中南大学高等土力学课件__基本概念回顾
- 格式:ppt
- 大小:1.11 MB
- 文档页数:12
高等土力学高等土力学是土木工程领域的一个重要分支,主要研究土壤的力学性质及其在土木工程中的应用。
土力学研究的对象是土壤的物理力学性质和土体在外力作用下的变形和破坏规律,帮助工程师能够正确地选择土壤基础和岩土工程结构设计,确保工程的安全性和可靠性。
土力学基本概念土壤是由固体颗粒、水和空气构成的多相体系,力学性质和结构会随着固体颗粒的类型、粒径和颗粒之间的相互作用、含水量等因素而变化。
土力学研究的基本概念包括以下几个方面:1. 土体力学性质土体的力学性质是指土壤在外力作用下的变形和破坏规律。
它包括土体的弹性性质、塑性性质、强度性质以及变形性质等。
土体在受到外力作用时,会发生弹性、塑性、粘塑性和黏塑性等不同类型的变形,并且会有一定的变形极限和破坏极限。
2. 土体结构土体的结构是指土壤颗粒之间的空隙状态和排列规律。
土壤颗粒之间的接触状态和排列规律会影响土体的力学性质和水力性质。
土体的结构包括颗粒间接触状况、颗粒间的连通性以及孔隙分布和孔隙比等参数。
不同的土体结构对于土体的刚度、渗透性和稳定性会产生重要影响。
3. 土体水力性质土体的水力性质是指土壤中水分的分布和运动规律。
水分含量对土壤的力学性质和稳定状态有重要影响。
土体中的水分可以分为吸附水、毛细水和重力水等不同形式。
高等土力学的应用高等土力学的研究结果将直接应用于土木工程中,确保工程的安全性和可靠性。
以下是高等土力学在工程实践中的一些应用:1. 土壤基础设计土壤基础是土木工程中的重要组成部分,包括建筑物、桥梁、道路等的基础和地基。
通过对土壤岩石的力学性质、结构和水力性质的研究,高等土力学可以对土壤基础进行设计和优化,确保基础的稳定性和承载能力。
2. 土壤侧向力设计土体在侧向力作用下会发生变形和破坏,特别是在边坡、挡墙和隧道施工等工程中。
高等土力学可以通过研究土体的强度性质和侧向变形规律,提供给工程师合理设计和施工,确保工程的稳定性和安全性。
3. 地基处理和加固在某些情况下,土壤的承载力和稳定性不足以满足工程的要求。
中南大学土力学教学安排二、课程的基本要求学完“土力学”后,应达到以下基本要求:①认识土为松散体这一特点,并以此解释土的变形规律、渗透性质、强度特性;②掌握土的物理性质及其基本指标,土的分类,确定土的物理状态和土的定名,以及土的物理性质指标和土的强度和变形的关系;③掌握土中应力分布,地基变形,一维渗透固结理论,库仑——莫尔强度理论;④要求掌握库仑、朗金土压力计算理论及适用范围,以及几种常见情况的土压力计算;⑤掌握土坡稳定的一些基本概念和土坡稳定计算的条分法,了解摩擦圆法和增加土坡稳定的一些措施。
三、课程的基本内容以及重点难点绪论介绍“土力学”的主要内容、任务和工程应用成就。
第一章土的物理力学性质讲授内容:土的生成,土的粒径组成和矿物成分,土中的水和气体,土的三相含量指标,土的物理状态及指标,土的工程分类。
自学内容:土的结构及其联结,土的膨胀、收缩及冻胀。
重点:土的组成,三相含量指标和物理状态指标的计算,土的分类。
上述实验方法和资料整理。
难点:认识土的物理指标和状态指标的变化对土性质的影响。
第二章土的渗透性及水的渗流、第三章土中应力和地基应力分布讲授内容:土中一点的应力状态和应力平衡方程,土的渗透性,饱和土的有效压力和孔隙水压力,在简单受力条件下地基中应力分布,基底的接触应力,刚性基础基底压力简化算法,弹性半无限体内的应力分布。
自学内容:部分饱和土的孔隙压力及有效压力,孔隙压力系数。
重点:土的渗透性和有效压力的概念,饱和土的有效压力和孔隙水压力计算,弹性半无限体内的应力分布计算。
难点:在渗透条件下,土的有效压力和孔隙水压力计算。
第四章土的变形性质及地基沉降计算讲授内容:土的弹性变形性质,土的压缩性,饱和粘土的渗透固结和太沙基一维固结理论,试验方法测定土的变形模量,地基沉降计算,沉降差与倾斜,饱和粘土的沉降过程。
自学内容:太沙基一维固结方程的详细推导和固结度公式的推导。
重点:土的压缩性和压缩性指标,土的固结概念,地基沉降的计算。