金属氢化物镍蓄电池
- 格式:docx
- 大小:36.84 KB
- 文档页数:1
能源科学与工程学院电子科技大学12.4.1 概述242MH Ni2.4.2 MH-Ni电池的工作原理2.4.3 储氢合金电极2.4.4 MH Ni电池的性能2.4.4MH-Ni21. 概述❑金属氢化物镍电池(MH-Ni )是在航天用高压氢镍电池的基础上发展起来的荷兰Phili L Ni 合金有可逆的吸放氢性能❑Philips 实验室发现LaNi 5合金有可逆的吸放氢性能,1937年开始作为二次电池的负极材料使用Philips MH Ni ❑1984年Philips 成功制造出LaNi 5合金为负极的MH-Ni 电池❑1988年美国Ovonic 公司以及1989年日本松下、东芝、三洋等公司开始大规模商业化生产31. 概述❑随着电子、通讯事业的迅速发展,MH-Ni 电池的市场迅速扩大,电动车用大容量电池的开发将是一个更为巨大的市场❑高容量、环境友好、寿命长的绿色MH-Ni 电池将是21世纪应用最广的高能电池之一42. MH-Ni 电池的工作原理MH-Ni 电池的工作原理正极活性物质:氢氧化镍负极活性物质负极活性物质:金属氢化物电解液:氢氧化钾溶液MH NiOOH M Ni(OH)电池反应:2MH+NiOOH M+Ni(OH)−−−→←−−−放电充电正极反应:--NiOOH+H O+e Ni(OH)+OH −−−→←−−−放电5负极反应:22()←充电--2MH+OH M+H O+e −−−→←−−−放电充电2. MH-Ni 电池的工作原理MH Ni MH-Ni 电池的工作原理❑充电时1NiOOH1.正极上的Ni(OH)2转变为NiOOH;2.在储氢合金电极上,水分子被还原为氢原子,氢原子吸附在电极表面形成MH 吸附态的ab ;3.吸附态的氢再进一步扩撒到储氢合金内形成固溶体α-MH ;--2ab M+H O+e MH +OH→4.当溶解于合金相中的氢原子越来越多,氢原子将与合金发生反应,形成金-MH ab MH -MHα→属氢化物βMH。
镍金属氢化物电池是一种新型的高能量密度电池,它的能量密度是传统镍镉电池的两倍以上,而且具有更长的使用寿命和更高的安全性能。
本文将介绍镍金属氢化物电池的原理、结构、性能和应用。
一、镍金属氢化物电池的原理镍金属氢化物电池是一种以镍金属氢化物为正极、氢化钴或氢化镍为负极的化学电池。
它的反应方程式为:正极反应:Ni(OH)2 + H2O + e- Ni(OH)3负极反应:MH + H2O + e- M + OH-整体反应:Ni(OH)2 + MH Ni(OH)3 + M其中,M代表氢化钴或氢化镍。
在充电过程中,电池正负极的反应方向与放电相反。
充电时,电池正极的Ni(OH)3被还原为Ni(OH)2,同时电池负极的M被氢化成MH。
放电时,电池正极的Ni(OH)2被氧化成Ni(OH)3,同时电池负极的MH被氧化成M。
二、镍金属氢化物电池的结构镍金属氢化物电池的结构与镍镉电池类似,由正负极、隔膜和电解液组成。
正极材料是由Ni(OH)2和少量的Co(OH)2或Ni(OH)2和少量的NiOOH混合制成的,其中Co(OH)2或NiO OH的作用是提高电池的放电电压。
负极材料是由氢化钴或氢化镍制成的,它们的作用是提供电子。
隔膜是一种防止正负极直接接触的材料,常用的材料有纤维素、聚丙烯等。
电解液是一种含有氢氧化钾或氢氧化锂的水溶液,它的作用是提供离子。
三、镍金属氢化物电池的性能1. 高能量密度:镍金属氢化物电池的能量密度是传统镍镉电池的两倍以上,通常可以达到100Wh/kg以上,因此它可以提供更长的使用时间。
2. 高循环寿命:镍金属氢化物电池的循环寿命可以达到500次以上,而且在高温和低温环境下的性能也比较稳定。
3. 高安全性:镍金属氢化物电池不含有重金属,而且在充电和放电过程中不会产生氢气,因此它的安全性比较高。
4. 环保:镍金属氢化物电池不含有汞、铅等有害物质,因此它对环境的污染比较小。
四、镍金属氢化物电池的应用镍金属氢化物电池广泛应用于移动通信、电动工具、电动自行车、电动汽车等领域。
Q C T744电动汽车用金属氢化物镍蓄电池QC中华人民共和国汽车行业标准QC/T744-2006电动汽车用金属氢化物镍蓄电池Nickel-metal hydride batteries for electric vehicles2006-03-07发布 2006-08-01实施国家发展和改革委员会发布QC/T744-2006目次前言 (Ⅱ)1范围 (Ⅰ)2规范性引用文件 (Ⅰ)3术浯、定义和符号 (1)4分类 (1)5要求 (2)6试验方法 (4)7检验规则 (9)8标志、包装、运输和储存 (10)附录A(规范性附录)一致性分析方法 (12)附录B(规范性附录)简单模拟工况试验步骤 (12)QC/T744—2006前言本标准的附录A和附录B为规范性附录。
本标准由全国汽车标准化技术委员会提出。
本标准由全国汽车标准化技术委员会归口。
本标准起草单位:国家高技术绿色材料发展中心、北方汽车质量监督检验鉴定试验所、中国电子科技集团第十八研究所。
本标准主要起草人:吴峰、王子冬、汪继强、肖成伟、毛立彩、赵淑红、李丽、王维佳等。
QC/T 744—2006电动汽车用金属氢化物镍蓄电池1 范围本标准规定了电动汽车用密封金属氢化物镍蓄电池〔以下简称蓄电池)的要求、试验方法、检验规则、标志、包装、运输和储存。
本标准适用于电动汽车用标称电压单体1.2V和模块 n×1.2V (n为蓄电池数量,n≥ 5 )的密封金属氢化物镍蓄电池。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
GB/T 2900. 11 电工术语原电池和蓄电池 (eqv IEC60050(482):2003)3 术语、定义和符号3. 1 术语和定义GB/T 2900. 11确立的,以及下列术语和定义适用于本标准。
(第一次征求意见稿)随着煤炭工业发展和矿山装备技术进步,监测通信系统、紧急避险设施、井下运输车辆等对防爆电源的容量要求越来越高,同时《爆炸性环境第2部分:由隔爆外壳“d”保护的设备》中明确禁止存在析氢危险的蓄电池在隔爆外壳内使用。
为满足目前煤矿装备的迫切需要,在充分研究、复征求各方面专家意见以及进行相关试验研究的基础上,制定本安全技术要求。
1 范围本技术要求规定了矿用隔爆(兼本安)型金属氢化物镍蓄电池电源产品分类、型号命名、安全技术要求、检验规则等内容。
本技术要求适用于在煤矿井下使用的矿用隔爆(兼本安)型金属氢化物镍蓄电池电源的安全标志管理。
2 规范性引用文件GB 爆炸性环境第1部分:设备通用要求GB 爆炸性环境第2部分:由隔爆外壳“d”保护的设备GB 爆炸性环境第4部分:由本质安全型“i”保护的设备GB 低压开关设备和控制设备第1部分总则GB/T 含碱性或其他非酸性电解质的蓄电池和蓄电池组便携式密封单体蓄电池第2部分金属氢化物镍电池MT/T 煤矿用电器设备产品型号编制方法和管理办法MT 209-1990 煤矿通信、检测、控制用电工电子产品通用技术要求MT/T 286 煤矿通信、自动化产品型号编制方法和管理办法MT/T 408-1995 煤矿用直流稳压电源MT/T 1078-2008 矿用本质安全输出直流电源QC/T 744-2006 电动汽车用金属氢化物镍蓄电池3 术语和定义单体电池构成蓄电池最小电气单元的电极和电解质的组合。
蓄电池组以串联方式连接起来,增加电压的两个或多个单体电池。
电池管理系统通过采集、检测单体电池与热、电相关数据,对单体电池进行充放电管理、保护与控制的装置。
矿用隔爆(兼本安)型金属氢化物镍蓄电池电源能量存储、转换装置,由隔爆外壳、单体电池或电池组、电池管理系统等组成。
有时还可包括充电系统、放电系统、显示系统、电源输入系统、电源输出系统等。
简称电源系统。
I55 h率放电电流,其数值等于C5/5(A)。
矿用隔爆(兼本安)型金属氢化物镍蓄电池电源安全技术要求概述矿用隔爆(兼本安)型金属氢化物镍蓄电池电源是一种新型电源,其具有大容量、长寿命、环保等优点,因此在矿山生产、煤气抽采、工程施工、公共场所等领域得到了广泛应用。
为保障矿用隔爆(兼本安)型金属氢化物镍蓄电池电源的安全使用,本文提出了相关的安全技术要求。
安全技术要求1.设计要求1.1 设计应符合国家相关标准要求;1.2 设计应考虑气体爆炸、灰尘爆炸和静电危险性;1.3 设计应采用防爆密封结构,以防止内部燃气泄漏,使电池无法升压或突然扩散。
2.管理要求2.1 贮存和使用的场所应符合本安要求,要求相对密闭,以保证安全;2.2 贮存和使用的场所应标记清晰,标识准确,以便辨认和管理;2.3 对于可能导致电池爆炸的因素,应采取相应的措施予以预防或控制;2.4 对于任何个人或设备出现异常情况时,应立即停止使用,进行停电处理和安全评估。
3.检测质量要求3.1 检测质量应符合国家相关标准的要求,确保电池运行安全;3.2 定期进行检测,检测时间可根据实际使用情况而异;3.3 检测结果应记录并保留一定时间,以便交叉验证和分析原因;3.4 定期更换电池,以确保电池运行稳定。
4.应急处理要求4.1 在发生电池泄漏或爆炸时,应立即停电并进行紧急处理;4.2 必要时,应拨打紧急电话寻求帮助。
结论矿用隔爆(兼本安)型金属氢化物镍蓄电池电源的安全使用是刻不容缓的问题。
为确保电池的运行安全,设计、管理和检测质量等方面上需要做好相关的安全技术要求。
只有做好这些要求,才能使矿用隔爆(兼本安)型金属氢化物镍蓄电池电源能够正常、稳定地运行,最终达到最佳的使用效果。
一、镍氢电池原理镍氢电池正极活性物质为氢氧化镍(称氧化镍电极),负极活性物质为金属氧化物,也称贮氢合金(电极称贮氢电极),电解液为6N氢氧化钾,在电池充放电过程中的电池反应为:氧化电极上:NIOOH+H2o+e ==== Ni(OH)2+OH。
贮氢电极上:MH十oH-e ===== M+H2O电池总反应:MH + NiOOH ==== M+Ni(OH),其中,M表示贮氢合金材料。
电池的开路电压为:1.2V~1.3V、因贮氢材料和制备工艺不同而有所不同。
过充电时,两极上的反应为:氧化镍电极上: 4OH-4e一2H2O十O2贮氢电极上; 2H2O+O2+4e一4OH电池过充电时的总反应:O电池在设计中一般采米用负极过量的办法,氧化镍电极全充电态时产生氧气,经过扩散在负极重新化合成水,这样,既保持了电池内压的恒定,同时义使电解液浓度不致发生巨人变化。
当电池过放电时,电极反应为:氧化镍电极上:2H2O+2e H2+2OH贮氢电极上;H2+2OH-2e 2H2O电池过放电时的总反应:O虽然过放电时,电池总反应的净结果为零,但要出现反极现象。
由于在正极上产生的氢气会在负极上新化合,同样也保持了体系的稳定。
另外,负极活性物质氢以氢原子态能以相当高的密度吸附干贮氢合金中,在这样的电极上,吸放氢反应能平稳地进行,放电性能较镉-镍电池而言得以提高。
二、组成与结构如上所述,镍氢电池正极活性物质为氢氧化镍(称氧化镍电极),负极活性物质为金属氢化物,也称贮氢合金(电极称贮氢电极),电解液为6N氢氧化钾。
由活性物质构成电极极片的工艺方式主要有饶结式、拉浆式、泡沫镍式、纤维镍式、嵌渗式等工艺方式,不同工艺制备的电极在容量、大电流放电性能上存在较大差异,一股依据使用条件的不同,采用不同的工艺构成电池。
通讯等民用电池人多采用拉浆式负极、泡沫镍式正极构成电池。
常见的圆柱型镍氢电池组成与结构如图1所示。
图1、圆柱密封镍氢电池结构示意图三、性能与技术要求镍金属氢化物电池是由贮氢合金负极,镍正极,氢氧化钾电解液以及隔板等组成的可充电电池,它与镍镉电池的本质区别只是在于负极材料的不问。
GBT电动道路车辆用金属氢化物镍蓄电池前言本标准是参考IEC 61436(1998)《密封金属氢化物镍再充电单体电池》标准编制的举荐性国家标准。
编制本标准内容时,一方面依据电动道路车辆的技术要求,同时又要考虑我国金属氢化物镍蓄电池的现期水平,既要满足当前的需要又要考虑远期进展。
因此制定标准时,以我国目前最新水平为准。
本标准的附录A是提示的附录。
本标准由国家机械工业局提出。
本标准由全国汽车标准化技术委员会归口。
本标准起草单位:信息产业部电子第十八研究所。
本标准参加起草单位:国家高技术新型储能材料工程开发中心、北京有色金属研究总院、沈阳中辽三普电池、广东佳力集团公司、国营第七五五厂。
本标准要紧起草人:王捷、汪继强、毛立彩、詹锋、刘远鸿、段秋生中华人民共和国国家标准电动道路车辆用金属氢化物镍蓄电池 GB/T18332.2-2001Nickel-metal hydride batteries for electric road vehicles1 范畴本标准规定了电动道路车辆(包括电动汽车、电动摩托车等)用密封金属氢化物镍蓄电池(以下简称蓄电池)的要求、试验方法、检验规则、标志、包装、运输和贮存。
本标准适用于电动道路车辆用额定电压12V的密封金属氢化物镍蓄电池。
2 引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。
本标准出版时,所示版本均为有效。
所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。
GB/T 2900.11-1998 蓄电池名词术语(eqv IEC 486:1986)3 定义与符号本标准除采纳GB/T 2900.11中的定义外,还增加了下列定义。
3.1 密封蓄电池 sealed cell当蓄电池在规定设计范畴内工作时保持密封状态,但当内部压力超过预定值时,承诺气体通过一个可复位或不可复位的压力开释装置逸出。
3.2 符号C3——3小时率额定容量。
I3——3小时率放电电流,其数值等于1/3C3(A)V——蓄电池以一定电流充电时,充电电压升高至最高值V1后,在规定的时刻内下降至V2的电压压降用符号ΔV表示,即ΔV=V2-V14 分类与命名4.1 产品品种蓄电池由10只单体电池组成,单体电池可分为方形和圆柱形两种,分别用“10QNF×××”和“10QNY×××”表示。
金属氢化物镍蓄电池
镍蓄电池是目前世界上最常用的蓄电池之一,称为镍氢蓄电池,是一种可重复使用的无汞型蓄电池。
它最常用于电子产品,如手机电池、数码相机电池、无线耳机和蓝牙耳机电池、飞机模器电池、笔记本电池、扫描仪电池和无线鼠标等,同时也用于汽车、潜艇和飞机上的应用。
镍氢蓄电池,也称作金属氢化物镍蓄电池,是一种金属氢化物锂蓄电池的改进型,其内部结构复杂,其便携性及安全性高,具有可靠的性能,同时其充放电循环的放电性能比常规锂电池略有改善,因而大大提高了使用效率,如放电时间更长、放电量更大,可靠性也更高。
商业上的镍氢蓄电池一般都分两类:固态和液态。
固态镍氢蓄电池由钒钴电极、氢化钒和氢化镍极组成,其中钒钴电极具有极高的电极质量容量和新型电极材料,能够稳定地实现有效的电池充放电。
液态镍氢蓄电池具有极高的电极质量容量,负极材料一般采用氢化钒或氢氧化钙等特种材料,其充放电使用效率更大,具有可靠的性能,可应用于低温用电。
镍氢蓄电池的优势有很多,首先是其充放电循环效率比锂电池略有提高,其充放电时间更长、放电量更大,可靠性更高,安全性也很高;其次是只有一两种金属元素成分,生产和维护费用都比较低;第三是室温下氢气工作 (RTW) 动力电池,其特性能明显提升,可以实现放电时间长、放电量大的高强度放电效果;最后,镍氢蓄电池也可以很好的抑制由于温湿度波动引起的状态变化。
因此,金属氢化物镍蓄电池具有良好的电池性能,安全可靠,寿命长,价格低,可以实现高强度放电效果。
它是目前最流行的无汞型蓄电池,广泛应用于各种电子设备上。