【精品】指对数函数的典型练习题
- 格式:pdf
- 大小:1.67 MB
- 文档页数:11
对数函数练习题(有答案)1.函数y =log (2x -1)(3x -2)的定义域是( )A .⎝⎛⎭⎫12,+∞B .⎝⎛⎭⎫23,+∞C .⎝⎛⎭⎫23,1∪(1,+∞)D .⎝⎛⎭⎫12,1∪(1,+∞) 2.若集合A ={ x |log 2x =2-x },且 x ∈A ,则有( )A .1>x 2>xB .x 2>x >1C .x 2>1>xD .x >1>x 23.若log a 3>log b 3>0,则 a 、b 、1的大小关系为( )A .1<a <bB .1 <b <aC .0 <a <b <1D .0 <b <a <14.若log a 45<1,则实数a 的取值范围为( ) A .a >1 B .0<a <45 C .45<a D .0<a <45或a >1 5.已知函数f (x )=log a (x -1)(a >0且 a ≠1)在x ∈(1,2)时,f (x )<0,则f (x )是A .增函数B .减函数C .先减后增D .先增后减6.如图所示,已知0<a <1,则在同一直角坐标系中,函数y =a -x 和y =log a (-x )的图象只可能为( )7.函数y =f (2x )的定义域为[1,2],则函数y =f (log 2x )的定义域为 ( )A .[0,1]B .[1,2]C .[2,4]D .[4,16]8.若函数f (x )=log12()x 3-ax 上单调递减,则实数a 的取值范围是 ( )A .[9,12]B .[4,12]C .[4,27]D .[9,27]9.函数y =a x -3+3(a >0,且a ≠1)恒过定点__________.10.不等式⎝⎛⎭⎫1310-3x<3-2x 的解集是_________________________. 11.(1)将函数f (x )=2x 的图象向______平移________个单位,就可以得到函数g (x )=2x -x 的图象.(2)函数f (x )=⎝⎛⎭⎫12|x -1|,使f (x )是增区间是_________. 12.设 f (log 2x )=2x (x >0).则f (3)的值为 .13.已知集合A ={x |2≤x ≤π,x ∈R}.定义在集合A 上的函数f (x )=log a x (0<a <1)的最大值比最小值大1,则底数a 为__________.14.当0<x <1时,函数y =log (a 2-3)x 的图象在x 轴的上方,则a 的取值范围为________.15.已知 0<a <1,0<b <1,且a log b (x -3)<1,则 x 的取值范围为 . 16.已知 a >1,求函数 f (x )=log a (1-a x )的定义域和值域.17.已知 0<a <1,b >1,ab >1,比较log a 1b ,log a b ,log b 1b的大小.18.已知f (x )=log a x 在[2,+ ∞ )上恒有|f (x )|>1,求实数a 的取值范围.19.设在离海平面高度h m 处的大气压强是x mm 水银柱高,h 与x 之间的函数关系式为:h =k ln x c,其中c 、k 都是常量.已知某地某天在海平面及1000 m 高空的大气压强分别是760 mm 水银柱高和675 mm 水银柱高,求大气压强是720 mm 水银柱高处的高度.20.已知关于x 的方程log 2(x +3)-log 4x 2=a 的解在区间(3,4)内,求实数a 的取值范围.参考答案:1.C 2.B 3.A 4.D 5.A 6.B 7.D 8.A9.(3,4) 10.{x |_x <2} 11.右,2;(-∞,1), 12.25613.2π14.a ∈(-2,-3)∪(3,2) 15.(3,4)16.解 ∵ a >1,1-a x >0,∴ a x <1,∴ x <0,即函数的定义域为(-∞ ,0).∵ a x >0且a x <1,∴ 0<1-a x <1 ∴log a (1-a x )<0,即函数的值域是(-∞ ,0).17.解 ∵ 0<a <1,b >1,∴ log a b <0,log b 1b =-1,log a 1b >0,又ab >1,∴ b >1a >1,log a b <log a 1a=-1,∴ log a b <log b51b <log a 1b.18.解 由|f (x )|>1,得log a x >1或log a x <-1.由log a x >1,x ∈[2,+∞ )得 a >1,(log a x )最小=log a 2,∴ log a 2>1,∴ a <2,∴ 1<a <2;由log a x <-1,x ∈[2,+ ∞ )得 0<a <1,(log a x )最大=log a 2,∴ log a 2<-1,∴ a >12, ∴12<a <1. 综上所述,a 的取值范围为(12,1 )∪(1,2).19.解 ∵ h =k ln x c,当 x =760,h =0,∴ c =760. 当x =675时,h =1 000,∴ 1 000=k ln 675760=k ln0.8907 ∴ k =1000ln0.8907=1000lg e lg0.8907当x =720时,h =1000lg e lg0.8907ln 720760=1000lg e lg0.8907·ln0.9473=1000lg e lg0.8907·lg0.9473lg e≈456 m . ∴ 大气压强为720 mm 水银柱高处的高度为456 m .20.本质上是求函数g (x )=log 2(x +3)-log 4x 2 x ∈(3,4)的值域.∵ g (x )=log 2(x +3)-log 4x 2=log 2(x +3)-log 2x =log 2x +3x =log 2⎝⎛⎭⎫1+1x ∈⎝⎛⎭⎫log 254,log 243 ∴ a ∈⎝⎛⎭⎫log 254,log 243.。
指数函数对数函数专练习题含答案-V1
本篇文章将针对指数函数和对数函数的专练习题含答案做重新整理,主要分为以下几个部分:
一、指数函数部分练习题
1、简单的指数函数练习题
如:化简y=2^x+2^x
解答:y=2^x+2^x=2*2^x=2^(x+1)
2、指数函数的性质
如:已知y=2^x,求y在x=3处的切线方程
解答:y'=ln2*2^x,当x=3时,y'=ln2*2^3=8ln2
切线方程:y-2^3=8ln2(x-3),即y=8ln2x-16ln2
3、指数函数与对数函数的综合练习
如:已知y=log2x,求y=2^x的解
解答:当y=log2x时,x=2^y
将x=2^y带入y=2^x,得到:y=2^(2^y)
令f(x)=2^x-x,则f'(x)=ln2*2^x-1>0,所以f(x)单增
故f(x)=0的解唯一,即y=2^x的解唯一,即y=log2(2^y)
二、对数函数练习题
1、简单的对数函数练习题
如:化简y=log(a^2b^3/(ab)^2)
解答:y=log(a^2b^3)-log(a^2b^2)=logb
2、对数函数的性质
如:已知y=logax,z=logbx,求y和z的关系式
解答:由对数函数的换底公式,可得y=logbx/logba,z=logbx
式中,x>0,且a、b均大于0且不等于1
3、对数函数与指数函数的综合练习
如:已知y=log2x,求y=2^x的解
解答:将x=2^y带入y=log2x,得到y=y*log2(2),
即y=0或y=1,因此,x=1或x=2
以上是指数函数和对数函数中的一些练习题,希望对大家的学习有所帮助。
对数函数精选练习题(带答案)1.函数y =log 23(2x -1)的定义域是( )A .[1,2]B .[1,2) C.⎣⎡⎦⎤12,1 D.⎝⎛⎦⎤12,1答案 D解析 要使函数解析式有意义,须有log 23(2x -1)≥0,所以0<2x -1≤1,所以12<x ≤1,所以函数y =log 23(2x -1)的定义域是⎝⎛⎦⎤12,1.2.函数f (x )=log a (x +b )的大致图象如图,则函数g (x )=a x -b 的图象可能是( ) 答案 D解析 由图象可知0<a <1且0<f (0)<1,即⎩⎪⎨⎪⎧0<a <1, ①0<log a b <1, ②解②得log a 1<log a b <log a a ,∵0<a <1,∴由对数函数的单调性可知a <b <1, 结合①可得a ,b 满足的关系为0<a <b <1,由指数函数的图象和性质可知,g (x )=a x -b 的图象是单调递减的,且一定在y =-1上方.故选D.3.(2017·北京高考)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN 最接近的是( ) (参考数据:lg 3≈0.48)A .1033B .1053C .1073D .1093 答案 D解析 由题意,lg M N =lg 33611080=lg 3361-lg 1080=361lg 3-80lg 10≈361×0.48-80×1=93.28. 又lg 1033=33,lg 1053=53,lg 1073=73,lg 1093=93,故与MN 最接近的是1093.故选D.4.已知函数f (x )是偶函数,定义域为R ,g (x )=f (x )+2x ,若g (log 27)=3,则g ⎝⎛⎭⎫log 217=( )A .-4B .4C .-277 D.277 答案 C解析 由g (log 27)=3可得,g (log 27)=f (log 27)+7=3,即f (log 27)=-4,则g ⎝⎛⎭⎫log 217=f (-log 27)+17=-4+17=-277.5.已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,则f (log 49)=( ) A .-13 B .-12 C.12 D.32 答案 A解析 因为log 49=log 29log 24=log 23>0,f (x )为奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-f (-log 23)=-2-log 23=-2log2 13=-13.6.设a =log 54-log 52,b =ln 23+ln 3,c =1012 lg 5,则a ,b ,c 的大小关系为( )A .a <b <cB .b <c <aC .c <a <bD .b <a <c答案 A解析 由题意得,a =log 54-log 52=log 52,b =ln 23+ln 3=ln 2,c =10 12 lg 5=5,得a =1log 25,b =1log 2e ,而log 25>log 2e>1,所以0<1log 25<1log 2e <1,即0<a <b <1.又c =5>1.故a <b <c .故选A.7.(2017·全国卷Ⅰ)已知函数f (x )=ln x +ln (2-x ),则( ) A .f (x )在(0,2)单调递增 B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称 答案 C解析 f (x )的定义域为(0,2).f (x )=ln x +ln (2-x )=ln [x (2-x )]=ln (-x 2+2x ).设u =-x 2+2x ,x ∈(0,2),则u =-x 2+2x 在(0,1)上单调递增,在(1,2)上单调递减.又y =ln u 在其定义域上单调递增,∴f (x )=ln (-x 2+2x )在(0,1)上单调递增,在(1,2)上单调递减. ∴选项A ,B 错误.∵f (x )=ln x +ln (2-x )=f (2-x ),∴f (x )的图象关于直线x =1对称,∴选项C 正确.∵f (2-x )+f (x )=[ln (2-x )+ln x ]+[ln x +ln (2-x )]=2[ln x +ln (2-x )],不恒为0, ∴f (x )的图象不关于点(1,0)对称,∴选项D 错误.故选C. 8.已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( )A .(a -1)(b -1)<0B .(a -1)(a -b )>0C .(b -1)(b -a )<0D .(b -1)(b -a )>0 答案 D解析 因为log a b >1,所以a >1,b >1或0<a <1,0<b <1,所以(a -1)(b -1)>0,故A 错误; 当a >1时,由log a b >1,得b >a >1,故B ,C 错误.故选D.9.(2019·北京模拟)如图,点A ,B 在函数y =log 2x +2的图象上,点C 在函数y =log 2x 的图象上,若△ABC 为等边三角形,且直线BC ∥y 轴,设点A 的坐标为(m ,n ),则m =( ) A .2 B .3 C. 2 D.3 答案 D解析 因为直线BC ∥y 轴,所以B ,C 的横坐标相同;又B 在函数y =log 2x +2的图象上,点C 在函数y =log 2x 的图象上,所以|BC |=2.即正三角形ABC 的边长为2.由点A 的坐标为(m ,n ),得B (m +3,n +1),C (m +3,n -1),所以⎩⎪⎨⎪⎧n =log 2m +2,n +1=log 2(m +3)+2,所以log 2m +2+1=log 2(m +3)+2,所以m = 3.10.(2018·湖北宜昌一中模拟)若函数f (x )=log 0.9(5+4x -x 2)在区间(a -1,a +1)上递增,且b =lg 0.9,c =20.9,则( )A .c <b <aB .b <c <aC .a <b <cD .b <a <c 答案 B解析 由5+4x -x 2>0,得-1<x <5, 又函数t =5+4x -x 2的对称轴方程为x =2, ∴复合函数f (x )=log 0.9(5+4x -x 2)的增区间为(2,5),∵函数f (x )=log 0.9(5+4x -x 2)在区间(a -1,a +1)上递增,∴⎩⎪⎨⎪⎧a -1≥2,a +1≤5,则3≤a ≤4,而b =lg 0.9<0,1<c =20.9<2,所以b <c <a .11.(2019·石家庄模拟)设方程10x =|lg (-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=0 C .x 1x 2>1 D .0<x 1x 2<1答案 D解析 作出y =10x 与y =|lg (-x )|的大致图象,如图.显然x 1<0,x 2<0.不妨设x 1<x 2,则x 1<-1,-1<x 2<0, 所以10 x 1=lg (-x 1),10 x 2=-lg (-x 2), 此时10 x 1<10 x 2, 即lg (-x 1)<-lg (-x 2), 由此得lg (x 1x 2)<0,所以0<x 1x 2<1.12.函数y =log a (x -1)+2(a >0,且a ≠1)的图象恒过的定点是________. 答案 (2,2)解析 令x =2得y =log a 1+2=2,所以函数y =log a (x -1)+2的图象恒过定点(2,2).13.(2019·成都外国语学校模拟)已知2x =3,log 483=y ,则x +2y 的值为________.答案 3解析 因为2x =3,所以x =log 23.又因为y =log 483=12log 283,所以x +2y =log 23+log 283=log 28=3. 14.(2018·兰州模拟)已知函数y =log a x (2≤x ≤4)的最大值比最小值大1,则a 的值为________. 答案 2或12解析 ①当a >1时,y =log a x 在[2,4]上为增函数. 由已知得log a 4-log a 2=1,所以log a 2=1,所以a =2. ②当0<a <1时,y =log a x 在[2,4]上为减函数. 由已知得log a 2-log a 4=1,所以log a 12=1,a =12.综上知,a 的值为2或12.15.若函数f (x )=log a ⎝⎛⎭⎫x 2+32x (a >0,且a ≠1)在区间⎝⎛⎭⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为________.答案 (0,+∞)解析 令M =x 2+32x ,当x ∈⎝⎛⎭⎫12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =⎝⎛⎭⎫x +342-916,因此M 的单调递增区间为⎝⎛⎭⎫-34,+∞.又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞).16.(2019·江苏南京模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 12 x ,x ≥2,2a x -3a ,x <2(其中a >0,且a ≠1)的值域为R ,则实数a 的取值范围为________. 答案 ⎣⎡⎭⎫12,1解析 由题意,分段函数的值域为R ,故其在(-∞,2)上应是单调递减函数,所以0<a <1,根据图象可知,log 122≥2a 2-3a ,解得12≤a ≤1.综上,可得12≤a <1.。
对数函数练习题一、选择题1. 函数y=log_{2}x的值域是:A. (-∞,0)B. (0,+∞)C. (-∞,+∞)D. [0,+∞)2. 对数函数y=log_{a}x(a>0且a≠1)的图象恒过定点:A. (0,1)B. (1,0)C. (1,1)D. (0,0)3. 若log_{a}b>log_{a}c,则a,b,c的大小关系是:A. a>b>cB. 0<a<b<cC. a<b<cD. 无法确定4. 对于函数f(x)=log_{3}(1-2x),其定义域是:A. (-∞,1/2)B. (1/2,+∞)C. (-∞,1]D. (-∞,0]5. 函数y=log_{4}x在其定义域内是:A. 单调递增B. 单调递减C. 先增后减D. 先减后增二、填空题1. 已知log_{5}25=2,则log_{5}5的值为______。
2. 如果log_{2}8=3,则2^{3}的值为______。
3. 对数函数f(x)=log_{2}x的反函数是______。
4. 函数y=log_{a}x(a>1)的图象在x轴的截距为______。
5. 已知log_{3}27=3,则log_{3}(1/27)的值为______。
三、解答题1. 求函数y=log_{2}(3x-2)的单调区间。
2. 已知函数f(x)=log_{3}x,求f(9)的值。
3. 已知对数函数y=log_{a}x(a>0且a≠1)的图象过点(2,-1),求a的值。
4. 已知函数y=log_{4}x的图象与直线y=x相切,求切点坐标。
5. 已知函数y=log_{a}x(a>1)的图象过点(1/9,-2),求a的值并判断函数的单调性。
四、证明题1. 证明:对数函数y=log_{a}x(a>0且a≠1)在其定义域内是连续的。
2. 证明:若a>1,则函数y=log_{a}x在(0,+∞)上是增函数;若0<a<1,则函数y=log_{a}x在(0,+∞)上是减函数。
指数函数与对数函数专项训练一、单选题1.(23-24高一下·云南玉溪·期末)函数()()2lg 35f x x x =-的定义域为()A .()0,∞+B .50,3⎛⎫⎪C .()5,0,3∞∞⎛⎫-⋃+ ⎪D .5,3⎛⎫+∞ ⎪【答案】C【详解】由题意知,2350x x ->,即(35)0x x ->,所以0x <或53x >.故选:C.2.(23-24高一上·云南昭通·期末)函数()327x f x x =+-的零点所在的区间是()A .()0,1B .31,2⎛⎫ ⎪⎝⎭C .3,22⎛⎫⎪D .()2,3【答案】B【详解】∵3x y =和27y x =-均在R 上单调递增,∴()327x f x x =+-在R 上单调递增;又()12f =-,327402f ⎛⎫=-> ⎪⎝⎭,∴()f x 在31,2⎛⎫ ⎪⎝⎭上有唯一的零点,故选:B.3.(23-24高一上·云南昆明·期末)滇池是云南省面积最大的高原淡水湖,一段时间曾由于人类活动的加剧,滇池水质恶化,藻类水华事件频发.在适当的条件下,藻类的生长会进入指数增长阶段.滇池外海北部某年从1月到7月的水华面积占比符合指数增长,其模型为23 1.65x y -=⨯.经研究“以鱼控藻”模式能有效控制藻类水华.如果3月开始向滇池投放一定量的鱼群后,鱼群消耗水华面积占比呈现一次函数 5.213.5y x =-,将两函数模型放在同期进行比较,如图所示.下列说法正确的是(参考数据:671.6520.2,1.6533.3≈≈)()A .水华面积占比每月增长率为1.65B .如果不采取有效措施,到8月水华的面积占比就会达到60%左右C .“以鱼控藻”模式并没有对水华面积占比减少起到作用D .7月后滇池藻类水华会因“以鱼控藻”模式得到彻底治理【答案】B【详解】对于A ,由于模型23 1.65x y -=⨯呈指数增长,故A 错误;对于B ,当8x =时,8220.63 1.605326.y -⨯==⨯≈,故B 正确;对于C ,因为鱼群消耗水华面积占比呈现一次函数 5.213.5y x =-,所以“以鱼控藻”模式对水华面积占比减少起到作用,故C 错误;对于D ,由两函数模型放在同期进行比较的图象可知,7月后滇池藻类水华并不会因“以鱼控藻”模式得到彻底治理,故D 错误.故选:B.4.(23-24高一上·云南昭通·期末)()()1log 14a f x x =-+(0a >且1a ≠)的图象恒过定点M ,幂函数()g x 过点M ,则12g ⎛⎫⎪⎝⎭为()A .1B .2C .3D .4【答案】D【详解】()()1log 14a f x x =-+,令11x -=,得2x =,()124f =,则()()1log 14a f x x =-+(0a >且1a ≠)恒过定点12,4M ⎛⎫⎪⎝⎭,设()g x x α=,则124α=,即2α=-,即()2g x x -=,∴142g ⎛⎫= ⎪⎝⎭,故选:D.5.(23-24高一下·云南楚雄·期末)已知0.320.3lo g 3,2,lo g 2a b c -===,则()A .c b a <<B .<<b c aC .<<c a bD .a b c<<【答案】A【详解】因为2log y x =在(0,)+∞上单调递增,且234<<,所以222log 2log 3log 4<<,所以21log 32<<,即12a <<,因为2x y =在R 上递增,且0.30-<,所以0.300221-<<=,即01b <<,因为0.3log y x =在(0,)+∞上单调递减,且12<,所以0.30.3log 1log 2>,所以0.3log 20<,即0c <,所以c b a <<.故选:A6.(23-24高一上·云南·期末)若()21()ln 1||f x x x =+-,设()0.3(3),(ln2),2a f b f c f =-==,则a ,b ,c 的大小关系为()A .c a b >>B .b c a >>C .a b c >>D .a c b>>【答案】D【详解】由题意知()(),00,x ∈-∞⋃+∞,由()()()21ln 1f x x f x x⎡⎤-=-+-=⎣⎦-,所以()f x 为偶函数,图象关于y 轴对称,当0x >时,由复合函数的单调性法则知()f x 随x 的增大而增大,即()0,x ∈+∞,()21()ln 1||f x x x =+-单调递增,因为()()33a f f =-=,()0.3(ln2),2b f c f ==,且00.3112222=<<=,0ln2lne 1<<=,所以0.3ln 223<<,所以()()()0.3ln223f f f <<-,即b c a <<,也就是a c b >>.故选:D7.(23-24高一下·云南·期末)设222,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若关于x 的方程2[()](2)()20f x a f x a -++=恰有5个不同实数解,则实数a 的取值范围是()A .[]1,2B .(2,3]C .()2,+∞D .()3,+∞【答案】B【详解】方程2[()](2)()20f x a f x a -++=化为[()2][()]0f x f x a --=,解得()2f x =或()f x a =,函数()f x 在(,0]-∞上单调递增,函数值的集合为(2,3],在(0,1]上单调递减,函数值的集合为[0,)+∞,在[1,)+∞上单调递增,函数值的集合为[0,)+∞,在同一坐标系内作出直线2,y y a ==与函数()y f x =的图象,显然直线2y =与函数()y f x =的图象有两个交点,由关于x 的方程2[()](2)()20f x a f x a -++=恰有5个不同实数解,则直线y a =与函数()y f x =的图象有3个交点,此时23a <≤,所以实数a 的取值范围是(2,3].故选:B8.(23-24高一下·云南昆明·期末)若()12:lo g 11,:39a p a q --<<,则p 是q 的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要【答案】A【详解】对于()22:log 11log 2p a -<=,则012a <-<,解得13a <<;对于1:39a q -<,则12a -<,解得3a <;因为{}|13a a <<是{}|3a a <的真子集,所以p 是q 的充分不必要条件.故选:A.二、多选题9.(23-24高一上·云南迪庆·期末)已知函数()()2ln 2f x x x =-,则下列结论正确的是()A .函数()f x 的单调递增区间是[)1,+∞B .函数()f x 的值域是RC .函数()f x 的图象关于1x =对称D .不等式()ln 3f x <的解集是()1,3-【答案】BC【详解】对于A ,当1x =时,2210x x -=-<,此时()()2ln 2f x x x =-无意义,故A 错误;对于B ,由于()22y g x x x ==-的值域为[)1,-+∞,满足()[)0,1,+∞⊆-+∞,所以函数()f x 的值域是R ,故B 正确;对于C ,由题意()()()22ln 2ln 11f x x x x ⎡⎤=-=--⎣⎦,且定义域为()(),02,-∞+∞ ,它满足()()()21ln 11f x x f x+=-=-,即函数()f x 的图象关于1x =对称,故C 正确;对于D ,由于()f x 的定义域为()(),02,-∞+∞ ,故D 错误.故选:BC.10.(23-24高一上·云南昆明·期末)已知函数2212,0()2|log ,0x x x f x x x ⎧--≤⎪=⎨⎪⎩,若1234x x x x <<<,且()()()()1234fx fx fx fx ===,则下列结论中正确的是()A .122x x +=-B .1204x x <<C .()41,4x ∈D .342x x +的取值范围是332,4⎡⎫⎪⎢⎣⎭【答案】BC【详解】作出函数2212,0()2|log ,0x x x f x x x ⎧--≤⎪=⎨⎪⎩的图像如图.对于选项A,根据二次函数的对称性知,12()224x x +=⨯=--,故A 项错误;对于选项B ,因120x x <<,由上述分析知124x x +=-,则21212120()()()42x x x x x x --<=-⋅-≤=,因12x x ≠,故有1204x x <<,即B 项正确;对于选项C ,如图,因0x ≤时,2211()2(2)2222f x x x x =--=-++≤,0x >时,2()|log |f x x =,依题意须使20|log |2x <<,由2|log |0x >得1x ≠,由2|log |2x <解得:144x <<,故有3411,144x x <<<<,即C项正确;对于选项D ,由图知2324log log x x -=,可得341x x =,故431x x =,则343322x x x x ++=,3114x <<,不妨设21,(,1)4y x x x =+∈,显然函数2y x x =+在(1,14)上单调递减,故23334x x <+<,即342x x +的取值范围是(333,4),故D 项错误.故选:BC.11.(23-24高一上·云南昆明·期末)关于函数()ln f x x x =+,以下结论正确的是()A .方程()0f x =有唯一的实数解c ,且(0,1)c ∈B .对,0,()()()x y f xy f x f y ∀>=+恒成立C .对()1212,0x x x x ∀>≠,都有()()1212f x f x x x ->-D .对12,0x x ∀>,均有()()121222f x f x x x f ++⎛⎫≤⎪【答案】AC【详解】A 选项,由于1y x =在R 上单调递增,2ln y x =在()0,∞+上单调递增,故()ln f x x x =+在定义域()0,∞+上单调递增,又()11ln 30,11033f f ⎛⎫=-<=> ⎪⎝⎭,故由零点存在性定理可得,方程()0f x =有唯一的实数解c ,且(0,1)c ∈,A 正确;B 选项,()ln f xy xy xy =+,()()ln ln ln f x f y x x y y x y xy +=+++=++,显然,0x y ∀>,由于xy 与x y +不一定相等,故()()f x f y +与()f xy 不一定相等,B 错误;C 选项,由A 选项可知,()ln f x x x =+在定义域()0,∞+上单调递增,对()1212,0x x x x ∀>≠,都有()()12120f x f x x x ->-,C 正确;D 选项,12,0x x ∀>,均有121212ln 222x xx x x x f +++⎛⎫=+ ⎪⎝⎭,()()12112212121212ln ln ln ln 22222f x f x x x x x x x x x x x x x ++++++==+=+,由于12122x x x x +≥,当且仅当12x x =时,等号成立,故1212ln ln 2x x x x +≥,即()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭,D 错误.故选:AC 三、填空题12.(23-24高一上·云南昆明·期末)()()2,(1)29,1x a x f x x ax a x ⎧>⎪=⎨-++-≤⎪⎩是R 上的单调递增函数,则实数a 的取值范围为.【答案】[]2,5【详解】因为在R 递增,则112129a a a a a⎧⎪⎪≥⎨⎪-++-≤⎪⎩>,解得:25a ≤≤,故答案为:[]2,513.(23-24高一下·云南昆明·期末)设函数()ln(1)f x x =+,2()g x x a =-+,若曲线()y f x =与曲线()y g x =有两个交点,则实数a 的取值范围是.【答案】(0,)+∞【详解】当0x ≥时,()ln(1),f x x =+当0x <时()ln(1),f x x =-+函数图象示意图为则2()g x x a =-+与()ln (1)f x x =+有两个零点知a 的取值范围是(0,)+∞.故答案为:(0,).+∞14.(23-24高一下·云南玉溪·期末)苏格兰数学家纳皮尔(J.Napier ,1550-1617)在研究天文学的过程中,经过对运算体系的多年研究后发明的对数,为当时的天文学家处理“大数”的计算大大缩短了时间.即就是任何一个正实数N 可以表示成10(110,)n N a a n =⨯≤<∈Z ,则lg lg (0lg 1)N n a a =+≤<,这样我们可以知道N 的位数为1n +.已知正整数M ,若10M 是10位数,则M 的值为.(参考数据:0.9 1.1107.94,1012.56≈≈)【答案】8或9【详解】依题意可得910101010M ≤<,两边取常用对数可得91010lg10lg lg10M ≤<,即910lg 10M ≤<,所以0.9lg 1M ≤<,即0.91010M ≤<,又M 为正整数,所以8M =或9M =.故答案为:8或9四、解答题15.(23-24高一上·云南昆明·期末)设函数()log (3)(,10a f x x a =-+>且1)a ≠.(1)若(12)3f =,解不等式()0f x >;(2)若()f x 在[4,5]上的最大值与最小值之差为1,求a 的值.【答案】(1)10(,)3+∞(2)2a =或12a =【详解】(1)由(12)3f =可得log (123)13a -+=,解得3a =,即3()log (3)1,(3)f x x x =-+>,则()0f x >,即3log (3)10x -+>,即310,1333x x x >⎧⎪∴>⎨->⎪⎩,故不等式()0f x >的解集为10(,)3+∞;(2)由于()f x 在[4,5]上的最大值与最小值之差为1,故log 11(log 21)1a a +-+=,即log 21,2a a =∴=或12a =,即a 的值为2a =或12a =.16.(23-24高一上·云南昭通·期末)化简求值:(1)()13103420.027π4160.49--++;(2)ln22311lg125lg40.1e log 9log 1632-+++⨯.【答案】(1)8(2)9【详解】(1)()13103420.027π4160.49--++()()()1313423420.3120.7⎡⎤⎡⎤⎡⎤=-++⎣⎦⎣⎦⎣⎦0.3180.78=-++=;(2)ln22311lg125lg4lg 0.1e log 9log 1632-++++⨯3211112lg34lg2lg5lg23222lg2lg3=+-++⨯lg 5lg28=++9=.17.(23-24高一上·云南·期末)已知定义域为R 的函数()11333xx m f x +-⋅=+是奇函数.(1)求m 的值并利用定义证明函数()f x 的单调性;(2)若对于任意t ∈R ,不等式()()22620f t t f t k -+-<恒成立,求实数k 的取值范围.【答案】(1)1m =,证明见解析(2)3k <-【详解】(1)因为()f x 是奇函数,函数的定义域为R ,所以(0)0f =,所以1033m-=+,所以1m =,经检验满足()()f x f x -=-易知()11312133331x x x f x +-⎛⎫==-+ ⎪++⎝⎭设12x x <,则2112122(33)()()3(31)(31)x x x x f x f x --=++因为3x y =在实数集上是增函数,故12()()0f x f x ->.所以()f x 在R 上是单调减函数(2)由(1)知()f x 在(,)-∞+∞上为减函数.又因为()f x 是奇函数,所以()()22620f t t f t k -+-<等价于()()2262f t t f k t-<-,因为()f x 为减函数,由上式可得:2262t t k t ->-.即对一切t R ∈有:2360t t k -->,从而判别式361203k k ∆=+<⇒<-.所以k 的取值范围是3k <-.18.(23-24高一下·云南昆明·期末)已知函数1()xx f x a a ⎛⎫=- ⎪⎝⎭ (0a >且1a ≠).(1)讨论()f x 的单调性(不需证明);(2)若2a =,(ⅰ)解不等式3()2≤f x x;(ⅱ)若21()(22))2(x g f x t x x f +=-+在区间[]1,1-上的最小值为74-,求t 的值.【答案】(1)答案见解析(2)(ⅰ)(](],10,1-∞-⋃;(ⅱ)2t =-或2t =【详解】(1)若1a >,则1()()x xf x a a=-在R 上单调递增;若01a <<,则1()()x xf x a a=-在R 上单调递减.(2)(ⅰ)3()2≤f x x ,即132()022xx x --≤,设13()2()22xx g x x=--,则(1)0g =,()()g x g x -=-,所以()g x 为奇函数,当0x >时,()g x 单调递增,由()(1)g x g ≤,解得01x <≤,根据奇函数的性质,当0x <时,()(1)g x g ≤的解为1x ≤-,综上所述,3()2≤f x x的解集为(](],10,1-∞-⋃.(ⅱ)2122()2(2)2()222(22)x x x x x g x f x tf x t +--=-+=++-,令22x x m --=,因为[]1,1x ∈-,则33,22m ⎡⎤∈-⎢⎥⎣⎦,所以2()()22g x h m m tm ==++,其图象为开口向上,对称轴为m t=-的抛物线,①当32t -≤-,即32t ≥时,min 39177()()3232444h m h t t =-=-+=-=-,解得2t =.②当3322t -<-<,即3322t -<<时,222min 7()()2224h m h t t t t =-=-+=-+=-,解得1152t =,2152t =-矛盾.③当32t -≥,即32t ≤-时,min 39177()()3232444h m h t t ==++=+=-,解得2t =-.综上所述,2t =-或2t =.19.(23-24高一上·云南昆明·期末)函数()e (0)x f x mx m =-<.(1)求(1)f -和(0)f 的值,判断()f x 的单调性并用定义加以证明;(2)设0x 是函数()f x 的一个零点,当1em <-时,()02f x k >,求整数k 的最大值.【答案】(1)1(1)e f m --=+,(0)1f =,()f x 在定义域R 上单调递增,证明见解析,(2)整数k 的最大值为1-【详解】(1)1(1)e f m --=+,(0)1f =,判断()f x 在定义域R 上单调递增,证明如下:在R 上任取1x ,2x ,且12x x <,则1212121212()()e (e )(e e )()x x x x f x f x mx mx m x x -=---=---,因为12x x <,0m <,所以12e e x x <,120x x -<,0m ->,所以12e e 0x x -<,12()0m x x --<,所以1212(e e )()0x x m x x ---<,即12())0(f x f x -<,所以12()()f x f x <,所以()f x 在定义域R 上单调递增.(2)由题意得0()0f x =,即00e 0x mx -=,1em <-,则10e m +<,即0(1)0()f f x -<=,由()f x 是R 上的增函数,所以01x -<,又0(0)10()f f x =>=,所以010x -<<,0200(2)e 2x f x mx =-002e 2e x x =-,令01e (ext =∈,1),则22()2(1)1g t t t t =-=--,所以()g t 在1(e ,1)上单调递减,所以()()11g t g >=-,即0(2)1f x >-,当1em <-时,0(2)f x k >,所以1k ≤-,所以整数k 的最大值为1-.。
指数函数对数函数专练习题含答案(1)指数函数和对数函数是高中数学中的重要内容,在函数中成为了必学的一部分。
这两种函数在数学中应用非常广泛,除了在数学中,还常常运用于其他学科和实际生活中。
下面是介绍和练习这两种函数的一些题目及其答案。
一、指数函数:1. 求 f(x) = 2^(x+1) - 2^x 的零点。
答:f(x) = 2^(x+1) - 2^x = 2^(x+1) - 2^(x+1-1) = 2^(x+1) -2^x= 2^x * (2 - 1) = 2^x所以,f(x) = 0 时, x = 0。
2. 求解 3^x - 4^x + 3 = 0,其中 x 取值范围为 R。
答:将 4^x 用 2^x 表示,得到 3^x - (2^x)^2 + 3 = 0这是一个二次方程,需要使用求根公式解出 xD = b^2 - 4ac = 16 - 4*3*3 = 16 - 36 = -20由于 D < 0,因此无实数解。
3. 求解 2^(2x+1) - 2^(2x-2) = 12,其中 x 取值范围为 R。
答:将方程两边都取对数,得到(2x+1)log2 - (2x-2)log2 = log2(12)化简得到 2xlog2 + log2 - 4log2 + 3log2 = log2(12) 即 2xlog2 - log2 = log2(12) - 3log2即 2x = log2(4) + log2(3) - 3即 x = 1/2*log2(3) - 7/4二、对数函数:1. 解方程 log(a-1)x = logax + 1,其中 a>1。
答:由于 a>1,因此 a-1 > 0两边同时取指数,得到 x = a^2 / (a-1)2. 如果 a > 1,b > 1,且 a^logb = b,那么 loga b 是多少?答:将等式两边取对数,得到 loga (b^(logb a)) = loga a 即 (logb a) * loga b = 1即 loga b = 1 / logb a当 a^logb = b 时, loga b = 1 / logb a = 1 / (loga b / loga e)再次化简得到 loga b = logb a3. 求解方程 2log(x+1) + log(x-1) = log(x+2),其中 x > 1。
高中数学对数函数经典练习题及答案(优秀4篇)对数函数练习题篇一一、选择题1、下列函数(1)y= x (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x2-1中,是一次函数的有( )A.4个B.3个C.2个D.1个2、A 、B(x2,y2)是一次函数y=kx+2(k>0)图像上的不同的两点,若则( )A.t0 C.t>1 D. t≤13、直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的三角形最多有( )A. 5个B.6个C.7个D.8个4、把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是( )A.11 D.m0的解集是( )A.x>3B.-2-29.一次函数y=ax+1与y=bx-2的图象交于x轴上一点,那么a:b等于( )A. B.C. D.以上答案都不对10、函数y=kx+b,那么当y>1时,x的取值范围是:( )A、x>0B、x>2C、x212、在平面直角坐标系中,线段AB的端点A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则k的值不可能是( )A.5B.-5C.-2D.3二、填空题13、如果直线y = -2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.14、平面直角坐标系中,点A的坐标是(4,0),点P在直线y=-x+m上,且AP=OP=4.则m的值是。
15、直线y=kx+2经过点(1,4),则这条直线关于x轴对称的直线解析式为:。
16、已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x 轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为 .17、点A的坐标为(-2,0),点B在直线y=x-4上运动,当线段AB最短时,点B的坐标是___________。
18、已知三个一次函数y1=x,y2= x+1,y3=- x+5。
对数函数练习题(含答案)对数函数一、选择题1.设a=20.3,b=0.32,c=log2 0.3,则a、b、c的大小关系是()A。
a<b<cB。
b<c<aC。
c<b<aD。
c<a<b2.已知a=log2 0.3,b=20.1,c=0.21.3,则a、b、c的大小关系是()A。
a<b<cB。
c<a<bC。
a<c<bD。
b<c<a3.式子2lg5+lg12-lg3=()A。
2B。
1C。
0D。
-24.使式子log(x-1)/(x-1)有意义的x的值是()A。
x1B。
x>1且x≠2C。
x>1D。
x≠25.函数f(x)=log2(x2+2x-3)的定义域是()A。
[-3,1]B。
(-3,1)C。
(-∞,-3]∪[1,+∞)D。
(-∞,-3)∪(1,+∞)6.已知a>0,且a≠1,函数y=ax2与y=loga(-x)的图像只能是图中的()A.B.C.D.7.函数f(x)=ln(x2-2x-8)的单调递增区间是()A。
(-∞,-2)B。
(-∞,1)C。
(1,+∞)D。
(4,+∞)8.函数f(x)=log0.5(-x2+x+2)的单调递增区间为()A。
(-1,1)B。
(1,2)C。
(-∞,-1)∪[2,+∞)D。
前三个答案都不对二、填空题9.计算:log89×log2732-log1255=__________.10.计算:log43×log1432=__________.11.如图所示的曲线是对数函数y=logax当a取4个不同值时的图像,已知a的值分别为3、4、31、10,则相应于C1、C2、C3、C4的a值依次为__________.12.函数f(x)=loga(x-2)-1(a>0,a≠1)的图像恒过定点__________.13.函数y=loga(x+2)+3(a>0,a≠1)的图像过定点__________.14.若3x/4y=36,则21/x+3/y=__________.15.已知log0.45(x+2)>log0.45(1-x),则实数x的取值范围是__________.三、解答题16.解不等式:2loga(x-4)>loga(x-2)。
对数函数练习题 (有答案 )1.函数 y = log (2x - 1)(3x - 2)的定义域是 ()1221A . 2,+ ∞B . 3,+ ∞C . 3, 1 ∪(1 ,+ ∞)D . 2, 1 ∪(1 ,+ ∞)2.若集合 A = { x|log 2x =2-x } ,且 x ∈ A ,则有 ()A . 1> x 2> xB . x 2> x > 1C . x 2> 1>xD . x > 1>x 23.若 loga 3> log 3> 0,则 a 、b 、 1 的大小关系为 ()bA . 1<a < bB .1 < b < aC . 0 < a <b < 1D .0 < b < a < 144.若 log a 5< 1,则实数 a 的取值范围为 ()A . a >1B . 0< a <4C . 4<a D . 0< a < 4 或 a >15 555.已知函数 f(x)= log a (x - 1)(a > 0 且 a ≠1)在 x ∈ (1,2) 时, f(x)< 0,则 f(x)是A .增函数B .减函数C .先减后增D .先增后减6.如图所示,已知 0< a < 1,则在同一直角坐标系中,函数- x和 y = log ay = a (- x)的图象只可能为 ( )7.函数 y = f(2 x)的定义域为 [1, 2],则函数2( )y =f(log x)的定义域为A .[0, 1]B . [1, 2]C . [2, 4]D . [4, 16]8.若函数 f(x)= log 1(x 3- ax )上单调递减,则实数 a 的取值范围是 ( )2A .[9, 12]B . [4, 12]C . [4, 27]D . [9, 27]9.函数 y = a x -3+ 3(a > 0,且 a ≠1)恒过定点 __________ .10.不等式1 10- 3x <3- 2x的解集是 _________________________ . 3xx -x的图象. (2) 函数11. (1) 将函数 f(x)= 2 的图象向 ______ 平移 ________个单位,就可以得到函数g( x)= 2 1 |x - 1|f( x)= 2,使 f(x)是增区间是 _________.12.设 f(log 2x)= 2x ( x > 0).则 f(3) 的值为.13.已知集合 A = { x|2≤ x ≤ π,x ∈ R} .定义在集合 A 上的函数 f(x)= log x(0< a < 1)的最大值比最小值大1,a则底数 a 为 __________.14.当 0<x < 1 时,函数 y = log (a 2- 3)x 的图象在 x 轴的上方,则 a 的取值范围为 ________.115.已知16.已知17.已知0< a< 1,0< b< 1,且 alog b(x-3)< 1,则x 的取值范围为.a> 1,求函数f(x) =log a(1- a x)的定义域和值域.0< a< 1,b> 1, ab>1,比较 log1, log a b, log1的大小.a b b b18.已知 f(x)= log a x 在 [2, + ∞上)恒有 |f(x)|> 1,求实数a 的取值范围.19.设在离海平面高度 h m 处的大气压强是x mm 水银柱高, h 与 x 之间的函数关系式为: h= kln x,其中 c、ck 都是常量.已知某地某天在海平面及1000 m 高空的大气压强分别是760 mm 水银柱高和675 mm 水银柱高,求大气压强是720 mm 水银柱高处的高度.20.已知关于x 的方程 log 2( x+3) - log4x2= a 的解在区间 (3, 4)内,求实数a 的取值范围.2参考答案:1. C 2. B 3. A 4. D 5. A 6. B 7. D 8. A9. (3,4)10. { x|_x < 2}11.右, 2; (- ∞, 1), 12. 2562,4)13. 14. a ∈ (-2,- 3)∪ ( 3,2)15.(3π16.解 ∵ a > 1, 1- a x >0,∴ a x < 1,∴ x < 0,即函数的定义域为 (- ∞ , 0).∵ a x > 0 且 a x <1,∴ 0< 1-a x < 1∴ log a (1- a x ) < 0,即函数的值域是 (-∞ ,0).17.解 ∵ 0< a < 1, b > 1,∴ log a b < 0, log b 1=- 1, log a 1> 0,又 ab > 1,∴ b > 1> 1,log a b <log a 1=b b a a - 1,∴ log a b < log b5 1<log a 1.b b18.解 由 |f(x)|> 1,得 log a x > 1 或 log a x <- 1.由 log a x > 1, x ∈ [2, +∞ 得) a >1,(log x)最小= log 2,∴ log 2> 1,∴ a < 2,∴ 1< a < 2;aaa由 log a x <- 1, x ∈[2, + ∞ 得) 0< a < 1, (log a x)最大 = log a 2,∴ log a 2<- 1,∴ a >12,∴12< a < 1.综上所述, a 的取值范围为 (1, 1 )∪ (1, 2).219.解 ∵ h = kln x,当 x = 760, h =0,∴ c =760.c当 x = 675 时, h =1 000,∴ 1 000= kln675= kln0.8907 ∴ k = 1000 = 1000lg e760 ln0.8907 lg0.8907 当 x = 720 时, h = 1000lge720= 1000lg e 1000lg e lg0.9473lg0.8907 ln760 lg0.8907 ·ln0.9473 = lg0.8907· lg e ≈ 456 m .∴ 大气压强为 720 mm 水银柱高处的高度为 456 m .24 220.本质上是求函数 g(x)= log (x+3)- log x x ∈ (3, 4)的值域.∵ g(x)= log 242= log 222x +3= log 21 ∈ log 25, log 24( x+3) - log x(x+3) - log x = log x 1+ x4354∴ a ∈ log 24, log 23 .3。
可编辑修改精选全文完整版对数函数一、选择题1.设0.32a =,20.3b =,2log 0.3c =,则,,a b c 的大小关系( )A. a b c <<B. b c a <<C. c b a <<D. c a b <<2.已知0.1 1.32log 0.3,2,0.2a b c ===,则,,a b c 的大小关系是( ) A .a b c << B .c a b << C .a c b << D .b c a <<3.式子25123lg lg lg +-= ( )A.2B.1C.0D.﹣24.使式子 2(1)log (1)x x -- 有意义的 x 的值是( )A. 1x <- 或 1x >B. 1x > 且 2x ≠C. 1x >D. 2x ≠5.函数()()22log 23f x x x =+-的定义域是( )A. []3,1-B. ()3,1-C. (][),31,-∞-⋃+∞D. (,3)(1,)-∞-⋃+∞6.已知0a >,且1a ≠,函数x y a =与log ()a y x =-的图像只能是图中的( ) A. B. C. D.7.函数()2()ln 28f x x x =--的单调递增区间是( )A. (),2-∞-B. (),1-∞C. ()1,+∞D. ()4,+∞ 8.函数()()20.5f log 2x x x =-++的单调递增区间为( ) A. 11,2⎛⎫- ⎪⎝⎭ B. 1,22⎛⎫ ⎪⎝⎭ C. 1,2⎛⎫+∞ ⎪⎝⎭ D.前三个答案都不对二、填空题9.计算: =-⨯5log 3132log 9log 125278__________.10.计算: 4413log 3log 32⨯=__________.11.如图所示的曲线是对数函数log a y x =当a 取4个不同值时的图像,已知a 的值分别为4313,,,3510,则相应于1234,,,C C C C 的a 值依次为__________.12.函数()()log 21a f x x =--(0,)a a >≠的图像恒过定点__________.13.函数()log 23a y x =++ (0a >且1a ≠)的图像过定点__________.14.若3436x y ==,则21 x y+=__________. 15.已知()()0.450.45log 2log 1x x +>-,则实数x 的取值范围是______.三、解答题16.解不等式: ()()2log 4log 2a a x x ->-.17. 求函数()22log 65y x x =-+的定义域和值域.18.求函数212log (32)y x x =+-的值域.19.已知()()4log 41x f x =-.1.求()f x 的定义域;2.讨论()f x 的单调性;3.求()f x 在区间1,22⎡⎤⎢⎥⎣⎦上的值域.20.已知指数函数()(0,1)x f x a a a =>≠且.(1)写出()f x 的反函数()g x 的解析式;(2)解不等式()log (23)a g x x ≤-参考答案1.答案:C解析:因为1a >,01b <<,0c <,所以c b a <<,故选C.2.答案:C解析:由对数和指数的性质可知,∵2log 0.30a =<,0.10221b =>=,1.300.20.21c =<=,∴a c b <<.3.答案:A解析:4.答案:B解析:由 210{1011x x x ->->-≠,解得 1x > 且 2x ≠. 5.答案:D解析:由题意,得2230x x +->,事实上,这是个一元二次不等式,此处,我们有两种解决方法:一是利用函数223y x x =+-的图像观察得到,要求图像正确、严谨;二是利用符号法则,即2230x x +->可因式分解为()()310x x +⋅->,则30,{10x x +>->或30,{10,x x +<-<解得1x >或3x <-, 所以函数()f x 的定义域为(,3)(1,)-∞-⋃+∞.6.答案:B解析:可以从图象所在的位置及单调性来判别.也可以利用函数的性质识别图象,特别注意底数a 对图象的影响。