锁相环 相位噪声
- 格式:docx
- 大小:3.65 KB
- 文档页数:2
和响应速度之间折衷考虑,相位裕度越大,系统越稳定,但是响应速度变慢。
这里取相位裕度为60度。
同样的,这两个环路参数是估计出来的,在实际电路中仍然需要多次考虑。
最后根据上面的两个环路参数,利用第二章第六节的公式2-22到2-24可以计算出低通滤波器的电阻和电容的值大约为:R2=12K,C2=138PF,CI=1IPF。
根据以上估算的参数可以将锁相环系统的幅频和相频特性曲线画出,如图4.2所示。
图4-2PLL的幅频与相频特性曲线4.3锁相环系统级模型4.3.1Matlab构造数学模型Mauab是MathWorks公司开发的具有强大科学运算功能的数学工具,其中的软件包--Simulink是专门用于数学建模的工具。
通过建立锁相环系统的线性模型,如图4—3所示,分别建立环路中每个模块的传输函数,然后设置输入输出点。
该线性模型不仅可以分析系统的冲击响应和阶跃响应,还可以分析零极点与波特图。
冲击响应和阶越响应的模拟结果如图4-4所示,此模型可以很方便的修改参数,仿真速度非常快,模拟结果也非常直观,对于理解二阶系统的特性非常有帮助。
t№啦*血瞻呻目删e,ra口aap蝌m鼬rtrartim'哥缸眦h恤啪蚓of恤VCO图4-3Matlab建立PLL的线性模型图4—4PLL的阶跃响应与冲击响应4.3.2VerilogA构造行为级模型VerilogA语言是Verilog硬件描述语言的扩展,主要用来描述模拟系统的结构和行为,包括电子,机械,流体力学和热力学系统等㈣。
下面给出VerilogA描述锁相环的行为级模型,并应用Mica进行仿真。
首先,以电阻的行为级模型为例,简单的说明一下VerilogA语言的特点和应用。
、include“disciplines.”’’include“constants.h,’moduleres(a,b);inouta,b;electricala,b;parameterrealR21.O:analogbeginI(a,b)<+V(a,b)/R;//Altemative:V(a,b)<+I(a,b)4R;第五章锁相环电路设计及模拟第五章锁相环电路设计及模拟5.1整体设计本章主要是关于锁相环的晶体管级电路的设计,不但详细的分析了电路的结构,而且给出了模拟结构及相关的解释。
锁相频率源混频信号的相位噪声分析为了研究锁相频率源的混频信号的相位噪声问题,本文将锁相源的相位噪声构成作为基础,构建起两路相关锁相源混频相位噪声近似数学模型,并开展了相关实验。
实验数据表明,模型仿真能够得到与实验一致的结果,可以在很大程度上降低相位噪声估值偏差。
标签:锁相频率源;混频信号;相位噪声1 相位噪声概述通常来讲,信号频率或者相位本身的短期性、随机性起伏是引发相位噪声的主要原因,理想的频率源信号得到的频谱近似直线,数学上一般用带有幅度的Delta函数表示。
而从实际测量的角度,频谱信号两侧可以看到宽度较大的连续分布谱,其形成的原因是热能与其他噪声源随机起伏对于频率信号的调整,这里的连续分布谱实际上就是相位噪声。
假定θ(t)表示噪声形成的调制信号,考虑到相位噪声同样属于较小的信号调制,满足θ(t)《1,可以将频率源信号表示为:(1)公式中,fc表示载波信号,对于公式进行相应的Fourier变换,可以得到(2)这里的S(f)表示S(t)的Fourier頻率谱,Sθ=F(θ(t)),表示相位与频率抖动的功率谱密度。
结合上述公式,参考相位噪声的内涵,可以通过分贝值的形式来对频率源相位噪声进行表示,有(3)公式中,=f-fc,该公式实际上是偏离载波位置1Hz带宽的相位噪声。
调制信号本身属于非平稳性的随机过程,而结合相应的文献研究以及工程实践,可以将其近似看做是平稳的高斯过程,能够得到近乎实际工程值的结果。
设相应的高斯过程θ(t)为N(0,),均值E=0,相位与频率会于载波信号附近抖动。
方差表示为相位噪声的功率,依照上述公式,可以得到相应的公式(4)2 锁相频率源相位噪声结构就目前而言,比较常见的锁相源一般都是有压控振荡器、鉴相器、环路滤波器以及分频器等构成,所有元器件的噪声都会影响最终输出频率的相位噪声,而其中最为关键,最不可避免的,是鉴相器鉴相基底倍频以及参考信号锁相倍频的恶化。
参考公式(4),可以将锁相源相位噪声表示为(5)在公式中,表示锁相源最终输出的相位噪声功率,和分别表示晶振锁相倍频恶化以及鉴相基底倍频恶化后的相位噪声功率,结合上述分析,参照公式(4)和公式(5),可以将相位噪声改写成分贝值的形式,得到锁相源相位噪声计算公式:(6)3 加入混频器后的相位噪声分析理想状态下,混频器的输出包含了两个输入信号的和频与差频,而实际上,混频器具备多个交调分量,不过和频与差频是主要分量。
锁相环相位噪声与环路带宽的关系分析0 引言电荷泵锁相环是闭环系统,系统各个部分都是一个噪声源,各部分噪声的大小不仅与电路本身有关,而且还与环路带宽等因素有关。
因此,设计时必须分析其各频率范围内噪声源影响力的大小,权衡确定环路带宽与各噪声源的相互制约关系。
以下利用锁相环的等效噪声模型,重点分析电荷泵锁相环系统的相位噪声特性,得出系统噪声特性的分布特点以及与环路带宽的关系。
1 电荷泵锁相环的基本原理图1为电荷泵锁相环的示意图,主要由鉴相鉴频器(PFD)、电荷泵、滤波器、压控振荡器(VCO)、分频器等5部分组成,鉴相鉴频器主要用来检测输入信号x(t)与反馈信号xf(t)的频率、相位误差,并产生UP,DOWN信号控制电荷泵的开关。
电荷泵由两个对称的电流源和开关组成。
电荷泵的开关会对滤波器上的电容充放电,电流经过滤波器滤波后滤掉高频信号,在滤波器上产生能调整压控振荡器频率和相位的电压v(t)。
当v(t)上的电压被调整为一个合适的电压值时,xi(t)的频率和相位与x(t)的一致,系统最终处于平衡状态,从而实现对输入信号的跟踪。
2 电荷泵锁相环的噪声模型与相位噪声特性分析电荷泵锁相环的环路等效噪声模型可以用锁相环各子模块附加噪声源表示。
图2给出了带有无源滤波器锁相环噪声源模的型。
设fm为距离调制频率的偏移量,该图中主分频器、参考时钟分频器的均方噪声功率谱密度分别被表示为ψd(fm)和ψrcf(fm);鉴相鉴频器的相位噪声被表示为ψpd(fm);晶体振荡器的相位噪声被表示为ψx(fm);相位噪声源的单位是电荷泵的噪声被等价为电流源inp(fm)(单位:);滤波器的噪声被等价为电压源Vnf(fm)(单位:的自由振荡噪声被表示为环路输出信号的均方噪声功率谱密度被表示为它是闭环情况下所有噪声源影响的总和。
输出相位噪声功率谱密度可以表示为:式中:ψolp2(fm)为具有低通传输函数的噪声源功率谱密度;ψohp2(fm)为具有高通传输函数的噪声源功率谱密度。
锁相环相噪计算公式锁相环相噪计算公式1. 引言锁相环是一种常见的电路技术,用于对输入信号进行频率、相位或时延的调整。
在锁相环中,相噪是一个重要的性能指标,用来描述输出信号中的相位噪声。
2. 相噪计算公式•公式1:相噪指数(ENOB) = 20log10(2pi f3dB T)–其中,f3dB表示锁相环的3dB截止频率,T表示锁相环的环路延迟时间。
•公式2:相噪功率密度(PN) = 20log10(Kv f)–其中,Kv表示锁相环的控制增益,f表示锁相环的偏置频率。
3. 解释与示例相噪指数(ENOB)相噪指数(ENOB)是一种常用的相噪度量单位,表示为dBc,表示输出信号中相位噪声相对于理想信号的衰减程度。
具体计算方法如下:ENOB = 20log10(2pi f3dB T)例如,一个锁相环的3dB截止频率为10 kHz,环路延迟时间为2 ns,则根据公式1计算其相噪指数为:ENOB = 20log10(2pi10^4 2*10^-9) = - dBc这意味着锁相环输出信号中的相位噪声相对于理想信号衰减了 dB。
相噪功率密度(PN)相噪功率密度(PN)是另一种常用的相噪度量单位,表示为dBc/Hz,表示单位频带中的相位噪声功率。
具体计算方法如下:PN = 20log10(Kv f)例如,一个锁相环的控制增益为30 dB/V,偏置频率为1 MHz,则根据公式2计算其相噪功率密度为:PN = 20log10(10^3 10^6) = 140 dBc/Hz这意味着在1 Hz的频带内,锁相环输出信号的相位噪声功率为-140 dBc/Hz。
4. 总结本文介绍了锁相环相噪计算公式和其含义,包括相噪指数(ENOB)和相噪功率密度(PN)的计算公式,并通过示例进行了说明。
相噪是衡量锁相环性能的重要指标之一,在设计和应用中需要对相噪进行合理估算和控制。
5. 其他相关公式和注意事项•公式3:锁定时间(Tlock) = 1/(2pi f3dB)–锁定时间表示锁相环从失锁状态到锁定状态所需的时间。
锁相环输出信号相位噪声噪声及杂散特性分析应用实践【摘要】本文详细地介绍了锁相环的鉴频鉴相器、分频器和输入参考信号的相位噪声对锁相环合成输出信号的近端相位噪声的具体贡献值。
并以CDMA 1X基站系统中800MHz的FS 单板的锁相环输出信号相位噪声指标进行理论计算。
为广大锁相环设计者提供理论计算方法的参考和实践设计的参考依据。
【关键词】锁相环设计,相位噪声一、术语和缩略语表格 1 术语和缩略语二、问题的提出锁相环工作原理图,由三部分组成:鉴相器(PFD)、环路滤波器(LPF)和压控晶体振荡器(VCXO),如图0-1所示。
图0-1锁相环原理框图锁相环输出信号指标主要有相位噪声、谐波抑制、杂散、输出功率、跳频时间。
在本文中以CDMA 1X基站系统中800MHz的FS单板应用为背景,在CDMA基站中不需要跳频,所以调频时间基本不做要求。
输出功率比较好控制,只要调整衰减网络就能保证。
锁相环输出信号的相位噪声、谐波抑制和杂散成为影响系统指标的主要因素,成为锁相环技术的关键指标项。
在锁相环设计中,相位噪声和杂散成为系统设计主要难点。
三、解决思路相位噪声分析相位噪声主要由VCO、鉴频鉴相器、分频器和输入参考信号的相位噪声这四部分引入。
环路滤波器对于由鉴频鉴相器、分频器和输入参考信号的相位噪声这三部分引入的相位噪声具有低通特性,对于VCO产生的相位噪声具有高通特性。
一般来说环路带宽内的相位噪声主要决定于由鉴频鉴相器、分频器和输入参考信号,环路带宽以外的相位噪声主要决定于VCO,在环路带宽周围,这四部分的噪声影响相当。
所以为了尽量降低输出信号的相位噪声环路滤波器的环路带宽的最佳点是由鉴频鉴相器、分频器和输入参考信号的相位噪声这三部分引入的相位噪声总和与VCO引入的相位噪声相同时的频率。
在实际运用中还礼滤波器的设计是非常重要的。
对于远端相位噪声如100KHz和1MHz处的一般远远高于环路带宽,其相位噪声主要决定于VCO,要保证其指标主要是选择良好的VCO。
锁相环的关键指标一、引言锁相环(Phase-Locked Loop,简称PLL)是一种常用的电子控制系统,用于在输入信号和参考信号之间建立相位关系。
它在通信、数据转换和时钟同步等领域有着广泛的应用。
在设计和评估锁相环时,需要考虑一些关键指标,以确保其性能和稳定性。
本文将就锁相环的关键指标展开讨论。
二、锁相环的基本原理在了解锁相环的关键指标之前,我们先来简要了解一下锁相环的基本原理。
锁相环由相位比较器、低通滤波器、电压控制振荡器和分频器等组成。
其工作原理是通过不断调整电压控制振荡器的频率,使得相位比较器输出的误差信号趋近于零。
这样,输入信号和参考信号之间就能够建立起稳定的相位关系。
三、锁相环的关键指标锁相环的性能和稳定性受多个指标的影响。
下面将分别介绍这些指标。
3.1 带宽锁相环的带宽是指其输出相位响应的频率范围。
带宽越宽,锁相环对频率变化的响应越快。
通常情况下,带宽越宽,锁相环的性能越好。
但同时也需要考虑到带宽过宽可能导致噪声增加和稳定性下降的问题。
3.2 相位噪声相位噪声是指锁相环输出信号的相位随时间变化的不稳定性。
相位噪声越小,锁相环的性能越好。
相位噪声可以通过频域分析来评估,常用的评估指标包括相位噪声密度和积分相位噪声。
3.3 锁定时间锁定时间是指锁相环从初始状态到稳定状态所需的时间。
锁定时间越短,锁相环的性能越好。
锁定时间受到带宽和相位噪声等因素的影响。
3.4 抖动抖动是指锁相环输出信号的瞬时频率偏离其平均频率的程度。
抖动越小,锁相环的性能越好。
抖动可以通过时域分析来评估,常用的评估指标包括峰峰值抖动和均方根抖动。
3.5 稳定性锁相环的稳定性是指其输出信号在长时间内保持稳定的能力。
稳定性受到带宽、相位噪声和抖动等因素的影响。
稳定性可以通过频域和时域分析来评估。
四、评估锁相环的关键指标为了评估锁相环的关键指标,可以采取以下步骤:1.设计合适的测试电路,包括输入信号源和参考信号源。
2.使用合适的测量设备,如频谱分析仪、示波器和时钟分析仪等,对锁相环的输出信号进行测量。
锁相环输出信号相位噪声噪声及杂散特性分析应用实践【摘要】本文详细地介绍了锁相环的鉴频鉴相器、分频器和输入参考信号的相位噪声对锁相环合成输出信号的近端相位噪声的具体贡献值。
并以CDMA 1X 基站系统中800MHz 的FS 单板的锁相环输出信号相位噪声指标进行理论计算。
为广大锁相环设计者提供理论计算方法的参考和实践设计的参考依据。
【关键词】锁相环设计,相位噪声一、 术语和缩略语表格 1 术语和缩略语 缩写全名 含义 CDMACode Division Multiple Access 码分多址 PLLPhase Locked Loop 锁相环 FSFrequency S ynthesizer 频率合成器 LPFLoop Filter 环路滤波器 VCO Voltage Control Oscillator压控振荡器 二、 问题的提出锁相环工作原理图,由三部分组成:鉴相器(PFD )、环路滤波器(LPF )和压控晶体振荡器(VCXO ),如图 0-1所示。
÷R 分频器VCO 参考频率鉴相器÷N 分频器LPF ΦK O θS K VCO )(S F rθ+iθ-e θ图 0-1锁相环原理框图锁相环输出信号指标主要有相位噪声、谐波抑制、杂散、输出功率、跳频时间。
在本文中以CDMA 1X 基站系统中800MHz 的FS 单板应用为背景,在CDMA 基站中不需要跳频,所以调频时间基本不做要求。
输出功率比较好控制,只要调整衰减网络就能保证。
锁相环输出信号的相位噪声、谐波抑制和杂散成为影响系统指标的主要因素,成为锁相环技术的关键指标项。
在锁相环设计中,相位噪声和杂散成为系统设计主要难点。
三、 解决思路相位噪声分析相位噪声主要由VCO 、鉴频鉴相器、分频器和输入参考信号的相位噪声这四部分引入。
环路滤波器对于由鉴频鉴相器、分频器和输入参考信号的相位噪声这三部分引入的相位噪声具有低通特性,对于VCO产生的相位噪声具有高通特性。
高稳定度和相位噪声的锁相环设计论文一、引言本文介绍一种高稳定度和相位噪声的锁相环设计,适用于对频率源指标要求较高,锁定时间要求较低的场合,而且相对于单个高稳定度和相位噪声的频率源来说成本较低。
锁相环电路是一种以消除频率误差为目的的反馈控制电路,它的基本原理是利用相位误差电压取消除频率误差,所以当电路达到平衡之后,虽然有剩余相位误差存在,但频率误差可以降低到零,从而实现无频差的频率跟踪和相位跟踪。
而且锁相环电路还具有科研不用电感线圈、易于集成化、*能优越等许多有点,因此广泛用于通信、雷达、制导、*、仪表和电机都方面。
图1是一个锁相环的构成框图,pll电路基本上由下述三大部分组成:鉴相器(phasedetector或phaseparator)鉴相器用于检测两个输入信号的相位差;环路滤波器(loopfilter)是将鉴相器输出含有纹波的电流信号平均化,将此变换为交流成分少的直流信号的低通滤波器。
环路滤波器除滤除纹波功能外,还有一种重要作用,即决定稳定进行pll 环路控制的传输特*;压控振荡器(voltagecontrolledosillator)就是用输入直流信号控制振荡频率,他是一种可变频率振荡器。
随着电子技术的发展,要求信号的频率越来越稳定,一般的振荡器已经不能满足要求,于是出现了高准确度和高稳定度的时钟振荡源。
但是高稳定度的时钟振荡源价格比较昂贵,对于成本的节约上有很大的限制。
于是利用锁相环技术产生高精度高稳定度的频率源应运而生,只需要一个成本不高的时钟源和一个高稳晶振就可以实现高精度和高稳定度的时钟频率输出,图2是一个高稳定度锁相环的框图电路。
二、电路框图本文利用的是单片机stc12c5410ad和鉴相器芯片adf4001以及一个高稳压控晶振实现锁相环电路,电路框图如图3所示。
1.器件选择单片机用普通的单片机即可,本设计使用的是stc系列单片机,也可以使用51系列的单片机;adf4001是ad公司的一款鉴相器芯片,最大输出频率可到200mhz,它内部含有一个13位、一个14位的分频器,可以对输入频率进行分频,使鉴相频率一致;高稳定度的压控晶振可以自己选择,适合自己要求的,表1是我们自己选择的恒温晶振部分指标。
锁相环相位噪声
锁相环是一种常用的电路技术,用于抑制信号中的相位噪声。
相位噪声是指信号中的相位变化不稳定性,它可以导致信号的频偏和抖动,影响系统的性能和稳定性。
锁相环通过比较输入信号和参考信号的相位差,然后通过反馈调节输入信号的相位,以达到消除相位噪声的目的。
在现代通信系统中,相位噪声是一个非常重要的问题。
相位噪声的存在会导致信号的频谱扩展,降低系统的信噪比,影响通信质量。
因此,研究和解决相位噪声问题对于提高通信系统的性能至关重要。
锁相环通过利用负反馈原理来消除相位噪声。
它由相位检测器、低通滤波器、电压控制振荡器和除相器等组成。
首先,相位检测器将输入信号和参考信号进行比较,产生相位误差信号。
然后,低通滤波器对相位误差信号进行滤波,得到控制电压。
接下来,电压控制振荡器根据控制电压来调节输出信号的相位。
最后,除相器将输出信号和参考信号进行比较,得到反馈信号,闭环控制系统实现了相位的稳定。
锁相环的关键是相位检测器。
常用的相位检测器有边沿检测器、比较器和混频器等。
边沿检测器通过检测信号的边沿来获得相位信息,适用于高频信号。
比较器通过比较两个信号的幅值来获得相位信息,适用于低频信号。
混频器通过将信号与参考信号相乘,然后滤波得到直流分量来获得相位信息,适用于宽频带信号。
除了相位检测器,滤波器也是锁相环中的重要组成部分。
低通滤波器的作用是滤除高频噪声,使得控制电压变化平稳。
滤波器的带宽决定了锁相环对相位噪声的抑制能力。
带宽越宽,抑制能力越强,但相应的噪声增益也会增加。
因此,在选择滤波器带宽时需要进行权衡。
锁相环的另一个关键参数是环路带宽。
环路带宽决定了锁相环的跟踪能力和响应速度。
带宽越高,跟踪能力越好,但相应的稳定性也会降低。
因此,在设计锁相环时需要根据具体应用需求来选择合适的环路带宽。
除了上述基本结构,锁相环还可以通过添加频率鉴频器、倍频器和除频器等模块来实现更复杂的功能。
例如,可以利用频率鉴频器来实现频率锁定,将输入信号的频率锁定到参考信号的频率上。
可以利用倍频器和除频器来实现频率合成和分频。
锁相环是一种有效的抑制相位噪声的技术。
它在通信系统、时钟同步和频率合成等领域有着广泛的应用。
通过合理设计和调整锁相环的参数,可以实现对相位噪声的抑制,提高系统的性能和稳定性。
未来随着科技的进步和应用的拓展,锁相环技术将会得到更广泛的应用和发展。