高等土力学结课关于粉土
- 格式:doc
- 大小:38.50 KB
- 文档页数:12
高等土力学课后思考题高等土力学,李广信课后思考,自己总结的1、试分析室内试验、模型试验和现场原位试验各自的特点及优缺点室内试验:岩土参数可直接测定,比较可靠;应变场均匀,应变速率可控;应力条件明确可控;应力路径和排水条件可控;可模拟实际工程中主应力方向进行试验;土样边界条件可控;试样尺寸有限,代表性差,不能反映宏观结构和非均匀性对土的影响;对无法取样的土层,只得采用制备土样试验,偏离实际;需钻孔取样,取土时应力释放,对土体扰动大;试验周期长,效率低。
现场试验:测定土体范围大,代表性好,能反映宏观结构和非均匀性对土的影响;对难取样的土层也可现场测试,接近实际;可不经钻孔取样,直接在原位测定岩土体的工程性质,从而可避免取土扰动和取土卸荷回弹等对试验结果的影响;土体边界条件不易控制;试验周期短,效率高,但成本较高;岩土参数有统计经验获得,可重复性差,数据离散不可靠;应变场不均匀,应变速率大于实际;原位应力条件不明确且无法控制;应力路径和排水条件不易控制;测定时的主应力方向与实际不一致;二者都只能对有限的点取样试验或测试,点间土样变化是推测的,分层界限不清。
模型试验:尺寸比现场试验小,可根据需要控制主要变量,同时具有现场试验和室内试验的部分优点,可以一定程度上预测将建或已建结构的性能;试验周期长,效率低,成本比室内试验略高;由于模型尺寸较小,无法反应原型结构的重力效应,为克服这一缺陷,近年来采用土工离心模型试验。
2、简述土的三轴试验的6组强度指标及其工程适用条件(1)不固结不排水剪(UU试验)试样在施加周围压力和随后施加偏应力直至剪坏的整个试验过程中都不允许排水。
UU试验得到的抗剪强度指标用CU、U 表示,这种试验方法所对应的实际工程条件相当于饱和软粘土中快速加荷时的应力状况。
(地基为透水性差的饱和粘性土或排水不良,且建筑物施工速度快,常用于施工期的强度和稳定计算) (2)固结不排水剪(CU试验)在施加周围应力3时将排水阀门打开,允许试样充分排水,待固结稳定后关闭阀门,然后再施加偏应力,使试样在不排水的条件下剪切破坏。
第五章.土的压缩与固结概念与思考题1.比奥(Biot)固结理论与太沙基一伦杜立克(Terzaghi-Randulic)扩散方程之间主要区别是什么?后者不满足什么条件?二者在固结计算结果有什么主要不同?答:主要区别:在太沙基-伦扩散方程推导过程中,假设正应力之和在固结与变形过程中是常数,太-伦扩散方程不满足变形协调条件。
固结计算结果:从固结理论来看,比奥固结理论可解得土体受力后的应力、应变和孔压的生成和消散过程,理论上是完整严密的,计算结果是精确地,太-伦法的应力应变计算结果和孔压计算结果精确。
比奥固结理论能够反映比奥戴尔-克雷效应,而太沙-伦扩散方程不能。
但是,实际上,由于图的参数,本构模型等有在不确定性。
无论采用哪种方法计算都很难说结果是精确的。
2.对于一个宽度为a的条形基础,地基压缩层厚度为H,在什么条件下,用比奥固结理论计算的时间一沉降(t-s)关系与用太沙基一维固结理论计算的结果接近?答案:a/H很大时3.在是砂井预压固结中,什么是砂井的井阻和涂抹?它们对于砂井排水有什么影响?答:在地基中设置砂井时,施工操作将不可避免地扰动井壁周围土体,引起“涂抹”作用,使其渗透性降低;另外砂井中的材料对水的垂直渗流有阻力,是砂井内不同深度的孔不全等于大气压(或等于0),这被称为“井阻”。
涂抹和井阻使地基的固结速率减慢。
4.发生曼德尔一克雷尔效应的机理是什么?为什么拟三维固结理论(扩散方程)不能描述这一效应?答:曼戴尔-克雷尔效应机理:在表面透水的地基面上施加荷重,经过短暂的时间,靠近排水面的土体由于排水发生体积收缩,总应力与有效应力均由增加。
土的泊松比也随之改变。
但是内部土体还来不及排水,为了保持变形协调,表层土的压缩必然挤压土体内部,使那里的应力有所增大。
因此某个区域内的总应力分量将超过他们的起始值,而内部孔隙水由于收缩力的压迫,其压力将上升,水平总应力分量的相对增长(与起始值相比)比垂直分量的相对增长要大。
高等土力学复习要点——土的性质高等土力学是土力学的进一步深化和发展,主要研究土的性质和力学特性。
土的性质是指土的组成、结构、化学性质等方面的性质,对于研究土的力学行为和工程应用具有重要意义。
以下是高等土力学复习要点之一:土的性质。
1.组成和结构:土是由颗粒状固体颗粒和间隙水等组成的多相体系。
颗粒可以分为黏土颗粒、粉砂颗粒和砂粒等,颗粒的形状、大小和组成对土的性质和力学特性有重要影响。
土的结构可以分为砂土结构、黏土结构和松散土结构等,不同结构有不同的力学特性。
2.含水量和干密度:土的含水量是指土中所含水分的质量与干土质量的比值。
土的干密度是指土的干湿状态下单位体积的质量。
含水量和干密度是土的基本物理性质,对土的抗剪强度、固结性质和渗透性等有影响。
3.粒度分布:土的粒度分布是指不同颗粒大小的土颗粒在土体中的分布情况。
粒度分布对土的工程性质和渗透性等有很大影响,常用粒度分布曲线来描述土的粒度分布特征。
4.粘聚力和内摩擦角:粘聚力是指土颗粒之间的黏结力,其大小取决于土颗粒的粒度、形状和颗粒间的水膜等因素。
内摩擦角是指土体在应力作用下发生剪切破坏时粒间摩擦力与正应力之间的关系。
粘聚力和内摩擦角是土的基本力学性质,对土的稳定性、承载力和变形特性有重要影响。
5.渗透性:土的渗透性是指水分在土中传导的能力,是土体的物理性质之一、渗透性与土的孔隙结构、颗粒大小和排水路径等因素有关,影响土的排水性能和固结性质。
6.压缩性和固结性:土的压缩性是指土在受到外界荷载作用下发生体积变形的能力。
土的固结性是指土颗粒之间的排列变得更加紧密,导致土的体积减小。
土的压缩性和固结性对于工程填土的沉降和变形控制具有重要意义。
7.剪切特性和强度特性:土的剪切特性是指土体在受到剪切应力作用下的变形和破坏特性。
土的强度特性是指土体抵抗外界应力作用下发生破坏的能力。
剪切特性和强度特性是土体力学性质的重要表征,对于土的稳定性和承载力有重要影响。
第三章 土的强度3.1 概述土与人类的关系十分密切。
在人类进化发展的上万年历史中,挖沟筑堤,疏河开渠,建造房屋殿宇、庙堂墓塔,首先涉及的是土的强度问题。
长期实践经验的积累,使人们对土的强度的重要性有了较深刻的理解。
土的强度理论研究甚至早于“土力学”学科的建立,亦即早在太沙基(Terzaghi )1925年出版其著作《土力学》之前。
1776年,库仑(Coulomb )就在试验的基础上提出了著名的库仑公式:ϕστtg c f += (3.1.1)1900年莫尔(Mohr )提出:在土的破坏面上的抗剪强度是作用在该面上的正应力的单值函数:)(f f f στ= (3.1.2)这样,库仑公式(3.1.1)只是在一定应力水平下式(3.1.2)的线形特例。
从而建立了著名的莫尔-库仑强度理论。
在随后的许多年中,人们针对莫尔-库仑强度理论中抗剪强度与中主应力无关的假设,进行了大量的中主应力对土抗剪强度影响的研究,并且企图在土力学中引进广义密塞斯(Mises )和广义屈雷斯卡(Tresca )强度理论, 但它们与土的强度性质实在相差太大。
只有到了20世纪60年代以后,随着计算机技术的发展及大型土木工程的兴建,关于土的应力-应变-强度-时间关系即本构关系的研究广泛开展,人们才逐步认识到土的强度与土的应力-应变关系是密不可分的,它是土受力变形过程的一个阶段;并进一步认识到除剪切强度以外,还有拉伸强度、断裂及与孔隙水压力有关的土的破坏问题。
这样,一些与土的本构模型相应适应的土强度准则也相继被提出。
另一方面,人们也力图从微观机理上研究土的强度及建立强度理论;探索原状土、非饱和土、区域性土和老粘土等的强度问题。
源于土的碎散性、多相性和在长期地质历史造成的多变性,土的强度也呈现其特殊性。
首先,由于土是碎散颗粒的集合,它们之间的相互联系是相对薄弱的。
所以土的强度主要是由颗粒间的相互作用力决定,而不是由颗粒矿物的强度本身直接决定的。
课程总结通过对土力学的学习,使我了解土的成因和分类方法,熟悉土的基本物理力学性质,土的渗透性与渗流,土中应力,掌握地基沉降、地基承载力、土的抗剪强度,土压力计算方法和土坡稳定分析方法,桩基础及其他基础,掌握一般土工试验方法,能应用土力学的基本原理和方法解决实际工程中稳定、变形和渗流等问题。
下面就对本门课程总结一、绪论(一)了解土、地基及基础的概念①土是矿物或岩石碎屑构成的松软集合体。
②任何建筑沏都建造在一定的地层(土层或岩层)上。
通常把直接承受建筑物荷载影响的那一部分地层称为地基。
未经人工处理就可以满足设计要求的地基称为天然地基。
如果地基软弱,其承载力不能满足设计要求时,则需对地基进行加固处理(例如采用换土垫层、双层密实、排水固结、比学加固、加筋土技术等方法进行处理),称为人工地基。
③基础是将建筑物承受的各种荷载传递到地基上的下部结构.(二)了解工程构筑物对地基及基础的基本要求①作用于地基上的荷载效应不得超过地基容许承力或地基承载力特征值,保证地基具有足够的防止整体破坏的安全储备;②基础沉降不得超过地基变形容许值,保证建筑物不因地基变形而损坏或影响其正常使用;③挡土墙,边坡以及地基基础保证具有足够防止失稳破坏的安全储备。
二、土的物理性质及工程分类㈠、土的成因和组成1.成因:土是坚硬岩石经过破坏、搬运和沉积等一系列作用和变化后形成的,它是第四纪以来地壳表层最新的、未胶结成岩的松散堆积物。
2.组成:固体颗粒、颗粒间孔隙中的水和气体㈡、土的物理性质和物理状态指标1.土的三相体系:即固态相、液态相与气态相,有时是二相的(干燥或饱水)。
2.三相之间:相互作用,固体相一般居主导地位,而且还不同程度地限制水和气体的作用如不同大小土粒与水相互作用,水可呈不同类型。
㈢、无粘性土:一般是指碎石和砂土㈣、粘性土的物理性质粘性土最主要的特性是稠度1.稠度:粘性土在某一含水量下的软硬程度和土体对外力的抵抗能力。
2.稠度界限:土从一种状态变成另一种状态的含水量界限值㈤、土的结构性1.土的结构:指组成土的土粒大小、形状、表面特征,土粒间的连结关系和土粒的排列情况,其中包括颗粒或集合体间的距离、孔隙大小及其分布特点。
高等土力学课程报告题目:冻融作用对土的物理力学性质的影响学院:学号:专业:姓名:班级:老师:年月日冻融作用对土的物理力学性质的影响摘要:随着外界气候的季节性交替变化,土体也会交替性的出现冻胀和融沉现象。
冻融作用是季节性冻土地区构筑物工程性质劣化的重要原因之一,因此有必要研究冻融作用对土性质的影响。
冻融过程中土结构由于受冷生作用的影响,导致冻融后其物理力学性质发生变化。
在寒区进行路堑开挖、新削边坡和路基修建等工程活动时,会使土体新近暴露于冻融作用之下,在相关的变形和稳定性分析中,必须考虑其物理力学性质的变化。
随着青藏公路和铁路的修建以及其他冻土地区工程建设的广泛开展,我国的寒区岩土工程建设将遇到同样的问题。
本文根据已阅读的文献简要的总结了一下国内外学者关于冻融作用对土的物理力学性质的影响进行相关的研究探索,可供相关施工人员及研究人员参考。
关键词:冻融作用;土;物理力学性质;1 引言在冻土工程中,两种最主要的冻害问题便是冻胀和融沉。
随着地层温度的下降,在热交换的过程中,土体温度达到土中水结晶点,便产生冻结;伴随着土中孔隙水和外给水结晶体、透镜体、冰夹层等形成的冰侵入体,土体积增大,导致地表不均匀上升,这就是冻胀现象。
当土层温度上升时,冻结面的土体产生融化,伴随着土体中冰侵入体的消融,出现沉陷,同时使土体处于饱和或过饱和状态而引起地基承载力的降低,称之为土的融沉现象。
在冻融过程中,土体的性质发生了较大的变化,直接影响着地下工程(地基)及上部建筑物的稳定,如使道路出现裂缝、沉陷、结构断裂、基础上拔等。
同时,在寒区建筑物的建设破坏了冻土区原有的水热收支平衡,使冻土温度场、水分场、应力场发生变化,加剧了地基土体的冻融过程而可能造成更严重的冻害。
因此在各种寒区工程的生产活动中都必须充分考虑冻土的性质及其随冻融状态的不同而产生的变化。
另外,随着社会经济及科学技术的不断发展、人口的逐渐增长和土地使用压力日趋增加,开发地下空间已成为人类扩大生存范围的重要手段和发展趋势。
高等土力学学习总结姓名学号在*老师悉心教导下,通过一个学期对高等土力学的学习,我们对高等土力学有了初步的了解。
在这个学期的十一次课中,我们主要学习了第一、二、三章的内容。
在第一章中,我们学习了土的有效应力原理和应力路径,土是一种分散颗粒的集合体,一般由固、液、气三相物质组成,我们把土颗粒(固相)间直接接触产生的应力叫做土的有效应力,它是土体产生形状和体积变化的根本原因;应力路径是指土体在外荷载作用下,各点应力在应力坐标图中的移动轨迹,应力路径可以分为总应力路径和有效应力路径两种。
第二章中,我们学习了土的压缩固结理论,在这一章中,我们研究了影响压缩实验成果的因素,并讨论了地基沉降计算、单向渗透固结理论中的一些问题及二向三向固结课题、次固结问题等。
第三章中,我们学习了土的抗剪强度问题,分别分析了砂土和粘性土的抗剪强度的组成和影响因素。
下面就各章所学知识点做一个简单的总结:1 有效应力原理及应力路径在第一章有效应力原理及应力路径中,我们学习了有效应力原理的概念,有关面积系数的问题,水下土体和毛细升高带土体中有效应力问题、渗流引起的有效应力问题、外荷载引起的土中超静水压力及其向有效应力的转化,有关术语的概念区别,孔隙压力系数,三相土的空隙气压力和空隙水压力,应力路径及应力路径对土应力—应变关系的影响等问题。
1.1 有效应力土是一种分散颗粒的集合体,一般由固、液、气三相物质组成,我们把土颗粒(固相)间直接接触产生的应力叫做土的有效应力,它是土体产生形状和体积变化的根本原因。
1.2 面积系数问题面积系数主要包括有效应力传递面积系数a和孔隙水面积系数X两种,其中有效应力传递面积系数a也就是土颗粒接触面的面积系数,一般没有可靠的试验手段来测定它,而且它的绝对值对土性无多大意义,所以我们只需着重研究孔隙水面积系数X,并用X反推土断面上的有效应力。
通过饱和水状态下对孔隙水面积系数X的测定,普遍得出X接近并略小于1的结论,这说明土颗粒接触面积相比孔隙水面积非常小,但由于土颗粒的刚度比孔隙水大得多,所以土颗粒接触点上的有效应力也是非常大的。
《土力学》重点、难点及主要知识点一、课程重点、难点1、土的物理性质及工程分类1.1概述、1.2土的组成、1.3土的三相比例指标、1.4无粘性土的密实度、1.5粘性土的物理性质、1.6土的击实性、1.7土的工程分类。
掌握重点:土的物理性质指标、无粘性土和粘性土的物理性质、土的击实性、土的工程分类原则难点:土的物理状态。
2、土的渗透性与渗流2.1概述、2.2土的渗透性、2.3土中二维渗流及流网简介、2.4渗透力与渗透破坏掌握重点:土的渗透规律、二维渗流及流网、渗透力与渗透破坏难点:土的渗透变形。
3、土的压缩性和固结理论3.1土的压缩特性、3.2土的固结状态、3.3有效应力原理、3.4太沙基一维固结理论。
掌握重点:土的压缩性,有效应力原理难点:有效应力原理、一维固结理论4、土中应力和地基沉降计算4.1地基中的自重应力、4.2地基中的附加应力、4.3常用沉降计算方法、4.4地基沉降随时间变化规律的分析掌握重点:地基自重应力及附加应力的计算方法、不同变形阶段应力历史的沉降计算方法、地基最终沉降量计算方法、地基沉降随时间变化规律。
难点:角点法计算附加应力,分层总和法计算地基沉降量。
5、土的抗剪强度5.1土的抗剪强度理论和极限平衡条件、5.2土的剪切试验、5.3三轴压缩试验中孔隙压力系数、5.4饱和粘性土的抗剪强度、5.5应力路径在强度问题中的应用、5.6无粘性土的抗剪强度掌握重点:库仑定律的物理意义、极限平衡条件式、直剪试验测定土的抗剪强度指标、不同排水条件下测定土的抗剪强度指标的方法、剪切试验的其它方法、剪切试验方法的选用、砂土的振动液化、应力路径的概念难点:极度限平衡条件式、抗剪强度指标的选用、应力路径6、土压力6.1土压力类型和静止土压力计算、6.2朗肯土压力理论、6.3库仑土压力理论、6.4几种常见情况下土压力计算。
掌握重点:静止土压力、主动土压力、被动土压力的形成条件、朗肯和库伦土压力理论难点:有超载、成层土、有地下水情况的土压力计算7、地基极限承载力7.1地基变形和破坏类型、7.2地基的临塑荷载及临界荷载、7.3地基承载力的确定掌握重点:握地基承载力确定方法、地基变形和破坏的类型、地基临塑荷载及临界荷载确定地基承载力、根据试验方法确定地基承载力。
摘要:粉土是一种具有特殊工程性质的土,一般把粒度大于0.075mm粒质量小于等于总质量的50%,且塑性指数不大于10的土应定名为粉土。
对粉土的物理、力学等性能研究在岩土工程和土木施工中具有重大的研究意义。
本文就粉土在不同的状态下的特性就现有的研究做了一个归纳。
1 前言
在建筑施工中和岩土工程中,经常会遇见一种塑性较低的土层,其性质与粉砂相近,但同时又兼有粘性土的性质,虽然具有一定的可塑性但同时韧性又很低,强度也很低,相关工作者一般视其为过渡性土来研究。
以上便是粉土最基本的一些特征。
对粉土研究在很长一段时间里并不受重视,而其大规模的研究分析是从人类遭遇几次岩土、地质、土建等灾难过后开始的。
2 粉土的一般特性
2.1 粉土的定义
单独对粉土的性质研究起步还是较晚的。
目前,国际上对粉土的定义还没有完全统一的一个标准,目前我国对粉土的定义为,一般把粒度大于0.075mm(200目),粒质量小于等于总质量的50%,且塑性指数不大于10的土应定名为粉土。
同时,部分单位还将粘粒含量小于0.05mm作为粉土划分的一个指标。
从土的划分上来分析,粉土仍属于细粒土。
从土的土粒粒组的划分规律来看,土的粒度越细小,与水的作用就越强,因此细粒土的分类指标便可以依据界限含水量。
粉土与砂土的区分主要是以粉砂粒组含量下限作为区分,而粉土与粘性土
的区分主要是依据塑性指数。
目前无论是粉土与砂土之间,还是粉土与粘性土之间在粒度和塑性指标上现在都已制定了明确的判定依据,为粉土的工程特性研究提供了必要的参考。
2.2 粉土的成分组成
粉土归根到底是为土的一种,土的物质成分主要包括作为土骨架的固体矿物颗粒、空隙中的水分以及其溶解物质及气体,是由固体颗粒、水溶液和气体三相所组成。
而粉土是介于黏性土与粗粒土之间的一种特殊土,是由粉粒和一小部分粘粒共同构成。
在粉土中,粉粒一般是岩石碎屑,如方解石、石英石、长石、云母等矿物的岩石碎屑组成,塑性和粘性较低,或者根本就不具有塑性和粘性。
另一方面,粘粒具有一定的塑性和粘性,在粉土中其塑性和粘性的强弱也主要取决于其中粘粒的含量多少。
粉土的物理和化学性质也主要是两者共同作用的结果。
同时,由于粉土是介于砂土与粘性土的中间带,因此粉土往往表现出砂土和粘性土的双重性。
2.3 粉土的塑性
粉土的塑性主要由其中的粘性土的可塑性来决定,当粉土中的粉粒较多的被粘粒充填时,粘土表面的弱结合水会引起一定的塑性,这时的粉土颗粒表面与水相互接触并产生作用,使粉土具有一定的塑性和粘滞性,这时粉土的塑性指数可近似接近于10。
同时,我们也要注意到,根据已有的研究成果和工程试验研究,粉土的塑性与粘性土的塑性是有明显差别的。
3 粉土的动力特性研究
3.1 粉土的液化特性
由于粉土是有粉粒和粘粒共同组成,所以在通常时候粉土和砂粒的动力特性和液化机理比较相似,但同时由于粉土的组成成分、空隙中水的性质等原因,粉土的动力特性和液化特性又有自己的特点。
根据目前已有的相关研究资料能得出粉土的动力特性还是比较系统的。
有研究表明,当粉土中砂粒较多时较容易液化,少部分粘粒对粉土液化起阻碍作用,然而当粉土中的粘粒达到一定值以后,粘粒含量增加反而会增强粉土的变形,也就是说,当粉土中的粘粒含量达到一定值之后粉土会随着粘粒的增多而容易被液化。
同时,粉土的液化特性还与密度有关,密度较小的粉土更容易被液化。
3.2 粉土的动强度特性
根据已有的研究成果分析得出,粉土的动力特性主要取决于粉土中粘粒含量的多少。
粉土颗粒中,既有砂粒与粘粒间的相互接触又有粒间结合水膜接触,当粉土中的粘粒含量增加时会促进这几种接触,粘粒实际上起到了润滑剂的作用,增加了粒间的相互接触,也减少了粒间的相互移动时产生的摩擦力,也就导致了粉土强度的降低。
另一方面,由于砂粒自身的强度较高,当有少量粘粒存在时,粘粒能充实在砂粒之间的空隙中,对整个粉土的骨架起到了加固作用。
所以粉粒较多且有少量粘粒的粉土强度较高。
4 粉土的鉴定分析研究
4.1 粉土的鉴定分析
粉土作为土的一种,是介于砂土与粘性土的中间带,是一种过渡
性质的土。
如何对他进行鉴定分析在岩土工程中和土木施工中有着重要的意义。
在关于粉土的鉴定上,一般是不能通过简单的肉眼分辨出来的,在目前的《岩土工程勘察规范》和其他相关应用材料上也没有对粉土的鉴定方法提出明确、统一的指示。
目前在实验室内比较可行的是布置筛分试验和塑限试验。
在野外作业时,工作者一般可以依据以下来判别粉土:
1粉土在较干燥的时候粘结力较弱,容易破碎,经过简单的揉搓就能成为粉末形式。
2粉土的液限和饱和含水量都比较低。
3粉土具有内摩擦角小、强度较低、毛细水上升高度大等物理、力学性质。
4粉土表面比较粗糙,用手触摸粉土颗粒时便会感觉粗糙。
4.2 粉土评价中现存的问题
由于粉土是一种较为特殊的土,是介于砂土与粘性土的中间带一种过渡性质的土,因此粉土在实际岩土工程和实验上仍存在一些问题。
1粉土的塑性具有不确定性,具有液塑性和假塑性,因此若以塑性指标作为粉土的评价标准,有时显得很不准确。
2由于粉土的特性,特别是当粉土中粉砂含量较多时,容易受到外界因素的干扰,给取样带来困难。
如,使孔隙比率降低,导致分析出的粉土承载力较高等不良后果。
5 现有研究中一些关于粉土特性的一些研究成果
5.1 细粒含量的粉土液化特性
1)根据动三轴试验结果,试验粉土抗液化强度并不单纯的随着细粒含量的降低而降低,而是在45%一55%的细粒含量之间存在一个抗液化强度的最低点。
2)细粒含量不同将导致孔压增长的差异,采用“Seed”模型分析了均等固结条件下粉土孔隙水压力的增长规律,并确定出4组不同细粒含量土样的模型系数a的平均取值分别为1.649,1.188,1.183,1.153,随着土中细粒含量的降低,系数口呈下降趋势。
3)虽然Seed孔压模型基于饱和砂土液化的试验结果建立,但本次试验的粉土土样液化的孔压发展基本符合Seed孔压模型,且只需确定一个模型参数,在数值分析上相对简单,具有较强的实用性。
5.2 循环荷载下粉土的变形性状
1)循环荷载下粉土的累积塑性变形与动应力、压实系数、含水率中任一变量的变化规律都受其他2个变量的影响;累积塑性变形随动应力的增大而增大,随含水率的降低而降低,塑性应变试验值随粉土循环塑性应变的预测值与试验值的比较随压实系数的增大而减小,且动应力水平越高、含水率越大、压实系数越小,变化趋势越明显。
2)以Monismith指数模型为基础,并引入应力比口变量,建立了只包含材料常数项的粉土循环累积塑性应变预测模型,通过动应力和静强度2个指标,即可对列车循环荷载下粉土的塑性变形进行预测。
3)循环荷载下粉土的临界动应力约为静强度的50%。
5.3 高含盐粉土的力学特性
1)黄河三角洲粉土是~种较为特殊的土,不仅可溶性盐含量高达2.9%,而且其黏粒含量极低,粉粒含量高,级配差,在工程中难以压实,且强度很低。
2)高含盐粉土的特点是高硅、铝,主要的盐分是CI一、S042一、K++Na+和C032-,水溶盐以Cl-和Na+为主,属氯盐碱性土。
3)原位旁压试验表明,临塑压力只和极限压力异变化不是很大,在10 m以下,其压力值均有较明显的提高。
临塑压力可取350 kPa,极限压力可取500 kPa作为该地层的参考值。
该地区的旁压模量可取1 750 kPa、剪切模量G可以700 kPa作为参考值。
4)室内力学试验表明,该地区粉土开始压密,而后试样出现剪胀,孔隙水压力迅速减小,随着轴向应变达到12%左右,试样达到稳态状态。
对比原位旁压试验和原状土样的三轴试验,得到了不同土层的静止土压力系数。
5.4 不同强度粉土液化的特性
1)真空压缩系统制备土样过程中,土体超孔压在24 h内基本消散完毕,28 d内强度增长较快,28 d后增长趋缓,28 d贯入阻力达300--一400 N,不排水抗剪强度达8 kPa。
2)土的强度与动剪应力比基本呈线性关系。
3)土的强度越高,孔压增长曲线越呈现上凸趋势,破坏时的孔压比也最大;动应力越大,破坏时的孔压比也越小,孔压比曲线越接近直线。