数学建模资源分配
- 格式:docx
- 大小:70.11 KB
- 文档页数:11
席位分配问题是一个常见的实际问题,涉及到资源的分配和管理。
为了解决这个问题,我们可以使用数学建模的方法,通过建立数学模型来分析和优化席位的分配方案。
一、问题描述假设有一个大型会议,需要分配给不同的参与者席位。
每个参与者可能有不同的资格和需求,我们需要根据一定的规则来分配席位。
具体问题包括:1. 参与者数量和席位数量2. 参与者的资格和需求3. 席位分配的规则和标准二、数学建模为了解决席位分配问题,我们可以使用以下数学模型:1. 参与者集合P:表示所有的参与者。
2. 席位集合S:表示所有的席位。
3. 资格矩阵A:表示每个参与者的资格情况,每一行表示一个参与者,每一列表示一个资格类型(例如,专业、身份等)。
4. 需求矩阵D:表示每个参与者对席位的需求情况,每一行表示一个参与者,每一列表示一个席位类型(例如,地点、时间等)。
5. 分配规则R:表示席位的分配规则和标准,如按照资格优先、按照需求优先、按照公平分配等。
根据以上描述,我们可以建立如下的数学模型:目标函数:最小化席位浪费(即席位数与参与者需求之差)约束条件:1. 资格约束:每个参与者的资格必须满足分配规则的要求。
2. 需求约束:每个参与者所需席位类型必须得到满足。
3. 数量约束:总的席位数必须不超过总席位数量。
4. 可行性约束:分配的席位必须是有效的,即不存在冲突和重复的情况。
三、求解方法根据上述数学模型,我们可以使用以下方法进行求解:1. 枚举法:逐个尝试所有可能的席位分配方案,找到满足约束条件的方案。
这种方法需要大量的计算时间和空间,但在某些情况下可能找到最优解。
2. 优化算法:使用优化算法如遗传算法、粒子群算法等,通过不断迭代找到最优解。
这种方法需要一定的编程知识和技能,但通常能够快速找到满意的解。
3. 启发式算法:使用启发式算法如模拟退火、蚁群算法等,通过不断尝试找到满意解。
这种方法相对简单易行,但可能无法找到最优解。
4. 数学软件求解:使用专门的数学软件如Matlab、Python等,通过编程求解上述数学模型。
生活中的数学建模生活中的数学建模无处不在,可以帮助我们解决现实生活中的各种问题。
本文将介绍数学建模的概念、应用领域以及实际案例,旨在展示数学建模在我们日常生活中的重要性和影响。
1. 数学建模的概念数学建模是将实际问题转化为数学问题,并运用数学方法进行求解的过程。
它结合了数学理论与实际应用,通过建立数学模型来描述与解释现实现象,为问题的分析和决策提供科学依据。
2. 数学建模的应用领域数学建模广泛应用于各个领域,包括经济学、物理学、生物学、环境科学、医学等。
下面将重点介绍几个常见的应用领域。
2.1 经济学领域在经济学中,数学建模可以用于预测市场走势、量化风险和利润等。
例如,通过建立投资组合模型,投资者可以根据历史数据和数学模型来分析和优化投资组合,以实现最大的收益和最小的风险。
2.2 物理学领域在物理学中,数学建模可以用于解释和预测物理现象。
例如,通过建立数学模型来描述天体运动规律,科学家们可以预测天体的位置和轨迹,为天文学的发展提供重要的理论基础。
2.3 生物学领域在生物学中,数学建模可以用于研究生物系统的行为和相互作用。
例如,通过建立生物传染病传播模型,科学家们可以预测病毒传播速度和传播路径,为疾病控制和预防提供科学依据。
2.4 环境科学领域在环境科学中,数学建模可以用于模拟和预测环境变化。
例如,通过建立气候模型来研究全球变暖的趋势和影响,科学家们可以提出减少温室气体排放的策略,以减缓气候变化的进程。
2.5 医学领域在医学中,数学建模可以用于疾病诊断、治疗和药物研发等方面。
例如,通过建立数学模型来模拟药物在人体内的传输和作用机制,科学家们可以优化药物疗效和副作用的平衡,为药物研发提供指导。
3. 生活中的数学建模实例生活中的数学建模可以帮助我们解决各种实际问题,下面将介绍几个实际案例。
3.1 交通流量优化在城市交通管理中,数学建模可以帮助优化交通流量,减少拥堵现象。
通过建立交通流量模型,研究者可以分析道路的瓶颈和交通信号灯的优化方案,提高交通效率和减少交通事故的发生。
亚太区数学建模c题数学建模在现代科学研究和工程技术领域中扮演着重要的角色。
本文将讨论亚太区数学建模竞赛的C题,并提供一种解决方案。
这个题目是关于人口增长和资源分配的问题。
在这个问题中,我们需要分析一个城市的人口增长和资源分配情况。
根据题目要求,我们需要考虑城市的建筑密度、土地利用率以及资源的供应和需求。
我们的目标是找到一种资源分配方案,使得城市的人口增长和资源利用达到最佳的平衡。
首先,我们需要建立一个数学模型来描述城市的人口增长和资源分配。
我们可以使用差分方程来模拟人口增长的变化,如下所示:$\frac{dP}{dt} = rP(1-\frac{P}{K})$其中,P表示城市的人口数量,t表示时间,r表示人口的增长率,K表示城市的容量上限。
这个方程描述了人口数量随时间变化的规律,考虑到城市的容量限制,人口的增长率会随着人口数量的增加而减小。
接下来,我们需要考虑资源的供应和需求。
假设资源的供应量为S,人口的需求量为D。
我们可以使用一个资源分配模型来描述资源的供应和需求之间的关系,如下所示:$\frac{dS}{dt} = rS(1-\frac{S}{K}) - aD$其中,S表示资源的供应量,D表示人口的需求量,r表示资源的增长率,K表示资源的容量上限,a表示资源供应量对人口需求的影响系数。
这个方程描述了资源供应量随时间变化的规律,考虑到资源的容量限制,资源的增长率会随着资源供应量的增加而减小,而资源的供应量还受到人口需求的影响。
为了找到最佳的资源分配方案,我们需要优化资源供应和人口增长的平衡。
我们可以使用最优化方法,比如说最大化人口增长和资源利用的效率。
我们可以定义一个目标函数,如下所示:$maximize \quad \frac{dP}{dt} - \frac{dS}{dt}$这个目标函数表示了人口增长和资源利用的效率,我们的目标是找到使得目标函数达到最大值的资源分配方案。
最后,我们可以使用数值方法,如Euler方法,来求解这个数学模型。
数学建模解决基本人力资源分配问题091001000摘要中国是一个典型的多人口国家,人口基数大是我国的一个显著特点,但与此同时也给我国带来了一个很大并且很难解决的问题,那就是就业问题。
说到就业问题就不能不谈到人力资源分配问题,多人口也就意味着多劳动力,但劳动力分配不均反而给社会带来了负担。
因此不仅仅是知识型人才的分配,就算是社会基层的工作人员的分配也是很重要的问题。
与此对应的是企业公司的收益问题,收益最大化是每个企业的最终目标这是不可否认的,这样的话,人员分配与收益最大的平衡将成为一个很值得考虑的问题。
本文就针对某中型百货商场如何对售货员的分配使得商场需要的人数最少,支付工资最少这一问题进行建模。
本文建模主要从售货员的人数,售货员的交接及岗位需要的人数与时间来着手分析问题,以配备售货员人数最少为目标来解决问题。
1.问题的重述一家中型的百货商场对售货员的需求经过统计分析如下表所示:为了保证售货员充分休息,要求售货员每周工作五天,休息两天,并要求休息的两天是连续的,应如何安排售货员的休息日期,既满足工作需要,又要使配备的售货员的人数最少?2.问题的分析在本模型中,要解决售货员分配人数最少的问题,最先要明白的是售货员的人员分配方式及每天所需的售货员人数,其次要注意的是对售货员连续两天休息时间的安排。
从题中可看出,售货员的时间安排都应该是5天工作2天休息接着再是5天工作2天休息,为使配备人员最少就要使得各售货员之间的工作与休息时间衔接好。
因为每个售货员都工作5天,休息2天,所以只要计算出连续休息2天的售货员人数,也就计算出了售货员的总数。
把连续休息2天的售货员按照开始休息的时间分成7类,再按照每天所需的售货员的人数写出约束条件,即可建立模型,求出最优方案。
3.假设与符号X1,X2,...,X7分别表示从星期一,二,…,日开始休息的人数Min=X1+X2+X3+X4+X5+X6+X7为所要求的目标函数4.模型的建立与求解目标函数为:X1+X2+X3+X4+X5+X6+X7.再按照每天所需售货员的人数写出约束条件。
数学建模分配问题模型数学建模是一种通过数学方法解决实际问题的方法。
在实际生活中,我们经常会遇到分配问题,即将一定数量的资源分配给不同的需求方。
这些资源可以是金钱、人力、材料等,需求方可以是个人、企业、机构等。
为了合理地分配资源,我们可以使用数学建模的方法进行分析和优化。
一般来说,分配问题可以分为两类:最优化问题和约束问题。
最优化问题的目标是使得某个指标达到最大或最小值,比如最大化利润、最小化成本等。
约束问题则是在一定的条件下寻找满足需求的最优解。
下面我们将分别介绍这两类问题的数学建模方法。
对于最优化问题,我们首先需要确定一个目标函数。
目标函数描述了我们希望优化的指标,可以是一个或多个变量之间的函数关系。
然后,我们需要确定一组约束条件。
约束条件反映了资源的限制以及需求方的限制,可以是等式或不等式。
最后,我们需要确定决策变量,即需要分配的资源量或决策方案。
通过求解目标函数在约束条件下的最优解,就可以得到最佳的分配方案。
以货物运输为例,假设有一批货物需要从仓库分配给不同的销售点,我们希望通过最优化分配来降低运输成本。
我们可以将每个销售点的需求量作为约束条件,将货物的运输成本作为目标函数。
然后,我们需要确定每个销售点的分配量作为决策变量,通过求解目标函数在约束条件下的最优解,就可以得到最佳的分配方案,从而降低运输成本。
对于约束问题,我们需要确定一组约束条件,这些条件可能是资源的限制、需求方的限制或其他限制。
然后,我们需要确定决策变量,即需要分配的资源量或决策方案。
通过在约束条件下寻找满足需求的最优解,就可以得到合理的分配方案。
以人力资源分配为例,假设有一定数量的员工需要分配到不同的项目中,每个项目对员工的技能要求不同。
我们希望通过合理的分配来最大化项目的效益。
我们可以将每个项目的效益作为约束条件,将员工的技能水平作为决策变量。
通过在约束条件下寻找满足需求的最优解,就可以得到最佳的分配方案,从而最大化项目的效益。
基于数学建模的资源优化分配模型资源优化分配模型是一种基于数学建模方法的决策模型,旨在通过合理的资源分配策略来实现资源的最大化利用和效益。
在资源优化分配模型中,首先需要确定目标函数,即所需优化的目标。
目标函数可以根据具体的应用场景来确定,如最大化利润、最小化成本、最大化效益、最大化服务质量等。
根据目标函数的设定,可以进一步确定约束条件和决策变量。
约束条件是指对资源分配进行限制的条件。
这些约束条件可以是资源的供给限制、技术限制、市场条件等。
例如,一家生产企业在分配生产资源时可能会考虑工人的工作时间、机器的使用时间、原材料的供应量等。
这些约束条件需要根据实际情况加以确定,并在模型中进行描述和考虑。
决策变量是指在资源分配过程中可供调整的变量。
决策变量的选取与模型的复杂性和实际可行性有关。
常见的决策变量包括:产品生产量、资源的分配比例、生产线的配置等。
在实际应用中,决策变量的选取需要综合考虑多个方面的因素,例如成本、效益、风险等。
在基于数学建模的资源优化分配模型中,常用的数学方法包括线性规划、整数规划、动态规划、模拟等。
不同的数学方法适用于不同的问题,根据实际情况选择合适的方法进行建模和求解。
线性规划是一种常用的数学方法,适用于目标函数和约束条件都是线性关系的问题。
线性规划通过数学优化理论和算法来求解最优的资源分配方案。
整数规划则是在线性规划的基础上增加了整数变量的限制,在某些问题中可以更好地反映实际情况。
动态规划是一种适用于具有重叠子问题和最优子结构性质的问题的优化方法。
通过将问题分解为多个子问题,并保存子问题的最优解,动态规划可以高效求解问题的最优解。
在资源优化分配模型中,动态规划可以用于处理具有时序关系的问题,例如生产计划、库存管理等。
模拟是一种基于随机数生成的数学方法,适用于对不确定性因素进行建模和分析的问题。
通过随机数的生成和运算,模拟可以模拟一系列可能的情况,从而评估各种资源分配策略的效果。
在资源优化分配模型中,模拟可以用于评估不同决策方案的风险和不确定性。
数学建模中的优化算法应用实例数学建模是一种有效的解决实际问题的方法,而优化算法则是数学建模中不可或缺的工具之一。
优化算法能够寻找最优解,最大化或最小化某个目标函数,有着广泛的应用领域。
本文将介绍数学建模中的几个优化算法应用实例,以展示其在实际问题中的作用和价值。
一、车辆路径规划优化在实际的物流配送领域中,如何合理地规划车辆路径,使得总运输成本最小、配送效率最高,是一个关键问题。
优化算法在车辆路径规划中起到了至关重要的作用。
通过建立数学模型,基于某个目标函数(如最小化总运输成本),可以采用遗传算法、模拟退火算法等优化算法,快速找到最优解,从而提高物流配送的效率和效益。
二、资源分配优化在资源分配问题中,常常需要考虑到各种限制条件,如最大化利润、最小化生产成本等。
优化算法能够帮助决策者在有限的资源下做出最优的分配决策。
例如,对于生产调度问题,可以利用线性规划等优化算法,将生产计划与订单需求进行匹配,使得生产成本最小化、交货期最短化。
三、供应链优化供应链管理中的优化问题也是实际应用中的重点关注点之一。
通过数学建模和优化算法,可以实现供应链中物流、库存、订单等多个环节的优化。
例如,在供应链网络设计中,可以使用整数规划算法来寻找最优仓储和配送中心的位置,从而降低总运输成本;在需求预测和库存管理中,可以利用模拟退火算法等优化算法,提高供应链的响应速度和利润率。
四、机器学习模型参数优化在机器学习领域,模型参数的选择对模型的性能和准确性有着重要的影响。
通过建立数学模型,可以将模型参数优化问题转化为参数寻优问题,进而采用优化算法求得最优参数。
例如,在神经网络的训练过程中,可以利用遗传算法、粒子群优化算法等进行参数调整,提高模型的预测准确性和泛化能力。
五、能源系统优化能源系统的优化是实现可持续发展的重要方向之一。
通过优化算法,可以针对能源系统进行容量规划、发电机组简化和能源分配等问题的优化。
例如,在微电网系统优化中,可以利用整数规划等算法,实现可再生能源与传统能源的协同供电,最大化清洁能源的利用率。
数学建模在资源分配中的应用数学建模是一种通过建立数学模型来解决实际问题的方法。
它的应用范围非常广泛,其中之一就是在资源分配中的应用。
资源分配是一项重要的决策过程,不仅涉及到经济、环境等方面的问题,也牵涉到社会公平和效率等方面的考量。
在资源分配中,数学建模可以提供决策者们一个量化的工具,帮助他们做出科学合理的决策,以实现资源的最优配置。
一、问题描述在资源分配中,我们可以遇到各种各样的问题。
比如,一个城市有多个公园和多个学校,如何合理地分配教育资源和休闲资源成为了一个重要的问题。
这个问题可以用数学建模来解决。
我们需要考虑多个因素,比如学校的位置、学生人数、学校的规模等,以及公园的位置、面积、居民数量等。
通过建立数学模型,我们可以得到一个最优的资源配置方案。
二、数学建模数学建模可以从不同的角度出发,具体的建模方法也有所不同。
在资源分配中,一种常用的建模方法是线性规划。
线性规划是一种通过线性的数学模型来描述问题,并通过最小化或最大化一个线性目标函数来得到最优解的方法。
在我们的问题中,可以将公园和学校看作是决策变量,可以设置一个线性目标函数,比如使得公园面积与学校规模的乘积最大化,来优化资源的分配。
同时,我们还需要加入一些约束条件,比如每个学校的学生数量不得超过规定的上限,以及每个公园的面积不得超过规定的上限等等。
通过解决这个线性规划问题,我们可以得到一个最优的资源分配方案。
三、模型求解要求解线性规划问题,我们可以使用一些数学软件,比如MATLAB、Python等。
这些软件提供了一些强大的数值计算和优化工具,可以帮助我们高效地求解问题。
首先,我们需要将问题转化为数学模型并进行数值计算。
然后,通过这些数学软件提供的优化算法,可以得到一个最优解。
同时,我们还可以对模型进行灵敏度分析,比如调整一些参数的值,观察最优解的变化情况,以评估模型的鲁棒性和稳定性。
四、实际应用数学建模在资源分配中的应用不仅仅局限于公园和学校的问题,还可以应用于其他领域。
中学数学建模经典例题中学数学建模经典例题包括:1.最大利润问题:某公司生产一种产品,每件成本为3元,售价为10元,年销售量为10万件。
为了扩大销售量,公司计划通过广告宣传来增加销售量。
经调查发现,广告费用与年销售量之间的关系可以近似地用函数y=−0.2x+10来表示,其中x为广告费用(单位:万元)。
问:广告费用为多少时,公司可获得最大年利润?2.最小费用问题:某公司需要将货物从甲地运往乙地,由于路途遥远,需要采用飞机、火车、汽车三种运输方式来完成。
运输方式的费用分别为x万元、y万元、z万元。
三种运输方式的单程运输能力分别为10万吨、15万吨、5万吨,而货物的总重量为35万吨。
为确保运输过程顺利进行,单程运输能力不能超过总重量。
请为该公司设计一个总费用最少的运输方案,并求出最少的总费用。
3.最小路径问题:某城市有若干个居民小区,每个小区有一定数量的居民。
为了方便居民出行,市政府计划修建地铁连接这些小区。
已知任意两个小区之间的距离可以近似地用欧几里得距离来表示,而修建地铁的费用与小区之间的距离成正比。
问:市政府应该如何规划地铁线路,使得总费用最低?4.人口预测问题:某城市的人口数量在过去几年里呈现出指数增长的趋势。
已知该城市的人口数量在过去的几年中每年以10%的速度增长,并且目前该城市的人口数量为50万。
我们要预测未来5年该城市的人口数量。
5.资源分配问题:某公司拥有一定的资源,需要将其分配给若干个项目以获得最大的收益。
每个项目的收益与分配到的资源数量成正比,而不同项目之间的收益增加率是不同的。
问:公司应该如何分配资源,使得总收益最大?这些例题涵盖了中学数学建模的多个方面,包括函数模型、最优化问题、线性规划等。
通过这些例题的解答,可以帮助学生提高数学建模的能力和解题技巧。
数学建模资源分配目录一、问题重述 (3)二、符号说明 (3)三、模型假设 (4)四、问题分析 (4)五、模型建立与求解 (5)六、模拟程序设计 (7)七、误差分析 (8)八、模型的应用 (8)九、模型评价 (8)十、小结 (9)十一、参考文献 (11)一、问题重述某储蓄所每天的营业时间是上午九点到下午五点,根据经验每天不同的时间段所需要的服务员数量如下:9-10 10-11 11-12 12-1 1-2 2-3 3-4 4-5时间段(时)服务员4 3 4 656 8 8数量储蓄所可以雇佣全时和半时两类服务员。
全时服务员每天报酬100元,从上午9;00到下午5:00,但中午12:00到下午2:00之间必须安排一小时的午餐时间。
储蓄所每天可以雇佣不超过3名的半时服务员,每个半时服务员必须连续工作4小时,报酬40元。
问该储蓄所应如何雇佣全时和半时两类服务员?如果不能雇佣半时服务员,每天至少增加多少费用?如果雇佣半时服务员的数量没有限制,每天可以减少多少费用?二、符号说明y1,y2,y3,y4,y5——————1:00至2:00为x2.半时服务员从9:00至1:00以小时为单位的人数;x1————————————12:00至1:00为为全时服务员人数;x2————————————1:00至2:00为为全时服务员人数;三、模型假设1.题中所给的数据是在微小的范围内变化的数据。
2.所给的数据基本上有效。
3.目标函数就是所求的资源分配方案。
四、问题分析本问题是一个资源决策分配的最优化问题数学模型。
主要是针对根据不同的报酬雇佣全时与半时服务员的如何分配问题, 首先应定义了相关的决策变量,对不同的条件约束,列出对应的目标函数,利用相关的工具进行操作,最后对结果进行分析.问题的关键1. 定义相关的决策变量. 列出目标函数。
2. 转化为定量说明。
3. 列出目标函数。
(1)分析问题,收集资料。
需要搞清楚需要解决的问题,分析有可能的情况。
(2)建立模拟模型,编制模拟程序。
按照一般的建模方法,对问题进行适当的假设。
也就是说,模拟模型未必要将被模拟系统的每个细节全部考虑。
模拟模型的优劣将通过与实际系统有关资料的比较来评价。
如果一个“粗糙”的模拟模型已经比较符合实际系统的情况,也就没有必要建立费时、复杂的模型。
当然,如果开始建立的模型比较简单,与实际系统相差较大,那么可以在建立了简单模型后,逐步加入一些原先没有考虑的因素,直到模型达到预定的要求为止。
编写模拟程序之前,要先画出程序框图或写出算法步骤。
然后选择合适的计算机语言,编写模拟程序。
(3)运行模拟程序,计算结果。
为了减小模拟结果的随机性偏差,一般要多次运行模拟程序。
(4)分析模拟结果,并检验。
模拟结果一般说来反映的是统计特性,结果的合理性、有效性,都需要结合实际的系统来分析,检验,以便提出合理的对策、方案。
以上步骤是一个反复的过程,在时间和步骤上是彼此交错的。
比如模型的修改和改进,都需要重新编写和改动模拟程序。
模拟结果的不合理,则要求检查模型,并修改模拟程序。
五、模型建立与求解问题一的回答设全时服务员每天雇佣时间从12:00至1:00人数为x1,1:00至2:00为x2.半时服务员从9:00至1:00以小时为单位分别为y1,y2,y3,y4,y5.则列出模型如下:Min=100x1+100x2+40y1+40y2+40y3+40y4+40y5约束条件如下:x1+x2+y1>=4x1+x2+y1+y2>=3x1+x2+y1+y2+y3>=4x2+y1+y2+y3+y4>=6x1+y2+y3+y4+y5>=6x1+x2+y4+y5>=8x1+x2+y5>=8y1+y2+y3+y4+y5<=3x1,x2,y1,y2,y3,y4,y5>=0,且为整数.所求的结果如下由结果分析:问题一的回答:雇佣全时服务员7人,半时服务员3人.其中12:00-1:00全时服务员3名,1:00-2:00全时服务员4名。
11:00-12:00雇佣半时服务员2人,12:00-1:00雇佣半时服务员1人。
.问题二的回答:不能雇佣半时服务员,则全时服务员11人,其中12:00-1:00全时服务员5名,1:00-2:00全时服务员6名。
最小费用1100元,即每天至少增加280元.问题三的回答:如果雇佣半时服务员的数量没有限制,则应雇佣全时服务员0人,半时服务员14人,其中雇佣半时服务员9:00——10:00为4人,11:00-12:00为2人,12:00-1:00为8人。
且最少费用560元,即每天减少260元.六、模拟程序设计Max =-100*x1-100*x2-40*y1-40*y2-40*y3-40*y4-40*y5; x1+x2+y1>=4;x1+x2+y1+y2>=3;x1+x2+y1+y2+y3>=4;x2+y1+y2+y3+y4>=6;x1+y2+y3+y4+y5>=6;x1+x2+y4+y5>=8;x1+x2+y5>=8;y1+y2+y3+y4+y5<=3;y1+y2+y3+y4+y5<=3;end七、误差分析对于题目中给出的数据,采用了直接使用,这对问题的回答不会造成影响。
对于问题中的要求人员应为整数解,这对于模型的建立没有影响,但对模型的求解法求解是基于表达式的,所以在模型求解时存在一定的误差。
八、模型的应用本模型可用于资源决策分配的最优化问题数学模型的问题,适用范围广,操作简单。
如产品分发问题,时间安排问题,股票投资问题等九、模型评价模型的优点:模型实用范围较广,问题结果清晰透彻,具有合理可靠性,适用于多个同类问题。
模型的缺点:模型操作得细心,需使用多种数据处理工具。
十、小结数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。
它给学生再现了一种“微型科研”的过程。
数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。
同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。
使用数学语言描述的事物就称为数学模型。
有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
1. 只有经历这样的探索过程,数学的思想、方法,才能沉积、凝聚,从而使知识具有更大的智慧价值。
动手实践、自主探索与合作交流是学生学习数学的重要方式。
学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。
因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。
教师不应只是“讲演者”,而应不时扮演下列角色:参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。
询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。
仲裁者和鉴赏者——评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。
2. 数学建模对教师、对学生都有一个逐步的学习和适应的过程。
教师在设计数学建模活动时,特别应考虑学生的实际能力和水平,起始点要低,形式应有利于更多的学生能参与。
在开始的教学中,在讲解知识的同时有意识地介绍知识的应用背景,在数学模型的应用环节进行比较多的训练;然后逐步扩展到让学生用已有的数学知识解释一些实际结果,描述一些实际现象,模仿地解决一些比较确定的应用问题;再到独立地解决教师提供的数学应用问题和建模问题;最后发展成能独立地发现、提出一些实际问题,并能用数学建模的方法解决它。
3.由于知识产生和发展过程本身就蕴含着丰富的数学建模思想,因此老师既要重视实际问题背景的分析、参数的简化、假设的约定,还要重视分析数学模型建立的原理、过程,数学知识、方法的转化、应用,不能仅仅讲授数学建模结果,忽略数学建模的建立过程。
4.数学应用与数学建模的目的并不是仅仅为了给学生扩充大量的数学课外知识,也不是仅仅为了解决一些具体问题,而是要培养学生的应用意识,提高学生数学能力和数学素质。
因此我们不应该沿用老师讲题、学生模仿练习的套路,而应该重过程、重参与,从小培养学数学已经成为当代高科技的一个重要组成部分和思想库,培养学生应用数学的意识和能力也已经成为数学教学的一个重要方面。
而应用数学去解决各类实际问题就必须建立数学模型。
小学数学教学的过程其实就是教师引导学生不断建模和用模的过程。
因此,用建模思想指导小学数学教学显得愈发重要。
十一、参考文献[1] 熊启才,《数学模型方法及应用》,重庆:重庆大学出版社,2005.[2] 姜启源,谢金星,叶俊,《数学建模》,高等教育出版社,2010.11。