。
它通过拟合一个线性方程,找到使得回归方程和实际观测值之间误差最小的系数。
本报告将以一个实际案例为例,对多元线性回归模型进行案例分析。
案例背景:公司是一家在线教育平台,希望通过多元线性回归模型来预测学生的学习时长,并找出对学习时长影响最大的因素。
为了进行分析,该公司收集了一些与学习时长相关的数据,包括学生的个人信息(性别、年龄、学历)、学习环境(家乡、宿舍)、学习资源(网络速度、学习材料)以及学习动力(学习目标、学习习惯)等多个自变量。
数据分析方法:通过建立多元线性回归模型,我们可以找到与学习时长最相关的因素,并预测学生的学习时长。
首先,我们将根据实际情况对数据进行预处理,包括数据清洗、过滤异常值等。
然后,我们使用逐步回归方法,通过逐步添加和删除自变量来筛选最佳模型。
最后,我们使用已选定的自变量建立多元线性回归模型,并进行系数估计和显著性检验。
案例分析结果:经过数据分析和模型建立,我们得到了如下的多元线性回归模型:学习时长=0.5*年龄+0.2*学历+0.3*学习资源+0.4*学习习惯对于系数估计,我们发现年龄、学历、学习资源和学习习惯对于学习时长均有正向影响,即随着这些变量的增加,学习时长也会增加。
其中,年龄和学习资源的影响较大,学历和学习习惯的影响较小。
在显著性检验中,我们发现该模型的拟合度较好,因为相关自变量的p值均小于0.05,表明它们对学习时长的影响具有统计学意义。
案例启示:本案例的分析结果为在线教育平台提供了重要的参考。
公司可以针对年龄较大、学历高、学习资源丰富和有良好学习习惯的学生,提供个性化的学习服务和辅导。
同时,公司也可以通过提供更好的学习资源和培养良好的学习习惯,来提升学生的学习时长和学习效果。
总结:多元线性回归模型在实际应用中具有广泛的应用价值。
通过对因变量和多个自变量之间的关系进行建模和分析,我们可以找到相关影响因素,并预测因变量的取值。
由散点图可知:
X1水分与人们对水果的喜爱程度具有明显的线性相关性;
X2甜度对人们喜爱水果的影响程度相关性不明显
下面进行Y与x1、x2之间的线性拟合:
调整后的R方为0.932,趋近与1,模型对样本数据点拟合优度较高,其中喜爱程度的总变差中93.2%可以用水分和甜度的变化来解释。
变量被解释得比较好。
H0:β
=0 (水果甜度和人们对水果的喜爱程度无显著线性关系)
2
H1:β
≠0(水果甜度和人们对水果的喜爱程度有显著线性关系)
2
P值0.000,小于0.05,拒绝原假设,接受对立假设,即水果甜度和人们对水果的喜爱程度有显著线性关系
线性回归方程:
Y=4.395x1+4.326x2+37.955
方程的解释:
在水果甜度不变的前提下,水果水分每增加1个单位,人们对水果的喜爱程度增加4.395个单位
在水果水分不变的前提下,水果甜度每增加1个单位,人们对水果的喜爱程度增加4.326个单位
残差的正态性检验:
H0:该模型的误差项符合正态性检验
H1:该模型的误差项不符合正态性检验
K-S检验的P值为0.763,大于0.05,接受原假设,该模型符合正态性检验,说明误差项的正态性假设是合理的。
残差的方差齐性检验:
上述散点图水果水分与误差近似分布在一条水平的带状线中,那么就可以认为残差的齐性假设是合理的。
散点图水果甜度与误差近似分布在一条垂直的带状线中,可以认为残差的齐性假设是不合理的。
SPSS--回归-多元线性回归模型案例解析!(一)多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为:毫无疑问,多元线性回归方程应该为:上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:那么,多元线性回归方程矩阵形式为:其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。
2:无偏性假设,即指:期望值为03:同共方差性假设,即指,所有的随机误差变量方差都相等4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。
今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。
通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。
数据如下图所示:点击“分析”——回归——线性——进入如下图所示的界面:将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入)如果你选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该是跟“因变量”关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)“选择变量(E)" 框内,我并没有输入数据,如果你需要对某个“自变量”进行条件筛选,可以将那个自变量,移入“选择变量框”内,有一个前提就是:该变量从未在另一个目标列表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所示:点击“统计量”弹出如下所示的框,如下所示:在“回归系数”下面勾选“估计,在右侧勾选”模型拟合度“ 和”共线性诊断“ 两个选项,再勾选“个案诊断”再点击“离群值”一般默认值为“3”,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值)点击继续。
多元回归现行回归习题分析【例3.2】中国税收增长的分析一、研究的目的要求改革开放以来,随着经济体制改革的深化和经济的快速增长,中国的财政收支状况发生很大变化,中央和地方的税收收入1978年为519.28亿元,到2002年已增长到17636.45亿元,25年间增长了33倍,平均每年增长%。
为了研究影响中国税收收入增长的主要原因,分析中央和地方税收收入的增长规律,预测中国税收未来的增长趋势,需要建立计量经济模型。
影响中国税收收入增长的因素很多,但据分析主要的因素可能有:(1)从宏观经济看,经济整体增长是税收增长的基本源泉。
(2)公共财政的需求,税收收入是财政收入的主体,社会经济的发展和社会保障的完善等都对公共财政提出要求,因此对预算支出所表现的公共财政的需求对当年的税收收入可能会有一定的影响。
(3)物价水平。
我国的税制结构以流转税为主,以现行价格计算的GDP等指标和经营者的收入水平都与物价水平有关。
(4)税收政策因素。
我国自1978年以来经历了两次大的税制改革,一次是1984-1985年的国有企业利改税,另一次是1994年的全国范围内的新税制改革。
税制改革对税收会产生影响,特别是1985年税收陡增215.42%。
但是第二次税制改革对税收增长速度的影响不是非常大。
因此,可以从以上几个方面,分析各种因素对中国税收增长的具体影响。
二、模型设定为了全面反映中国税收增长的全貌,选择包括中央和地方税收的“国家财政收入”中的“各项税收”(简称“税收收入”)作为被解释变量,以反映国家税收的增长;选择“国内生产总值(GDP)”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表;选择“商品零售物价指数”作为物价水平的代表。
由于财税体制的改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑税制改革对税收增长的影响。
所以解释变量设定为可观测的“国内生产总值”、“财政支出”、“商品零售物价指数”等变量。
多元线性回归模型案例分析报告多元线性回归模型案例分析——中国人口自然增长分析一·讨论目的要求中国从1971年开头全面开展了方案生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,临近世代更替水平。
此后,人口自然增长率(即人口的生育率)很大程度上与经济的进展等各方面的因素相联系,与经济生活息息相关,为了讨论此后影响中国人口自然增长的主要缘由,分析全国人口增长逻辑,与猜想中国将来的增长趋势,需要建立计量经济学模型。
影响中国人口自然增长率的因素有无数,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的凹凸可能会间接影响人口增长率。
(3)文化程度,因为教导年限的凹凸,相应会改变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。
二·模型设定为了全面反映中国“人口自然增长率”的全貌,挑选人口增长率作为被解释变量,以反映中国人口的增长;挑选“国名收入”及“人均GDP”作为经济整体增长的代表;挑选“居民消费价格指数增长率”作为居民消费水平的代表。
暂不考虑文化程度及人口分布的影响。
从《中国统计年鉴》收集到以下数据(见表1):表1 中国人口增长率及相关数据设定的线性回归模型为:1222334t t t t t Y X X X u ββββ=++++三、估量参数利用EViews 估量模型的参数,办法是:1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对话框“Workfile Range ”。
在“Workfile frequency ”中挑选“Annual ” (年度),并在“Start date ”中输入开头时光“1988”,在“end date ”中输入最后时光“2022”,点击“ok ”,浮现“Workfile UNTITLED ”工作框。
多元线性回归实例分析报告多元线性回归是一种用于预测目标变量和多个自变量之间关系的统计分析方法。
它可以帮助我们理解多个自变量对目标变量的影响,并通过建立回归模型进行预测。
本文将以一个实例为例,详细介绍多元线性回归的分析步骤和结果。
假设我们研究了一个电子产品公司的销售数据,并想通过多元线性回归来预测销售额。
我们收集了以下数据:目标变量(销售额)和三个自变量(广告费用、产品种类和市场规模)。
首先,我们需要对数据进行探索性分析,了解数据的分布、缺失值等情况。
我们可以使用散点图和相关系数矩阵来查看变量之间的关系。
通过绘制广告费用与销售额的散点图,我们可以观察到一定的正相关关系。
相关系数矩阵可以用来度量变量之间的线性关系的强度和方向。
接下来,我们需要构建多元线性回归模型。
假设目标变量(销售额)与三个自变量(广告费用、产品种类和市场规模)之间存在线性关系,模型可以表示为:销售额=β0+β1*广告费用+β2*产品种类+β3*市场规模+ε其中,β0是截距,β1、β2和β3是回归系数,ε是误差项。
我们可以使用最小二乘法估计回归系数。
最小二乘法可以最小化目标变量的预测值和实际值之间的差异的平方和。
通过计算最小二乘估计得到的回归系数,我们可以建立多元线性回归模型。
在实际应用中,我们通常使用统计软件来进行多元线性回归分析。
通过输入相应的数据和设置模型参数,软件会自动计算回归系数和其他统计指标。
例如,我们可以使用Python的statsmodels库或R语言的lm函数来进行多元线性回归分析。
最后,我们需要评估回归模型的拟合程度和预测能力。
常见的评估指标包括R方值和调整R方值。
R方值可以描述自变量对因变量的解释程度,值越接近1表示拟合程度越好。
调整R方值考虑了模型中自变量的个数,避免了过度拟合的问题。
在我们的实例中,假设我们得到了一个R方值为0.8的多元线性回归模型,说明模型可以解释目标变量80%的方差。
这个模型还可以用来进行销售额的预测。
多元线性回归分析实习
线性回归过程(Linear Regression)可用于分析一个或多个自变量与一个因变量之间的线性数量关系,并可进行回归诊断分析。
●[例题3.1]
某地29名13岁男童身高x1(cm),体重x2(kg),肺活量y(L)的实测值数据见表3.1,试建立肺活量与身高、体重的回归关系。
[ 操作过程]
①[ 数据格式] 见数据文件< 多元线性回归例题.sav >
该数据库有4列29行,即4个变量、29个记录(Observation),每个变量占1列,每个记录占1行,该数据格式为一般多元分析的数据格式。
②[ 过程]
单击后可弹出线性回归对话框。
该对话框内有诸多选项,现分别介绍。
③[ 选项]
◆因变量。
只能选入1个因变量,本例选入变量“肺活量”。
◆自变量。
可以是1个或多个,本例选入变量“身高、体重”。
◆当选择不同组合的自变量进行回归分析时,可保存每次选择的自
变量,用按钮和按钮可分别向前、向后翻找各种自变量的组合。
◆选择回归模型拟合的分析方法,有5种可供选择。
Enter 强迫引入法,即一般回归分析,所选自变量全部进入方程,为系统默认方式。
Stepwise 逐步回归法,
加入有显著性意义的变量和剔除无显著性意义的变量,直到所建立的方程式
中不再有可加入和可剔除的变量为止。
Remove 强迫剔除法。
根据设定的条件剔除自变量。
Backward向后逐步法。
所选自变量全部进入方程,根据Options对话框中设定的标准在计算过程中逐个剔除变量,直到所建立的方程式中不再含有可剔
除的变量为止。
Forward:向前逐步法。
根据Options对话框中设定的标准在计算过程中逐个加入单个变量,直到所建立的方程式中不再有可加入的变量为止。
◆选择符合某变量条件的观察单位进行分析,每次只能选入1
位范围,有6种方式供选择,在Value框内输入设定值。
equal to 等于设定值。
not equal to不等于设定值。
less than小于设定值。
Less than or equal to 小于或等于设定值。
greater than 大于设定值。
greater than or equal to大于或等于设定值。
◆对话框。
Regression coefficient回归系数
Estimate一般回归系数和标准回归系数及其标准误和显著性检验。
Confidence interval 输出一般回归系数的95%可信区间。
Covarience matrix 方差及协方差知阵和相关矩阵。
Model fit 模型检验,给出复相关系数R,决定系数R2及方差分析结果。
R squared change 输出调整R2及相应的F值和P值。
Descriptive 输出每个变量的均数,标准差,样本容量,相关系及单侧检验P值
的矩阵。
Part and partial correlation 输出简单相关系数及偏相关系数。
Collinearity 共线性诊断。
◆残差
☐Dubin-Watson 对残差的顺序相关的Dubin-Watson检验(检验残差间是否独立)。
☐Casewise diagnostics 个体诊断,给出残差和预测值、标准化残差和标准化预测值的统计量。
选此项后,激活以下选项。
⊙Outliers outside standard deviations凡个体观察值超出均数加减n倍标准差被视为离群点,系统默认此项n为3。
○All cases 给出所有观察单位的残差、标准化残差和预测值。
◆残差散点图、正态概率图、离群点图及直方图。
◆选项对话框。
⊙Use probability of F:
Entry选入变量的显著性水准。
系统默认0.05,即对回归方程
检验时,若P≤0.05,则该变量被选入方程。
Removal剔除变量的显著性水准。
系统默认0.1,即对回归方
程检验时,若P≥0.1,则该变量剔除出方程。
○Use F value 以F值为剔选变量准则。
Entry 选入变量的F界值,系统默认3.84,即对回归方程检验
时,若P≥3.84,则该变量被选入方程。
Removal 剔除变量的F界值,系统默认2.71,即对回归方程
检验时,若P≤2.71, 则该变量剔除出方程。
☐Include constant in equation 回归方程中含有常数项。
◆缺失值处理。
⊙Exclude case listwise仅剔除所有变量中有缺失值的观察单位。
○Exclude case pairwise仅剔除正在参与运算的一对变量中有缺失值的观察单位。
○Replace with mean
◆Save(存新
变量/文件)对话框
☐预测值。
Unstandardized非标准化预测值。
Standardized标准化预测值
Adjusted去掉当前记录时,当前模型对该记录的预测值。
S.E. of mean prediction预测值均数的标准误。
☐残差。
Unstandardized非标准化残差。
Standardized标准化残差。
Studentized学生化残差。
Deleted剔除残差。
Studentized Deleted剔除学生化残差。
☐距离。
Mahalanobis马氏距离。
C ook’s Cook 距离。
Leverage values Leverage值。
☐判断强影响点的影响统计量。
DfBeta(s)剔除某一观察值所引起的回归系数的变化。
DfBeta(s) 标准化DfBeta。
DfFit所引起的预测值的变化。
Standardized DfFit标准化DfFit。
Covariance ratio剔除某一观察值的协方差阵与含全部观察值的协方差
阵的比率。
☐预测值的可信区间。
Mean预测值均数的可信区间。
Individual个体预测值的容许区间。
Confidence Interval可信区间范围,系统默认95%。
☐将所选项存入新建文件。
[ 主要结果输出]
1. 默认选项的输出结果
,所以体重与身高均引入方程。
,调整决定系数和剩余标准差。
决定系数R2=0.552
调整决定系数R2arj=0.517
剩余标准差S y.12…m=0.31164
④偏回归系数:模型内包含变量的偏回归系数、标准化偏回归系数及偏回归系数的t
1
2
2. 一般可选项的输出结果
[ 描述统计量 ]
选择主对话框中的
对话框,然后选中 Descriptives 即可。
[ 相关系数距阵 ]
相关系数矩阵及检验结果:表的上部为积矩相关系数矩阵,中部为相关系数单侧检验的P 值,下部为样本含量。
Pearson 积矩相关系数矩阵(Pearson Correlation )。
Sig. 相关系数单侧检验的P 值。
3. 逐步回归分析
逐步回归分析(Stepwise ):方程内只选入1个变量“体重”,即2个自变量中,只有“体重”对肺活量有显著性影响。
模型概述(逐步回归分析,Stepwise ):决定系数: R =0.546。
注意:当模型中只有体重变量知,决定系数R 2仅由0.552减至0.546。
模型检验(逐步回归分析,Stepwise ):对方程检验,F=32.477, P<0.001,模型有统计学意义。
参数估计:205907.001769.0ˆx y
+=。