对数函数及其性质经典练习题
- 格式:doc
- 大小:105.51 KB
- 文档页数:3
对数函数练习题(有答案)1.函数y =log (2x -1)(3x -2)的定义域是( )A .⎝⎛⎭⎫12,+∞B .⎝⎛⎭⎫23,+∞C .⎝⎛⎭⎫23,1∪(1,+∞)D .⎝⎛⎭⎫12,1∪(1,+∞) 2.若集合A ={ x |log 2x =2-x },且 x ∈A ,则有( )A .1>x 2>xB .x 2>x >1C .x 2>1>xD .x >1>x 23.若log a 3>log b 3>0,则 a 、b 、1的大小关系为( )A .1<a <bB .1 <b <aC .0 <a <b <1D .0 <b <a <14.若log a 45<1,则实数a 的取值范围为( ) A .a >1 B .0<a <45 C .45<a D .0<a <45或a >1 5.已知函数f (x )=log a (x -1)(a >0且 a ≠1)在x ∈(1,2)时,f (x )<0,则f (x )是A .增函数B .减函数C .先减后增D .先增后减6.如图所示,已知0<a <1,则在同一直角坐标系中,函数y =a -x 和y =log a (-x )的图象只可能为( )7.函数y =f (2x )的定义域为[1,2],则函数y =f (log 2x )的定义域为 ( )A .[0,1]B .[1,2]C .[2,4]D .[4,16]8.若函数f (x )=log12()x 3-ax 上单调递减,则实数a 的取值范围是 ( )A .[9,12]B .[4,12]C .[4,27]D .[9,27]9.函数y =a x -3+3(a >0,且a ≠1)恒过定点__________.10.不等式⎝⎛⎭⎫1310-3x<3-2x 的解集是_________________________. 11.(1)将函数f (x )=2x 的图象向______平移________个单位,就可以得到函数g (x )=2x -x 的图象.(2)函数f (x )=⎝⎛⎭⎫12|x -1|,使f (x )是增区间是_________. 12.设 f (log 2x )=2x (x >0).则f (3)的值为 .13.已知集合A ={x |2≤x ≤π,x ∈R}.定义在集合A 上的函数f (x )=log a x (0<a <1)的最大值比最小值大1,则底数a 为__________.14.当0<x <1时,函数y =log (a 2-3)x 的图象在x 轴的上方,则a 的取值范围为________.15.已知 0<a <1,0<b <1,且a log b (x -3)<1,则 x 的取值范围为 . 16.已知 a >1,求函数 f (x )=log a (1-a x )的定义域和值域.17.已知 0<a <1,b >1,ab >1,比较log a 1b ,log a b ,log b 1b的大小.18.已知f (x )=log a x 在[2,+ ∞ )上恒有|f (x )|>1,求实数a 的取值范围.19.设在离海平面高度h m 处的大气压强是x mm 水银柱高,h 与x 之间的函数关系式为:h =k ln x c,其中c 、k 都是常量.已知某地某天在海平面及1000 m 高空的大气压强分别是760 mm 水银柱高和675 mm 水银柱高,求大气压强是720 mm 水银柱高处的高度.20.已知关于x 的方程log 2(x +3)-log 4x 2=a 的解在区间(3,4)内,求实数a 的取值范围.参考答案:1.C 2.B 3.A 4.D 5.A 6.B 7.D 8.A9.(3,4) 10.{x |_x <2} 11.右,2;(-∞,1), 12.25613.2π14.a ∈(-2,-3)∪(3,2) 15.(3,4)16.解 ∵ a >1,1-a x >0,∴ a x <1,∴ x <0,即函数的定义域为(-∞ ,0).∵ a x >0且a x <1,∴ 0<1-a x <1 ∴log a (1-a x )<0,即函数的值域是(-∞ ,0).17.解 ∵ 0<a <1,b >1,∴ log a b <0,log b 1b =-1,log a 1b >0,又ab >1,∴ b >1a >1,log a b <log a 1a=-1,∴ log a b <log b51b <log a 1b.18.解 由|f (x )|>1,得log a x >1或log a x <-1.由log a x >1,x ∈[2,+∞ )得 a >1,(log a x )最小=log a 2,∴ log a 2>1,∴ a <2,∴ 1<a <2;由log a x <-1,x ∈[2,+ ∞ )得 0<a <1,(log a x )最大=log a 2,∴ log a 2<-1,∴ a >12, ∴12<a <1. 综上所述,a 的取值范围为(12,1 )∪(1,2).19.解 ∵ h =k ln x c,当 x =760,h =0,∴ c =760. 当x =675时,h =1 000,∴ 1 000=k ln 675760=k ln0.8907 ∴ k =1000ln0.8907=1000lg e lg0.8907当x =720时,h =1000lg e lg0.8907ln 720760=1000lg e lg0.8907·ln0.9473=1000lg e lg0.8907·lg0.9473lg e≈456 m . ∴ 大气压强为720 mm 水银柱高处的高度为456 m .20.本质上是求函数g (x )=log 2(x +3)-log 4x 2 x ∈(3,4)的值域.∵ g (x )=log 2(x +3)-log 4x 2=log 2(x +3)-log 2x =log 2x +3x =log 2⎝⎛⎭⎫1+1x ∈⎝⎛⎭⎫log 254,log 243 ∴ a ∈⎝⎛⎭⎫log 254,log 243.。
1.函数f (x )=lg(x -1)+4-x 的定义域为( )A .(1,4]B .(1,4)C .[1,4]D .[1,4)解析:选A.⎩⎪⎨⎪⎧x -1>04-x ≥0,解得1<x ≤4. 2.函数y =x |x |log 2|x |的大致图象是( )解析:选D.当x >0时,y =x x log 2x =log 2x ;当x <0时,y =x -xlog 2(-x )=-log 2(-x ),分别作图象可知选D.3.(2010年高考大纲全国卷Ⅰ)已知函数f (x )=|lg x |,若a ≠b ,且f (a )=f (b ),则ab =( )A .1B .2C.12 D.14解析:选A.如图由f (a )=f (b ),得|lg a |=|lg b |.设0<a <b ,则lg a +lg b =0.∴ab =1.4.函数y =log a (x +2)+3(a >0且a ≠1)的图象过定点________.解析:当x =-1时,log a (x +2)=0,y =log a (x +2)+3=3,过定点(-1,3).答案:(-1,3)1.下列各组函数中,定义域相同的一组是( )A .y =a x 与y =log a x (a >0,且a ≠1)B .y =x 与y =xC .y =lg x 与y =lg xD .y =x 2与y =lg x 2解析:选C.A.定义域分别为R 和(0,+∞),B.定义域分别为R 和[0,+∞),C.定义域都是(0,+∞),D.定义域分别为R 和x ≠0.2.函数y =log 2x 与y =log 12x 的图象关于( )A .x 轴对称B .y 轴对称C .原点对称D .直线y =x 对称解析:选A.y =log 12x =-log 2x .3.已知a >0且a ≠1,则函数y =a x 与y =log a (-x )的图象可能是( )解析:选B.由y=log a(-x)的定义域为(-∞,0)知,图象应在y轴左侧,可排除A、D 选项.当a>1时,y=a x应为增函数,y=log a(-x)应为减函数,可知B项正确.而对C项,由图象知y=a x递减⇒0<a<1⇒y=log a(-x)应为增函数,与C图不符.4.对数函数的图象过点M(16,4),则此对数函数的解析式为()xA.y=log4x B.y=log14x D.y=log2xC.y=log12解析:选D.设y=log a x,∴4=log a16,X k b 1 . c o m∴a4=16,∴a=2.5.已知图中曲线C1,C2,C3,C4分别是函数y=log a1x,y=log a2x,y=log a3x,y=log a4x 的图象,则a1,a2,a3,a4的大小关系是()A.a4<a3<a2<a1B.a3<a4<a1<a2C.a2<a1<a3<a4D.a3<a4<a2<a1解析:选B.由已知图中的四条曲线底数不同及图象的位置关系,再利用log a a=1结合图象求解.6.函数y=log2x在[1,2]上的值域是()A.R B.[0,+∞)C.(-∞,1] D.[0,1]解析:选D.∵1≤x≤2,∴log21≤log2x≤log22,即0≤y≤1.7.函数y=log1(x-1)的定义域是________.2解析:由0<x-1≤1,得函数的定义域为{x|1<x≤2}.答案:{x|1<x≤2}8.若函数f(x)=log a x(0<a<1)在区间[a,2a]上的最大值是最小值的3倍,则a的值为________.解析:∵0<a<1,∴函数f(x)=log a x在(0,+∞)上是减函数,∴在区间[a,2a ]上,f (x )min =log a (2a ),f (x )max =log a a =1,∴log a (2a )=13,∴a =24. 答案:249.已知g (x )=⎩⎪⎨⎪⎧e x x ≤0ln x x >0,则g [g (13)]=________. 解析:∵13>0,∴g (13)=ln 13<0, ∴g [g (13)]=g (ln 13)=e ln 13=13. 答案:1310.求下列函数的定义域:(1)y =log 333x +4; (2)y =log (x -1)(3-x ).解:(1)∵33x +4>0,∴x >-43, ∴函数y =log 333x +4的定义域为(-43,+∞). (2)∵⎩⎪⎨⎪⎧ 3-x >0x -1>0x -1≠1,∴⎩⎪⎨⎪⎧1<x <3x ≠2. ∴函数的定义域为(1,2)∪(2,3).11.已知f (x )=log 3x .(1)作出这个函数的图象;(2)当0<a <2时,有f (a )>f (2),利用图象求a 的取值范围. 解:(1)作出函数y =log 3x 的图象如图所示.(2)令f (x )=f (2),即log 3x =log 32,解得x =2.由如图所示的图象知:当0<a <2时,恒有f (a )<f (2). 故当0<a <2时,不存在满足f (a )>f (2)的a 的值.12.函数f (x )=log 2(32-x 2)的定义域为A ,值域为B .试求A ∩B . 解:由32-x 2>0得:-42<x <42,∴A =(-42,42).又∵0<32-x 2≤32,∴log 2(32-x 2)≤log 232=5,∴B =(-∞,5],∴A ∩B =(-42,5].。
指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数名称定义图象定义域值域过定点奇偶性单调性函数值的变化情况变化对图象的影响指数函数函数且叫做指数函数图象过定点,即当时,.非奇非偶在上是增函数在上是减函数在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小 .对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称定义函数对数函数且叫做对数函数图象定义域值域过定点奇偶性图象过定点,即当非奇非偶时,.单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,看图象,逐渐减小 .逐渐增大;在第四象限内,从顺时针方向指数函数习题一、选择题aa ≤ b,则函数 f ( x ) =1?2x 的图象大致为 ()1.定义运算 a ?b =>b a b2.函数 f ( x ) = x 2-bx + c 满足 f (1 + x ) =f (1 - x ) 且 f (0) =3,则 f ( b x ) 与 f ( c x ) 的大小关系是()xxA . f ( b ) ≤ f ( c ) x xB . f ( b ) ≥ f ( c )xxC . f ( b )> f ( c )D .大小关系随 x 的不同而不同3.函数 y = |2 x - 1| 在区间A . ( - 1,+∞ )C . ( - 1,1)( k - 1, k + 1) 内不单调,则 k 的取值范围是 ()B . ( -∞, 1)D . (0,2)4.设函数 f ( x ) =ln [( x -1)(2 -x)] 的定义域是 ,函数 ( ) = lg(x - 2x -1) 的定义域是 ,Ag xaB若 ?,则正数a 的取值范围 ()ABA . a >3B . a ≥ 3C . a > 5D . a ≥ 5.已知函数 f (x = 3- a x -3, x ≤ 7,若数列 { a n 满足 a n = f (n )(n ∈ * ,且 {a n }是递5 ) a x - 6, x >7. } N) 增数列,则实数a 的取值范围是 ()A . [ 9, 3)B . ( 9, 3) 44C . (2,3)D . (1,3)2x16.已知 a >0 且 a ≠ 1,f ( x ) = x - a ,当 x ∈ ( - 1,1) 时,均有 f ( x )< 2,则实数 a 的取值范围 是( )1 1 A . (0 , 2] ∪ [2 ,+∞ ) B . [ 4, 1) ∪ (1,4]11C . [ 2, 1) ∪ (1,2]D . (0 , 4) ∪ [4 ,+∞ )二、填空题xa7.函数 y = a ( a >0,且 a ≠ 1) 在 [1,2] 上的最大值比最小值大 2,则 a 的值是 ________.8.若曲线 | y | = 2 x + 1 与直线 y =b 没有公共点,则b 的取值范围是 ________.| x|的定义域为9. (2011 ·滨州模拟 ) 定义:区间 [x 1,x 2 ]( x 1<x 2) 的长度为 x 2- x 1. 已知函数 y = 2 [a , b] ,值域为 [1,2] ,则区间 [a , b] 的长度的最大值与最小值的差为 ________.三、解答题10.求函数y=2x2 3x 4 的定义域、值域和单调区间.11.(2011 ·银川模拟 ) 若函数y=a2x+ 2a x-1( a>0 且a≠ 1) 在x∈ [- 1,1]上的最大值为14,求a 的值.12.已知函数f (x) = 3x,(a+ 2) = 18, (x) =λ·3ax-4x的定义域为 [0,1] .f g(1)求 a 的值;(2) 若函数g( x) 在区间 [0,1] 上是单调递减函数,求实数λ的取值范围.1. 解析:由? = a a≤ b x2x x≤0,b a>b x>0 .1答案: A2. 解析:∵f (1 +x) =f (1 -x) ,∴f ( x) 的对称轴为直线x=1,由此得 b=2.又 f (0)=3,∴c=3.∴f ( x)在(-∞,1)上递减,在(1,+∞)上递增.x≥2x≥ 1,∴ (3 x) ≥(2 x) .若 x≥0,则3f f若 x<0,则3x<2x<1,∴f (3x)> f (2x).∴f (3x)≥ f (2x).答案: A3.解析:由于函数 y=|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间 ( k- 1,k+ 1) 内不单调,所以有答案: Ck-1<0<k+1,解得-1<k<1.4.解析:由题意得: A=(1,2)x x>1x x>1在(1,2)上恒成立,即,a- 2且 a>2,由 A? B知 a- 2x x上恒成立,令x x xln a-2xln2>0 ,所以函数a-2 - 1>0 在 (1,2)u( x)=a- 2- 1,则u′( x) =au ( x ) 在 (1,2) 上单调递增,则 u ( x )> u (1) = a - 3,即 a ≥ 3.答案: B*f ( n ) 为增函数,5. 解析: 数列 { a } 满足 a = f ( n )( n ∈ N ) ,则函数nna >18- 6- ) × 7- 3,所以 3- a >0注意 a>(3,解得 2<a <3.aa8-6> 3- a × 7-3答案: C1 2x1 21 x x21的图象,6. 解析: f ( x )<? x -a < ? x - <a ,考查函数 y = a与 y =x - 2222当 a >1 时,必有 a-1≥1,即 1<a ≤ 2,21 1当 0<a <1 时,必有 a ≥ ,即 ≤a <1,2 2 1 综上, 2≤ a <1 或 1<a ≤ 2. 答案: C7. 解析: 当 a >1 时, y x在 [1,2] 上单调递增,故 2a3x= a a - a = ,得 a = . 当 0<a <1 时, y = a2 22a在 [1,2] 上单调递减,故 a -a = 2,得 a = 2. 故 a =2或 2.1131 3答案: 2或28. 解析: 分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.x+1 与直线 y = b 的图象如图所示,由图象可得:如果x+ 1 与直线 y = b曲线 | y | = 2 | y | = 2没有公共点,则 b 应满足的条件是 b ∈ [- 1,1] .答案: [- 1,1]9. 解析: 如图满足条件的区间 [a , b] ,当 a =- 1, b = 0 或 a = 0, b = 1 时区间长度最小,最小值为 1,当 a =- 1,b = 1 时区间长度最大,最大值为2,故其差为 1.答案: 110. 解: 要使函数有意义,则只需- x 2-3x + 4≥ 0,即 x 2+ 3x -4≤ 0,解得- 4≤ x ≤ 1.∴函数的定义域为 { x | -4≤ x ≤ 1} .223225 令 t =- x - 3x + 4,则 t =- x - 3x + 4=- ( x + ) +4,2253∴当-4≤ x ≤ 1 时, t max = 4 ,此时 x =- 2, t min = 0,此时 x =- 4 或 x =1.∴0≤t ≤ 25 . ∴0≤ -x 2- 3x + 4≤ 5 .4 2∴函数 y = ( 1)x 23 x4的值域为 [ 2 , 1] .8223 225由 t =- x - 3x + 4=- ( x + )+4( - 4≤ x ≤ 1) 可知,23当- 4≤ x ≤- 2时, t 是增函数,3当- 2≤ x ≤1 时, t 是减函数.根据复合函数的单调性知:y = ( 1 )x 23 x 4在 [ - 4,- 3 3] 上是减函数,在 [ - ,1] 上是增函数.22 233∴函数的单调增区间是 [ - 2, 1] ,单调减区间是 [ - 4,- 2] . 11. 解: 令x22tt >0y= t+ 2t1= ( t+ 1)2,其对称轴为t =- 1.该二次函数a = ,∴ ,则--在[ - 1,+ ∞ ) 上是增函数.x12①若 a >1,∵x ∈ [ - 1,1] ,∴t = a ∈ [ a , a ] ,故当 t = a ,即 x =1 时, y max =a + 2a - 1=14,解得 a = 3( a =- 5 舍去 ) .②若 0<a <1,∵x ∈ [ - 1,1] ,∴ = x∈1 1=-时,a [ a , ] ,故当 t = ,即 1t a ax12y max = (a + 1) - 2= 14.11∴a =3或- 5( 舍去 ) .1综上可得 a = 3 或 3.12. 解: 法一: (1) 由已知得 a2 aa =log 32.3 += 18? 3 = 2?(2) 此时 g ( x ) = λ·2x - 4 x ,设 0≤ x 1<x 2≤ 1,因为 g ( x ) 在区间 [0,1] 上是单调减函数,所以 g ( x ) - g ( x ) = (2 x - 2x )( λ- 2x - 2x )>0 恒成立,即 λ<2x + 2x 恒成立.1 2 1 2 2 1 2 1由于 2x 2+ 2x 1>2 + 2 = 2,所以实数 λ的取值范围是λ≤ 2.法二: (1) 同法一.(2) 此时 g ( x ) = λ·2x - 4x ,因为 g ( x ) 在区间 [0,1] 上是单调减函数,所以有 g ′( x ) = λln2 ·2x - ln4 ·4x = ln2 [- 2 ·(2x )2+ λ·2x] ≤0 成立.x2 设 2 = u ∈ [1,2] ,上式成立等价于-2u+ λu ≤0 恒成立.因为 u ∈ [1,2] ,只需 λ≤2u 恒成立,所以实数 λ的取值范围是λ≤ 2.对数与对数函数同步练习一、选择题1、已知 3a2 ,那么 log3 8 2log 3 6 用 a 表示是()A 、 a 2B 、 5a2C 、 3a (1 a)2D 、 3a a 22、 2log a (M 2N ) log a Mlog a N ,则M的值为()A 、1NB 、4C 、1D 、 4 或 1413 、 已 知 x 2 y 2 1, x0, y 0 , 且 log a (1 x) m,log a n,则 log a y 等 于1 x()A 、 m nB 、 m nC 、 1m nD 、 1m n224、如果方程 lg 2 x (lg5lg 7)lgx lg5 glg 7 0 的两根是 ,,则 g的值是()A 、 lg5 glg 7B 、 lg35C 、 35D 、13515、已知 log 7[log 3 (log 2 x)] 0,那么 x2等于( )A 、1B 、13 C 、1D 、1322 2336、函数 ylg2 1 的图像关于()1 xA 、 x 轴对称B 、 y 轴对称C 、原点对称D 、直线 yx 对称7、函数 ylog (2 x 1) 3x2 的定义域是()A 、 2,1 U 1,B 、 1,1 U 1,32C 、 2,D 、 1,328、函数 ylog 1 (x 2 6x17) 的值域是()2A 、 RB 、 8,C 、, 3D 、 3,9、若 log m 9 log n 9 0 ,那么 m, n 满足的条件是( )A 、 m n 1B 、 n m 1C 、 0 n m 1D 、 0 m n 110、 log a 2 1,则 a 的取值范围是()3A 、 0, 2U 1,B 、 2,C 、 2,1D 、 0, 2U 2,3333 311、下列函数中,在 0,2 上为增函数的是()A 、 ylog 1 ( x1)B 、 y log 2 x 2 12C 、 ylog 2 1D 、 ylog 1 ( x 2 4x 5)x212、已知 g( x) log a x+1 ( a 0且a 1) 在 10, 上有 g( x)0 ,则 f ( x)a x 1 是( )A 、在 ,0上是增加的 B 、在 ,0 上是减少的C 、在, 1 上是增加的D 、在,0 上是减少的二、填空题13、若 log a 2 m,log a 3 n, a 2 m n 。
[基础巩固]1.(多选)若log 2a <0,⎝⎛⎭⎫12b >1,则( )A .0<a <1B .a >1C .b >0D .b <0解析 由log 2a <0得0<a <1,由⎝⎛⎭⎫12b >1得b <0,所以选A 、D 项.答案 AD2.函数f (x )=| log 12x |的单调递增区间是( )A .⎝⎛⎦⎤0,12 B .(0,1] C .(0,+∞) D .[1,+∞)解析 f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).答案 D3.(2021·新高考全国卷Ⅱ)已知a =log 52,b =log 83,c =12,则下列判断正确的是( ) A .c <b <aB .b <a <cC .a <c <bD .a <b <c解析 a =log 52<log 55=12=log 822<log 83=b ,即a <c <b . 故选C. 答案 C4.不等式log 2(2x +3)>log 2(5x -6)的解集为________.解析 原不等式等价于⎩⎪⎨⎪⎧ 2x +3>0,5x -6>0,2x +3>5x -6,解得65<x <3,所以原不等式的解集为⎝⎛⎭⎫65,3. 答案 ⎝⎛⎭⎫65,35.设函数f (x )=⎩⎪⎨⎪⎧log 2(x -1),x ≥2,2x ,x <2,则f (log 23)=________;不等式f (x )>4的解集为________.解析 ∵log 23<log 24=2,∴f (log 23)==3,不等式f (x )>4可化为:⎩⎪⎨⎪⎧ x ≥2,log 2(x -1)>4,或⎩⎪⎨⎪⎧x <2,2x >4. 解得x >17或无解.所以原不等式的解集为(17,+∞).答案 3 (17,+∞)6.已知函数f (x )=log a x (a >0,a ≠1),且f (3)-f (2)=1.(1)若f (3m -2)<f (2m +5),求实数m 的取值范围;(2)求使f ⎝⎛⎭⎫x -2x =log 3272成立的x 的值. 解析 因为f (3)-f (2)=1,所以a =32,所以f (x )=log 32x . (1)因为32>1,所以由f (3m -2)<f (2m +5)得⎩⎪⎨⎪⎧ 3m -2>0,2m +5>0,3m -2<2m +5,所以23<m <7. (2)由f ⎝⎛⎭⎫x -2x =log 32 72,即log 32⎝⎛⎭⎫x -2x =log 3272, 所以x -2x =72.所以x =-12或x =4. [能力提升]7.已知f (x )=|ln x |,若a =f ⎝⎛⎭⎫15,b =f ⎝⎛⎭⎫14,c =f (3),则( ) A .a <b <cB .b <c <aC .c <a <bD .c <b <a 解析 因为f (x )=|ln x |,所以a =f ⎝⎛⎭⎫15=⎪⎪⎪⎪ln 15=ln 5,b =f ⎝⎛⎭⎫14=⎪⎪⎪⎪ln 14=ln 4,c =f (3)=|ln 3|=ln 3, 因为y =ln x 是单调递增函数,所以ln 5>ln 4>ln 3,即a >b >c ,故选D.答案 D8.设a =log 132,b =log 23,c =⎝⎛⎭⎫12 0.3 ,则a ,b ,c 从小到大的顺序是________. 解析 因为a =log 13 2<log 131=0,b =log 23>log 22=1,0<c =⎝⎛⎭⎫12 0.3 <⎝⎛⎭⎫12 0 =1,所以a <c <b .答案 a <c <b9.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值为________.解析 函数y =|log 0.5x |的值域为[0,2],则由0≤|log 0.5x |≤2,得14≤x ≤4, 所以[a ,b ]长度的最大值为4-14=154. 答案 15410.已知函数f (x )=log a (1-x )+log a (x +3)(0<a <1).(1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-2,求a 的值.解析 (1)要使函数有意义,则有⎩⎪⎨⎪⎧1-x >0,x +3>0, 解得-3<x <1,所以定义域为(-3,1).(2)函数可化为f (x )=log a [(1-x )(x +3)]=log a (-x 2-2x +3)=log a [-(x +1)2+4],因为-3<x <1,所以0<-(x +1)2+4≤4,又0<a <1,所以log a [-(x +1)2+4]≥log a 4, 即f (x )的最小值为log a 4.由log a 4=-2,得a -2=4,所以a =4-12=12. [探索创新]11.已知函数f (x )=a x -1(a >0且a ≠1).(1)若函数y =f (x )的图象经过点P (3,4),求a 的值;(2)若f (lg a )=100,求a 的值;(3)比较f ⎝⎛⎭⎫lg 1100与f (-2.1)的大小,并写出比较过程. 解析 (1)因为函数y =f (x )的图象经过P (3,4), 所以a 3-1=4,即a 2=4.又a >0,所以a =2.(2)由f (lg a )=100知,a lg a -1=100.∴lg a lg a -1=2(或lg a -1=log a 100).∴(lg a -1)·lg a =2.∴(lg a )2-lg a -2=0,∴lg a =-1或lg a =2,∴a =110或a =100. (3)∵f ⎝⎛⎭⎫lg 1100=f (-2)=a -3,f (-2.1)=a -3.1, 当a >1时,y =a x 在(-∞,+∞)上为增函数, ∵-3>-3.1,∴a -3>a-3.1, 即f ⎝⎛⎭⎫lg 1100>f (-2.1); 当0<a <1时,y =a x 在(-∞,+∞)上为减函数, ∵-3>-3.1,∴a -3<a-3.1, 即f ⎝⎛⎭⎫lg 1100<f (-2.1).。
指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.指数函数习题一、选择题1.定义运算a ⊗b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),则函数f (x )=1⊗2x的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x)的大小关系是( )A .f (b x )≤f (c x)B .f (b x )≥f (c x)C .f (b x )>f (c x)D .大小关系随x 的不同而不同3.函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2)4.设函数f (x )=ln [(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x-2x-1)的定义域是B ,若A ⊆B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x(a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是________.9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题10.求函数y =2的定义域、值域和单调区间.11.(2011·银川模拟)若函数y =a 2x +2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.1.解析:由a ⊗b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b )得f (x )=1⊗2x=⎩⎨⎧2x(x ≤0),1 (x >0).答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增. 若x ≥0,则3x≥2x≥1,∴f (3x)≥f (2x).若x <0,则3x<2x<1,∴f (3x)>f (2x).∴f (3x)≥f (2x).答案:A3.解析:由于函数y =|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4. 解析:由题意得:A =(1,2),a x-2x>1且a >2,由A ⊆B 知a x-2x>1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3.答案:B5. 解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,注意a 8-6>(3-a )×7-3,所以⎩⎨⎧a >13-a >0a 8-6>(3-a )×7-3,解得2<a <3.答案:C6. 解析:f (x)<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2,当0<a <1时,必有a ≥12,即12≤a <1,综上,12≤a <1或1<a ≤2.答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b没有公共点,则b 应满足的条件是b ∈[-1,1].答案:[-1,1]9. 解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1.∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-4或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =2341()2x x --+的值域为[28,1]. 由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知,当-4≤x ≤-32时,t 是增函数,当-32≤x ≤1时,t 是减函数.根据复合函数的单调性知:y =2341()2x x --+[-4,-32]上是减函数,在[-32,1]上是增函数.∴函数的单调增区间是[-32,1],单调减区间是[-4,-32].11. 解:令a x=t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,1a ],故当t =1a,即x =-1时,y max =(1a+1)2-2=14.∴a =13或-15(舍去).综上可得a =3或13.12. 解:法一:(1)由已知得3a+2=18⇒3a=2⇒a =log 32.(2)此时g (x )=λ·2x-4x,设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立. 由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一. (2)此时g (x )=λ·2x-4x,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x-ln4·4x=ln2[-2·(2x )2+λ·2x ]≤0成立.设2x=u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立.因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.对数与对数函数同步练习一、选择题1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a -2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或13、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=g的两根是,αβ,则αβg 的值是( )A 、lg5lg 7gB 、lg35C 、35D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭UB 、()1,11,2⎛⎫+∞ ⎪⎝⎭UC 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<<10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭UB 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭U11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题13、若2log 2,log 3,m n a a m n a +=== 。
高一数学对数函数经典题及详细答案1、已知3a=2,那么log3 8-2log3 6用a表示是()A、a-2.B、5a-2.C、3a-(1+a)。
D、3a-a2/2答案:A。
解析:由3a=2,可得a=log3 2,代入log3 8-2log3 6中得:log3 8-2log3 6=log3 2-2log3 (2×3)=3log3 2-2(log3 2+log33)=3a-2(a+1)=a-2.2、2loga(M-2N)=logaM+logaN,则M的值为()A、N/4.B、M/4.C、(M+N)2.D、(M-N)2答案:B。
解析:2loga(M-2N)=logaM+logaNloga(M-2N)2=logaMNM-2N=MNM=4N3、已知x+y=1,x>0,y>0,且loga(1+x)=m,loga(1-y)=n,则loga y等于()A、m+n-2.B、m-n-2.C、(m+n)/2.D、(m-n)/2答案:D。
解析:由已知可得1-x=y,代入loga(1+x)=m中得loga(2-x)=m,两式相减得loga[(2-x)/(1+x)]=m-n,化简得loga[(1-x)/x]=m-n,即loga y=m-n,所以答案为D。
4、若x1,x2是方程lg2x+(lg3+lg2)lgx+lg3·lg2=0的两根,则x1x2=()A、1/3.B、1/6.C、1/9.D、1/36答案:B。
解析:将lg2x+(lg3+lg2)lgx+lg3·lg2=0化为对数形式,得:log2x+(log23+log22)logx+log32=0log2x+(log2×3+log22)logx+log3+log2=0XXXlog2x+log2xlog23+log32+log2=0log2x(1+log23)+log32+log2=0log2x=log32+log2/(1+log23)x=2log32+log2/(1+log23)x1x2=2log32+log2/(1+log23)×2log32+log2/(1+log23)2log32+log2/(1+log23)22log32+2log2/(1+log23)2log2(3/2)2/(1+log23)2log2(9/4)/(1+log23)2log29/(1+log23)2log29/(1+log2+log23)2log29/(3+log23)2log29/(3+log2+log3)2log29/(3+1+log3)2log29/(4+log3)2log29/(4+log3/log10)2log29/(4+0.4771)1/61.答案D,已知lg2x+(lg2+lg3)lgx+lg2lg3=0的两根为x1、x2,则x1•x2的值为16.2.答案C,已知log7[log3(log2x)]=0,则x等于2^3=8,x-1/2=2^3-1/2=15/2,x1•x2=2^3•15/2=60.3.答案C,lg12=2a+b,lg15=b-a+1,比值为(2a+b)/(1-a+b),化简得到2a+b/(1-a+b)。
对数函数及其性质题型及解析1.给出下列函数:①y=logx 2;②y=log 3(x ﹣1);③y=log x+1x ;④y=log πx ;⑤y=log x 2;⑥y=log 8x ;⑦y=lnx ;⑧y=log x (x+2);⑨y=2log 4x ;⑩y=log 2(x+1),其中是对数函数的为___________分析:根据对数函数的定义,y=log a x (a >0,且a ≠1),逐一分析给定函数是否为指数函数,可得结论 解:①y=232log x 的真数为x 2,故不是对数函数;②y=log 3(x-1)的真数为x-1,故不是对数函数;③y=log x+1x的底数为x+1,故不是对数函数;④y=log πx 是对数函数;⑤y=log x 2不是对数函数;⑥y=log 8x 是对数函数;⑦y=lnx 是对数函数;⑧y=log x (x+2)不是对数函数;⑨y=2log 4x 不是对数函数;⑩y=log 2(x+1)不是对数函数2.求下列函数的定义域 (1)y=log a (4﹣x ) (2)y=log a x 2(3)y=log a [log a (log a x )] 分析:根据对数函数的真数大于0,列出不等式,求出对应函数的定义域即可. 解:(1)∵函数y=log a (4﹣x ),∴4﹣x >0,解得x <4,∴函数y 的定义域为(﹣∞,4);(2)∵函数y=log a x 2,∴x 2>0,解得x ≠0,∴函数y=log a x 2的定义域为{x|x ≠0}.(3)∵log a (log a x )>0,log a x >0,当a >1时,x >a ,当0<a <1时,a <x <1,∴a 为(a ,+∞)∪(a ,1) 3.比较下列各组数中值的大小.(1)log 23.4,og 28.5;(2)log 0.31.8,log 0.32.7;(3)log a 5.1,log a 5.9(4)1.10.9,log 1.10.9,log 0.70.8 (5)log 20.4,log 30.4 (6)log 67,log 76;(7)log 3π,log 20.8(8)log 30.2,log 40.2;(9)log 3π,log π3. (10)ln0.3,ln2;(11)log a 3.1,log a 5.2(a >0,且a ≠1);(12)log 3π,log π3.分析:根据对数函数的图象和性质或者换底公式即可比较log 30.2,log 40.2的大小或者寻找中间量1可比较log 3π,log π3的大小,对于y=log a x ,当a >1时,函数为增函数,当0<a <1时,函数为减函数,可比较大小 解:根据对数函数的图象和性质,对于y=logax ,当a >1时,函数为增函数,当0<a <1时,函数为减函数, 所以(1)log 23.4<log 28.5;(2)log 0.31.8>log 0.32.7;(3)当a >1时,log a 5.1<log a 5.9,当0<a <1时,log a 5.1>log a 5.9;(4)1.10.9>1,log 1.10.9<0,0<log 0.70.8<1,∴1.10.9>log 0.70.8>log 1.10.9;(5)log 20.4<log 30.4;(6)∵<<,∴>;(7)∵<<,∴> (8)log 30.2=,log 40.2=;∵log 0.24<log 0.23<0,∴<;即log 30.2<log 40.2;(9)∵log 3π>1,log π3<1,∴log 3π>log π3;(10)因为函数y=lnx 是增函数,且0.3<2,所以ln0.3<ln2.(11)当a >1时,函数y=log a x 在(0,+∞)上是增函数,又3.1<5.2,所以log a 3.1<log a 5.2,当0<a <1时,函数y=log a x 在(0,+∞)上是减函数,又3.1<5.2,所以log a 3.1>log a 5.2.(12)因为函数y=log 3x 是增函数,且π>3,所以log 3π>log 33=1,同理,1=log ππ>log π3,即log 3π>log π3.4.求函数y=log 0.5(4﹣x 2)的单调区间分析:令t=4﹣x 2>0,求得函数的定义域为(﹣2,2),且y=log 0.5t ,再利用二次函数的性质求得t 在定义域内的单调增区间,即为函数y 的减区间;函数t 在定义域内的单调减区间,即为函数y 的增区间.解:令t=4﹣x 2>0,求得﹣2<x <2,故函数的定义域为(﹣2,2),且y=log 0.5t ,故本题即求函数t 在定义域内的单调区间.由于函数t 在定义域内的单调增区间为(﹣2,0],故函数y 的减区间为(﹣2,0];由于函数t 在定义域内的单调减区间为(0,2),故函数y 的增区间为(0,2)5.已知对数函数y=log a x 在区间[3,6]上的最大值比最小值大2,求实数a 的值分析:利用函数的单调性求出函数的最大值和最小值列出不等式解出.需要分情况讨论 解:(1)当a >1时,y=log a x 在区间[3,6]上是增函数,y max =log a 6,y min =log a 3∴log a 6﹣log a 3=2,即log a 2=2,解得a=.(2)当0<a <1时,y=log a x 在区间[3,6]上是减函数,y max =log a 3,y min =log a 6∴log a 3﹣log a 6=2, 即log a 1/2=2,解得a=2/2,故答案为2或2/26.求下列各式中x 的值 (1)log x (3+2)=﹣2 (2)log (x+3)(x 2+3x )=1分析:本题考察对数的运算性质,(1)由log x (3+2)=﹣2,利用指数式与对数式的互化即可得到x ﹣2=3+2,注意到x >0且x ≠1,解出即可;(2)由log (x+3)(x 2+3x )=1,利用底的对数等于1可得x 2+3x=x+3,①,及x 2+3x >0,②,x+3>0且x+3≠1,③解①并验证②③即可解:(1)∵log x (3+2)=﹣2,∴x ﹣2=3+2,∴=3+2,∴x 2=,又∵x >0且x ≠1,∴x=﹣1.(2)∵log (x+3)(x 2+3x )=1,∴,解①x 2+2x ﹣3=0得,x=﹣3或x=1.当x=﹣3时,不满足②和③,当x=1时,满足②③,故x=17.设0<a<1,x和y满足log a x+3log x a﹣log x y=3,如果y有最大值,求这时a和x的值分析:把原方程转化为log a x+﹣=3,即log a y=log a2x﹣3log a x+3=(log a x﹣)2+,然后利用二次函数的性质求如果y有最大值时a和x的值解:原式可化为log a x+﹣=3,即log a y=log a2x﹣3log a x+3=(log a x﹣)2+,知当log a x=时,log a y有最小值.∵0<a<1,∴此时y有最大值,根据题意=⇒a=.这时x===8.求函数的反函数(1)y=(2)y=(3)y=lnx+1 (4)y=3x+2分析:由已知的解析式求出x的表达式,再把x换成y、y换成x,并注明反函数的定义域.解:由y=的得,xy+4y=x﹣4,解得(y≠1),所以(x≠1),则函数y=的反函数是(x≠1).(2)函数y=可得:2x=2x y+y.可得2x(1﹣y)=y,2x=,可得x=,函数y=的反函数为y=.(3)由y=lnx+1解得x=e y﹣1,即:y=e x﹣1,∵x>0,∴y∈R所以函数f(x)=lnx+1(x>0)反函数为y=e x﹣1(x∈R);(4)∵y=3x+2,∴3x=y﹣2,又3x>0,故y>2,∴x=log3(y﹣2)(y>2),∴函数y=3x+2的反函数是y=log3(x﹣2)(x>2)9.求下列函数的反函数的定义域(1)y=(2)(3)分析:欲求反函数的定义域,可以通过求原函数的值域获得,所以只要求出函数的值域即可,反函数的定义域即为原函数的值域求解即可解:(1)∵y=,∴ye x+y=e x,∴(y﹣1)e x=﹣y,∴,∴x=ln,x,y互换,得函数y=的反函数为:,,解得反函数的定义域为:{x|0<x<1}(2)反函数的定义域即为原函数的值域,由,x>0,所以,所以,则y<0,反函数的定义域为(﹣∞,0)(3)由得,e x=.∵e x>0,∴>0,∴﹣1<y<1,∴反函数的定义域是(﹣1,1)10.求下列函数的反函数,并指出该函数和它的反函数的定义域(1)y=;(2)y=;(3)y=e x﹣1解:(1)由y=,即2xy﹣y=x,x(2y﹣1)=y,解得x=,x,y互换得y=,其定义域为{x|x≠} (2)由(2)y=可得y2=2x﹣3,即x=(y2+3),x,y互换得y=(x2+3),因为原函数的值域为[0,+∞),则反函数的定义域为[0,+∞)(3)由y=e x﹣1则x﹣1=lny,即x=1+lny,x,y互换得y=1+lnx,则其定义域为(0,+∞)。
高中数学必修一《对数函数》经典习题(含详细解析)一、选择题1.已知f=log3x,则f,f,f(2)的大小是( )A.f>f>f(2)B.f<f<f(2)C.f>f(2)>fD.f(2)>f>f2若log a2<log b2<0,则下列结论正确的是( )A.0<a<b<1B.0<b<a<1C.a>b>1D.b>a>13函数y=2+log2x(x≥1)的值域为( )A.(2,+∞)B.(-∞,2)C.[2,+∞)D.[3,+∞)4函数y=lo x,x∈(0,8]的值域是( )A.[-3,+∞)B.[3,+∞)C.(-∞,-3]D.(-∞,3]5.不等式log2(2x+3)>log2(5x-6)的解集为( )A.(-∞,3)B.C. D.6函数f(x)=lg是( )A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数7设a=log32,b=log52,c=log23,则( )A.a>c>bB.b>c>aC.c>b>aD.c>a>b8设a=log54,b=(log53)2,c=log45,则( )A.a<c<bB.b<c<aC.a<b<cD.b<a<c9.函数f(x)=a x+log a(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为( )A. B. C.2 D.410.若log a=log a,且|log b a|=-log b a,则a,b满足的关系式是( )A.a>1,且b>1B.a>1,且0<b<1C.0<a<1,且b>1D.0<a<1,且0<b<1二、填空题11若函数y=log3x的定义域是[1,27],则值域是.12已知实数a,b满足lo a=lo b,下列五个关系式:①a>b>1,②0<b<a<1,③b>a>1,④0<a<b<1,⑤a=b.其中可能成立的关系式序号为.13log a<1,则a的取值范围是.14不等式12log xx<的解集是.15函数y=log0.8(-x2+4x)的递减区间是.三、解答题16.比较下列各组值的大小.(1)log3π,log20.8.(2)1.10.9,log1.10.9,log0.70.8.(3)log53,log63,log73.17已知函数f(x)=+的定义域为A.(1)求集合A.(2)若函数g(x)=(log2x)2-2log2x-1,且x∈A,求函数g(x)的最大值、最小值和对应的x值.18已知函数f=log2(2+x2).(1)判断f的奇偶性.(2)求函数f的值域.19已知函数f(x)=log a(1-x)+log a(x+3),其中0<a<1.(1)求函数f(x)的定义域.(2)若函数f(x)的最小值为-4,求a的值.参考答案与解析1【解析】选 B.由函数f=log3x在(0,+∞)是单调增函数,且<<2,知f()<f()<f(2).2【解析】选B.log a2<log b2<0,如图所示,所以0<b<a<1.6【解析】选A.因为f(-x)=lg=lg=lg=lg=-lg=-f(x),所以f(-x)=-f(x),又函数的定义域为R,故该函数为奇函数.7【解析】选D.因为log32=<1,log52=<1,又log23>1,所以c最大.又1<log23<log25,所以>,即a>b,所以c>a>b.8【解析】选D.a=log54<1,log53<log54<1,b=(log53)2<log53<a,c=log45>1,故b<a<c.9【解析】选 B.无论a>1还是0<a<1,f(x)在[0,1]上都是单调函数,所以a=(a0+log a1)+(a+log a2),所以a=1+a+log a2,所以log a2=-1,所以a=.10【解析】选C.因为log a=log a,所以log a>0,所以0<a<1.因为|log b a|=-log b a,所以log b a<0,b>1.11【解析】因为1≤x≤27,所以log31≤log3x≤log327=3.所以值域为[0,3].答案:[0,3]12【解析】当a=b=1或a=,b=或a=2,b=3时,都有lo a=lo b.故②③⑤均可能成立.答案:②③⑤13【解析】①当a>1时,log a<0,故满足log a<1;②当0<a<1时,log a>0,所以log a<log a a,所以0<a<,综上①②,a∈∪(1,+∞).答案:∪(1,+∞)14【解析】因为<=x-1,且x>0.①当0<x<1时,由原不等式可得,lo x>-1,所以x<2,所以0<x<1;②当x>1时,由原不等式可得,lo x<-1,x>2,综上可得,不等式的解集为{x|0<x<1或x>2}.答案:(0,1)∪(2,+∞)15【解析】因为t=-x2+4x的递增区间为(-∞,2].但当x≤0时,t≤0.故只能取(0,2],即为f(x)的递减区间.答案:(0,2]16【解析】(1)因为log3π>log31=0,log20.8<log21=0,所以log3π>log20.8.(2)因为1.10.9>1.10=1,log1.10.9<log1.11=0,0=log0.71<log0.70.8<log0.70.7=1,所以1.10.9>log0.70.8>log1.10.9.(3)因为0<log35<log36<log37,所以log53>log63>log73.17【解析】(1)所以所以≤x≤4,所以集合A=.(2)设t=log2x,因为x∈,所以t∈[-1,2],所以y=t2-2t-1,t∈[-1,2].因为y=t2-2t-1的对称轴为t=1∈[-1,2],所以当t=1时,y有最小值-2.所以当t=-1时,y有最大值2.所以当x=2时,g(x)的最小值为-2.当x=时,g(x)的最大值为2.18【解析】(1)因为2+x2>0对任意x∈R都成立,所以函数f=log2(2+x2)的定义域是R.因为f(-x)=log2[2+(-x)2]=log2(2+x2)=f(x),所以函数f(x)是偶函数.(2)由x∈R得2+x2≥2,所以log2(2+x2)≥log22=1,即函数f=log2(2+x2)的值域为[1,+∞).19【解析】(1)要使函数有意义,则有解之得-3<x<1,所以函数的定义域为(-3,1).(2)函数可化为:f(x)=log a[(1-x)(x+3)]=log a(-x2-2x+3)=log a[-(x+1)2+4],因为-3<x<1,所以0<-(x+1)2+4≤4.因为0<a<1,所以log a[-(x+1)2+4]≥log a4,即f(x)min=log a4,由log a4=-4得a-4=4,所以a==.3【解析】选C.设y=2+t,t=log2x(x≥1),因为t=log2x在[1,+∞)上是单调增函数,所以t≥log21=0.所以y=2+log2x(x≥1)的值域为[2,+∞).4【解析】选A.因为0<x≤8,所以lo x≥-3,故选A.5【解析】选D.原不等式等价于解得<x<3,所以原不等式的解集为.。
2.2.2对数函数及其性质5分钟训练(预习类训练,可用于课前) 1.函数f (x )=|log 2x|的图象是()思路解析:考查对数函数的图象及图象变换.注意到y=|log 2x|的图象应是将y=log 2x 的图象位于x 轴下方的部分翻折到x 轴的上方,故选A. 答案:A2.若log a 2<log b 2<0,则a 、b 满足的关系是() A.1<a <bB.1<b <aC.0<a <b <1D.0<b <a <1思路解析:考查y=log a x 和y=log b x 的图象.当x=2时,又log a 2<log b 2<0,所以y=log a x 和y=log b x 为减函数.∴a 、b 均小于1.又由log a 2<log b 2知y=log a x 的图象与y=log b x 的图象如下图所示.故0<b <a <1. 答案:D3.函数y=log a (x-2)+1(a >0且a ≠1)恒过定点_________. 思路解析:若x-2=1,则不论a 为何值,只要a >0且a=1,都有y=1. 答案:(3,1)4.函数f (x )=log (a-1)x 是减函数,则a 的取值范围是_________.思路解析:考查对数函数的概念、性质.注意到a-1既受a-1>0且a-1≠1的制约,又受减函数的约束,由此可列关于a 的不等式求a.由题意知0<a-1<1,∴1<a <2. 答案:1<a <210分钟训练(强化类训练,可用于课中)1.(2006广东高考)函数f(x)=xx -132+lg(3x+1)的定义域是()A.(-31,+∞)B.(-31,1)C.(-31,31)D.(-∞,-31) 思路解析:要使函数有意义,则⎩⎨⎧>+>-,013,01x x 解得-31<x<1.答案:B2.若函数f (x )=log a x (0<a<1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于() A.42B.22C.41D.21思路解析:本题关键是利用f (x )的单调性确定f (x )在[a ,2a ]上的最大值与最小值.f (x )=log a x (0<a<1)在(0,+∞)上是减函数,当x ∈[a ,2a ]时,f (x )max =f (a )=1,f (x )min =f(2a )=log a 2a.根据题意,3log a 2a=1,即log a 2a=31,所以log a 2+1=31,即log a 2=-32.故由32-a =2得a=322-42=. 答案:A3.右图是对数函数y=log a x 当底数a 的值分别取3,34,53,101时所对应图象,则相应于C 1,C 2,C 3,C 4的a 的值依次是()A.3,34,53,101B.3,34,101,53 C.34,3,53,101D.34,3,101,53思路解析:因为底数a 大于1时,对数函数的图象自左向右呈上升趋势,且a 越大,图象就越靠近x 轴;底数a 大于0且小于1时,对数函数的图象自左向右呈下降趋势,且a 越小,图象就越靠近x 轴. 答案:A 4.比较大小:(1)log 0.27和log 0.29;(2)log 35和log 65;(3)(lgm )1.9和(lgm )2.1(m >1);(4)log 85和lg4.思路解析:本题大小比较代表了几个典型的题型.其中题(1)是直接利用对数函数的单调性;题(2)是对数函数底数变化规律的应用;题(3)是指数函数单调性及对数函数性质的综合运用;题(4)是中间量的运用.当两个对数的底数和真数都不相同时,需要找出中间量来“搭桥”,再利用对数函数的增减性.常用的中间量有0、1、2等可通过估算加以选择.(1)log 0.27和log 0.29可看作是函数y=log 0.2x 当x=7和x=9时对应的两函数值,由y=log 0.2x 在(0,+∞)上单调递减,得log 0.27>log 0.29.(2)考察函数y=log a x 底数a >1的底数变化规律,函数y=log 3x (x >1)的图象在函数y=log 6x (x >1)的上方,故log 35>log 65.(3)把lgm 看作指数函数的底数,要比较两数的大小,关键是比较底数lgm 与1的关系.若lgm >1即m >10,则(lgm )x 在R 上单调递增,故(lgm )1.9<(lgm )2.1.若0<lgm <1即1<m <10,则(lgm )x 在R 上单调递减,故(lgm )1.9>(lgm )2.1.若lgm=1即m=10,则(lgm )1.9=(lgm )2.1.(4)因为底数8、10均大于1,且10>8,所以log 85>lg5>lg4,即log 85>lg4.答案:(1)log 0.27>log 0.29.(2)log 35>log 65.(3)m >10时,(lgm )1.9<(lgm )2.1;m=10时,lgm=1,(lgm )1.9=(lgm )2.1;1<m <10时,(lgm )1.9>(lgm )2.1.(4)log 85>lg4. 5.已知函数y=lg (x x -+12),求其定义域,并判断其奇偶性、单调性. 思路解析:注意到12+x +x=xx -+112,即有lg (12+x -x )=-lg (12+x +x ),从而f (-x )=lg (12+x +x )=-lg (12+x -x )=-f (x ),可知其为奇函数.又因为奇函数在关于原点对称的区间上的单调性相同,所以我们只需研究(0,+∞)上的单调性. 解:由题意12+x -x >0,解得x ∈R ,即定义域为R.又f (-x )=lg [1)(2+-x -(-x )]=lg (12+x +x )=lgxx -+112=lg (12+x -x )-1=-lg (12+x -x )=-f (x ),∴y=lg (12+x -x )是奇函数.任取x 1、x 2∈(0,+∞)且x 1<x 2,则121+x <122+x ⇒121+x +x 1<122+x +x 2⇒12111x x ++>22211x x ++,即有121+x -x 1>122+x -x 2>0,∴lg(121+x -x 1)>lg (122+x -x 2),即f (x 1)>f (x 2)成立.∴f (x )在(0,+∞)上为减函数.又f (x )是定义在R 上的奇函数,故f (x )在(-∞,0)上也为减函数. 6.作出下列函数的图象:(1)y=|log 4x|-1;(2)y=31log |x+1|.思路解析:(1)y=|log 4x|-1的图象可以看成由y=log 4x 的图象经过变换而得到:将函数y=log 4x 的图象在x 轴下方部分以x 轴为对称轴翻折上去,得到y=|log 4x|的图象,再将y=|log 4x|的图象向下平移1个单位,横坐标不变,就得到了y=|log 4x|-1的图象.(2)y=31log |x+1|的图象可以看成由y=31log x 的图象经过变换而得到:将函数y=31log x 的图象作出右边部分关于y 轴的对称图象,即得到函数y=31log |x|的图象,再将所得图象向左平移一个单位,就得到所求的函数y=31log |x+1|的图象.解:函数(1)的图象作法如图①~③所示.函数(2)的图象作法如图④~⑥所示. 7.函数y=lg|x|()A.是偶函数,在区间(-∞,0)上单调递增B.是偶函数,在区间(-∞,0)上单调递减C.是奇函数,在区间(0,+∞)上单调递增D.是奇函数,在区间(0,+∞)上单调递减 思路解析:画出函数y=lg|x|的草图即得答案.在画函数y=lg|x|的草图时,注意应用函数y=lg|x|是个偶函数,其图象关于y 轴对称.比如列表时,要先确定对称轴,然后在对称轴的两侧取值列表. 答案:B8.已知f (x )=1+log x 3,g (x )=2log x 2,试比较f (x )与g (x )的大小.思路解析:要比较两个代数式的大小,通常采取作差法或作商法,作差时,所得差同零比较,作商时,应先分清代数式的正负,再将商同“1”比较大小.因为本题中的f (x )与g (x )的正负不确定,所以采取作差比较法.解:f (x )和g (x )的定义域都是(0,1)∪(1,+∞).f (x )-g (x )=1+log x 3-2log x 2=1+log x 3-log x 4=log x 43x. (1)当0<x <1时,若0<43x <1,即0<x <34,此时log x 43x >0,即0<x <1时,f (x )>g (x );(2)当x >1时,若43x >1,即x >34,此时log x 43x >0,即x >34时,f (x )>g (x ); 若43x=1,即x=34,此时log x 43x=0,即x=34时,f (x )=g (x ); 若0<43x <1,即0<x <34,此时log x 43x <0,即1<x <34时,f (x )<g (x ).综上所述,当x ∈(0,1)∪(34,+∞)时,f (x )>g (x );当x=34时,f (x )=g (x ); 当x ∈(1,34)时,f (x )<g (x ).快乐时光 七个男人和一个女人朋友闲来无事,到街上遛达,看到有一录像点高挂着牌子,写着:今晚精彩录像——《七个男人与一个女人的故事》,莫失良机.朋友好奇心发作,买票进场.待人坐齐以后,开始放映.一开场屏幕上出现了真实片名《八仙过海》. 30分钟训练(巩固类训练,可用于课后)1.如下图,当a >1时,在同一坐标系中,函数y=a -x 与y=log a x 的图象是() 思路解析:首先把y=a -x 化为y=(a 1)x ,∵a >1,∴0<a 1<1.因此y=(a1)x ,即y=a -x 的图象是下降的,y=log a x 的图象是上升的. 答案:A2.(2006福建高考,文)已知f(x)是周期为2的奇函数,当0<x<1时,f(x)=lgx.设a=f(56),b=f(23),c=f(25),则() A.a<b<cB.b<a<cC.c<b<aD.c<a<b 思路解析:由题意,a=f(56)=f(-54)=-f(54)=-lg 54=lg 45,b=f(23)=f(-21)=-f(21)=-lg 21=lg2, c=f(25)=f(21)=lg 21,由于f(x)=lgx 在实数范围内为增函数,所以有c<a<b. 答案:D3.已知函数f (x )=lg (x 2-3x+2)的定义域为F ,函数g (x )=lg (x-1)+lg (x-2)的定义域为G ,那么()A.GFB.G=FC.F ⊆GD.F ∩G=∅思路解析:F={x|x 2-3x+2>0}={x|x>2或x<1},G={x|x>2}.∴G F.答案:A4.已知函数f (x )=log 2(x 2-ax+3a )在[2,+∞]上是增函数,则实数a 的取值范围是() A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,4)思路解析:解决复合函数问题的通法是把复合函数化归为基本初等函数.令u (x )=x 2-ax+3a ,其对称轴x=2a . 由题意有⎪⎩⎪⎨⎧≤>+-=.22,0324)2(a a a u解得-4<a ≤4. 答案:B5.(2006福建高考,理)函数y=log 21-x x(x>1)的反函数是() A.y=122-x x (x>0)B.y=122-x x(x<0)C.y=x x 212-(x>0)D.y=xx 212-(x<0) 思路解析:求函数时一定不要忘记求反函数的定义域,也就是原函数的值域.原函数值域为y>0,由于y=log 21-x x (x>1)=log 21-x x =log 2(1+11-x ),所以1+11-x =2y,x=121-y +1=122-y y .将x,y对调,可得反函数为y=122-x x(x>0).答案:A6.已知函数f (x )=log abx bx -+(a >1且b >0). (1)求f (x )的定义域; (2)判断函数的奇偶性;(3)判断f (x )的单调性,并用定义证明.思路解析:本题考查定义域、单调性的求法及判断方法,注意要利用定义求解.解:(1)由⎪⎩⎪⎨⎧≠->-+,0,0b x b x bx 解得x <-b 或x >b.∴函数f (x )的定义域为(-∞,-b )∪(b ,+∞). (2)由于f (-x )=log a (b x b x --+-)=log a (b x b x +-)=log a (b x b x -+)-1=-log a (bx bx -+)=-f (x ),所以f (x )为奇函数.(3)设x 1、x 2是区间(b ,+∞)上任意两个值,且x 1<x 2.则b x b x -+22-b x b x -+11=))(()(2))(()(1221122121221212b x b x x x b b x b x b bx bx x x b bx bx x x ---=----+--+-. ∵b >0,x 1-x 2<0,x 2-b >0,x 1-b >0, ∴b x b x -+22-b x bx -+11<0.∴b x b x -+22<bx bx -+11.又a >1时,函数y=log a x 是增函数, ∴log ab x b x -+22<log a bx bx -+11,即f (x 2)<f (x 1).∴函数f (x )在区间(b ,+∞)上是减函数.同理,可证f (x )在(-∞,-b )上也是减函数. 7.已知f (x )=log axx-+11(a>0且a ≠1). (1)求函数的定义域; (2)讨论函数的单调性;(3)求使f (x )>0的x 的取值范围. 解:(1)由xx-+11>0得-1<x<1. ∴函数的定义域为(-1,1). (2)对任意-1<x 1<x 2<1,1111x x -+-2211x x -+=)1)(1()(22121x x x x ---<0,∴1111x x -+<2211x x -+.当a>1时,log a1111x x -+<log a 2211x x -+,即f (x 1)<f (x 2); 当0<a<1时,log a2211x x -+>log a 2211x x -+,即f (x 1)>f (x 2).∴当a>1时,f (x )为(-1,1)上的增函数; 当0<a<1时,f (x )为(-1,1)上的减函数.(3)log axx-+11>0=log a 1. ∴当a>1时,x x -+11>1,即x x -+11-1=xx-12>0.∴2x (x-1)<0.∴0<x<1.当0<a<1时,⎪⎪⎩⎪⎪⎨⎧<-+>-+,111,011xx xx解得-1<x<0;当a>1时,f (x )>0的解为(0,1); 当0<a<1时,f (x )>0的解为(-1,0).8.设函数f (x )=x 2-x+b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1),求f (log 2x )的最小值及对应的x 的值.思路解析:关键是利用已知的两个条件求出a 、b 的值.解:由已知得⎪⎩⎪⎨⎧=+-=+-,2)(log ,log log 22222b a a b b a a即)2()1(.4,0)1(log log 222⎪⎩⎪⎨⎧=+-=-b a a a a由①得log 2a=1,∴a=2. 代入②得b=2.∴f (x )=x 2-x+2.∴f (log 2x )=log 22x-log 2x+2=(log 2x-21)2+47. ∴当log 2x=21时,f (log 2x )取得最小值47,此时x=2.9.设a ≠0,对于函数f (x )=log 3(ax 2-x+a ), (1)若x ∈R ,求实数a 的取值范围; (2)若f (x )∈R ,求实数a 的取值范围.思路解析:f (x )的定义域是R ,等价于ax 2-x+a >0对一切实数都成立,而f (x )的值域为R ,等价于其真数ax 2-x+a 能取遍大于0的所有实数值,(1)与(2)虽只有一字之差,但结果却大不相同.解:(1)f (x )的定义域为R ,则ax 2-x+a >0对一切实数x 恒成立,其等价条件是⎩⎨⎧<-=∆>.041,02a a 解得a >21. (2)f (x )的值域为R ,则真数ax 2-x+a 能取遍大于0的所有实数,其等价条件是⎩⎨⎧≥-=∆>.041,02a a 解得0<a ≤21. 10.已知a>0且a ≠1,f (log a x )=12-a a (x-x1). (1)试证明函数y=f (x )的单调性.(2)是否存在实数m 满足:当y=f (x )的定义域为(-1,1)时,有f (1-m )+f (1-m 2)<0?若存在,求出其取值范围;若不存在,请说明理由.(3)若函数f (x )-4恰好在(-∞,2)上取负值,求a 的值. (1)证明:由f (log a x )=12-a a (x-x 1),得f (x )=12-a a (a x -a -x ),x ∈R ,任取x 1<x 2,f (x 1)-f (x 2)=12-a a (1x a -2x a )21211x x x x a a +++.a>1时,1x a <2x a ,a 2-1>0;0<a<1时,1x a >2xa ,a 2-1<0.综上可得f (x 1)<f (x 2),即函数为减函数.(2)解:因为f (-x )=-12-a a(a x -a -x )=-f (x ),即函数为奇函数,f (1-m )+f (1-m 2)<0可转化为f (1-m )<f (m 2-1),所以⎪⎩⎪⎨⎧-<-<-<-<-<-.11,111,11122m m m m 解得1<m<2.(3)解:f (x )-4恰好在(-∞,2)的值为负,即当x ∈(-∞,2)时,有f (x )-4<f (2)-4=0,解得a=2±3.11.已知f (x )=lg (a x -b x )(a>1>b>0). (1)求y=f (x )的定义域;(2)在函数图象上是否存在不同两点,使过这两点的直线平行于x 轴?思路解析:(2)的思维难点是把问题化归为研究函数的单调性问题. 解:(1)由a x -b x >0,得(b a )x >1=(ba )0. ∵ba>1,∴x>0. ∴函数的定义域为(0,+∞).(2)先证明f (x )是增函数.对于任意x 1>x 2>0,∵a>1>b>0,∴1x a >2x a ,1x b <2xb . ∴1xa -1x b >2x a -2xb .∴lg (1xa -1x b )>lg (2x a -2xb ). ∴f (x 1)>f (x 2).∴f (x )在(0,+∞)上为增函数.假设y=f (x )上存在不同的两点A (x 1,y 1)、B (x 2,y 2),使直线AB 平行于x 轴,则x 1≠x 2,y 1=y 2,这与f (x )是增函数矛盾.∴y=f (x )的图象上不存在两点,使过这两点的直线平行于x 轴.12.2006年春节晚会的现场上无数次响起响亮的掌声,某报记者用仪器测量到最响亮的一次音量达到了90.1分贝.分贝是计量声音强度相对大小的单位.物理学家引入了声压级(spl )来描述声音的大小:把一很小的声压P 0=2×10-5帕作为参考声压,把所要测量的声压P 与参考声压P 0的比值取常用对数后乘以20得到的数值称为声压级.声压级是听力学中最重要的参数之一,单位是分贝(dB ).分贝值在60以下为无害区,60~110为过渡区,110以上为有害区. (1)根据上述材料,列出分贝y 与声压P 的函数关系式.(2)某地声压P=0.002帕,试问该地为以上所说的什么区?声音环境是否优良?思路解析:由已知条件即可写出分贝y 与声压P 之间的函数关系式,然后由函数关系式求得当P=0.002帕时,分贝y 的值.由此可判断所在区. 解:(1)由已知y=(lg0P P )×20=20·lg 0P P(其中P 0=2×10-5). (2)将P=0.002代入函数关系y=20lg0P P ,则y=20lg 5102002.0-⨯=20lg102=40(分贝). 由已知条件知40分贝小于60分贝,所以在噪音无害区,环境优良.。
对数函数经典例题(实用版)目录1.对数函数的定义与性质2.对数函数的图像与性质3.对数函数的运算法则4.对数函数的应用5.经典例题解析正文对数函数是一种重要的数学函数,它被广泛应用于各个领域。
对数函数的定义为:如果,那么我们称 y 为以 a 为底的 x 的对数,记作:x=loga y(a>0,且 a≠1)。
根据这个定义,我们可以得到对数函数的一些基本性质。
首先,对数函数的图像与性质。
对数函数的图像通常为一条斜率为 1,截距为 0 的直线。
其性质包括:当 x=1 时,y=0;当 x>1 时,y>0;当0<x<1 时,y<0;当 x<0 时,y 不存在。
其次,对数函数的运算法则。
对数函数的运算法则包括:loga (xy) = logax + logay;loga (x/y) = logax - logay;loga x^n = nlogax。
再次,对数函数的应用。
对数函数在实际生活中的应用非常广泛,例如在计算机科学中,对数函数被用来表示数据的大小;在经济学中,对数函数被用来表示成本与收益的关系。
最后,让我们来看一些经典的对数函数例题。
例如,如果 a=2,那么log2 8 等于多少?根据对数函数的定义,我们可以得到 log2 8=3。
再比如,如果 a=10,b=100,那么 log10 100 等于多少?根据对数函数的定义,我们可以得到 log10 100=2。
总的来说,对数函数是一种重要的数学函数,它被广泛应用于各个领域。
对数函数的定义、图像、性质、运算法则以及应用,都是我们需要掌握的基本知识。
高中数学对数函数经典练习题及答案(优秀4篇)对数函数练习题篇一一、选择题1、下列函数(1)y= x (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x2-1中,是一次函数的有( )A.4个B.3个C.2个D.1个2、A 、B(x2,y2)是一次函数y=kx+2(k>0)图像上的不同的两点,若则( )A.t0 C.t>1 D. t≤13、直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的三角形最多有( )A. 5个B.6个C.7个D.8个4、把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是( )A.11 D.m0的解集是( )A.x>3B.-2-29.一次函数y=ax+1与y=bx-2的图象交于x轴上一点,那么a:b等于( )A. B.C. D.以上答案都不对10、函数y=kx+b,那么当y>1时,x的取值范围是:( )A、x>0B、x>2C、x212、在平面直角坐标系中,线段AB的端点A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则k的值不可能是( )A.5B.-5C.-2D.3二、填空题13、如果直线y = -2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.14、平面直角坐标系中,点A的坐标是(4,0),点P在直线y=-x+m上,且AP=OP=4.则m的值是。
15、直线y=kx+2经过点(1,4),则这条直线关于x轴对称的直线解析式为:。
16、已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x 轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为 .17、点A的坐标为(-2,0),点B在直线y=x-4上运动,当线段AB最短时,点B的坐标是___________。
18、已知三个一次函数y1=x,y2= x+1,y3=- x+5。
对数函数练习一、选择题1.函数y=(0.2)-x +1的反函数是( C ) A.y=log 5x+1 B.y=klog x 5+1 C.y=log 5(x-1) D.y=log 5x-12.函数y=log 0.5(1-x)(x <1=的反函数是( B ). A.y=1+2-x (x ∈R) B.y=1-2-x (x ∈R) C.y=1+2x (x ∈R) D.y=1-2x (x ∈R)3.当a >1时,函数y=log a x 和y=(1-a)x 的图像只可能是( B )4.函数f(x)=lg(x 2-3x+2)的定义域为F ,函数g(x)=lg(x-1)+lg(x-2)定义域为G ,那么( D )A.F ∩G=B.F=GC.FGD.GF5.已知0<a <1,b >1,且ab >1,则下列不等式中成立的是( B )A.log b b 1<log a b <log a b 1B.log a b <log b b 1<log a b1C.log a b <log a b 1<log b b 1D.log b b 1<log a b1<log a b6.函数f(x)=2log 21x 的值域是[-1,1],则函数f -1(x)的值域是( A )A.[22,2] B.[-1,1] C.[21,2] D.(-∞,22)∪2,+∞)7.函数f(x)=log 31 (5-4x-x 2)的单调减区间为( C )A.(-∞,-2)B.[-2,+∞]C.(-5,-2)D.[-2,1]8.a=log 0.50.6,b=log 20.5,c=log35,则( B )A.a <b <cB.b <a <cC.a <c <bD.c <a <b二、填空题1.将(61)0,2,log221,log0.523由小到大排顺序:答案:log 0.521<(log 232)<(61)0<2 2.已知函数f(x)=(log41x)2-log 41x+5,x ∈[2,4],则当x= ,f(x)有最大值 ;当x= 时,f(x)有最小值 .答案:4,7,2,4233.函数y=)x log 1(log 2221+的定义域为 ,值域为 .答案:(22,1)∪[-1,-22],[0,+∞]4.函数y=log 312x+log 31x 的单调递减区间是 .答案:(0,33) 三、解答题1.求函数y=log 21(x 2-x-2)的单调递减区间.答案:( 21,+∞)2.求函数f(x)=log a (a x +1)(a >1且a ≠1)的反函数. 答案:(i)当a >1时,由a x -1>0⇒x >0;log a (a x +1)的反函数为f -1(x)=log a (a x -1),x >0;当0<a <1时,f -1(x)=log a (a x -1),x <0.3.求函数f(x)=log 211-+x x +log 2(x-1)+log 2(p-x)的值域. 答案: (-∞,2log 2(p+1)-2]【素质优化训练】1.已知正实数x 、y 、z 满足3x =4y =6z(1)求证:z 1-x 1=zy1;(2)比较3x,4y,6z 的大小解:(1)z 1-x 1=log t 6-log t 3=log t 2=21log t 4=y 21(2)3x <4y <6z.2.已知log m 5>log n 5,试确定m 和n 的大小关系.答案:得n >m >1,或0<m <n <1,或0<n <1<m.3.设常数a >1>b >0,则当a,b 满足什么关系时,lg(a x -b x )>0的解集为{x |x >1}.答案:a=b+1【生活实际运用】美国的物价从1939年的100增加到40年后1979年的500.如果每年物价增长率相同,问每年增长百分之几?(注意:自然对数lnx 是以e=2.718…为底的对数.本题中增长率x <0.1,可用自然对数的近似公式:ln(1+x)≈x,取lg 2=0.3,ln10=2.3来计算=答案:美国物价每年增长约百分之四.【知识探究学习】某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下面的问题: (1)写出该城市人口总数x(万人)与年份x(年)的函数关系式; (2)计算10年以后该城市人口总数(精确到0.1万人);(3)计算大约多少年以后该城市人口将达到120万人(精确到1年). 解:(1)1年后该城市人口总数 y=100+100×1.2%=100×(1+1.2%) 2年后该城市人口总数为y =100×(1+1.2%)2+100×(1+1.2%)2×1.2% =100×(1+1.2%)2同理,3年后该市人口总数为y =100×(1+1.2%)3. x 年后该城市人口总数为y =100×(1+1.2%)x ;(2)10年后该城市人口总数为y =100×(1+1.2%)10=100×1.01210≈112.7(万人) (3)设x 年后该城市人口将达到120万人,即 100×(1+1.2%)x =120,x=log 1.012100120 =log 1.0121.20≈15(年)。
对数函数练习题(含答案)对数函数一、选择题1.设a=20.3,b=0.32,c=log2 0.3,则a、b、c的大小关系是()A。
a<b<cB。
b<c<aC。
c<b<aD。
c<a<b2.已知a=log2 0.3,b=20.1,c=0.21.3,则a、b、c的大小关系是()A。
a<b<cB。
c<a<bC。
a<c<bD。
b<c<a3.式子2lg5+lg12-lg3=()A。
2B。
1C。
0D。
-24.使式子log(x-1)/(x-1)有意义的x的值是()A。
x1B。
x>1且x≠2C。
x>1D。
x≠25.函数f(x)=log2(x2+2x-3)的定义域是()A。
[-3,1]B。
(-3,1)C。
(-∞,-3]∪[1,+∞)D。
(-∞,-3)∪(1,+∞)6.已知a>0,且a≠1,函数y=ax2与y=loga(-x)的图像只能是图中的()A.B.C.D.7.函数f(x)=ln(x2-2x-8)的单调递增区间是()A。
(-∞,-2)B。
(-∞,1)C。
(1,+∞)D。
(4,+∞)8.函数f(x)=log0.5(-x2+x+2)的单调递增区间为()A。
(-1,1)B。
(1,2)C。
(-∞,-1)∪[2,+∞)D。
前三个答案都不对二、填空题9.计算:log89×log2732-log1255=__________.10.计算:log43×log1432=__________.11.如图所示的曲线是对数函数y=logax当a取4个不同值时的图像,已知a的值分别为3、4、31、10,则相应于C1、C2、C3、C4的a值依次为__________.12.函数f(x)=loga(x-2)-1(a>0,a≠1)的图像恒过定点__________.13.函数y=loga(x+2)+3(a>0,a≠1)的图像过定点__________.14.若3x/4y=36,则21/x+3/y=__________.15.已知log0.45(x+2)>log0.45(1-x),则实数x的取值范围是__________.三、解答题16.解不等式:2loga(x-4)>loga(x-2)。
对数函数及其性质(人教A版)一、单选题(共10道,每道10分)1.函数的定义域是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:对数函数的定义域2.已知函数的定义域是,则的定义域为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:对数函数的定义域3.已知函数,则的值为( )A.4B.C. D.答案:B解题思路:试题难度:三颗星知识点:对数函数的值域与最值4.函数的值域为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:对数函数的值域5.函数的图象必经过定点( )A.(1,0)B.(1,1)C.(1,2)D.(2,1)答案:B解题思路:试题难度:三颗星知识点:对数函数的图象与性质6.设,,,则( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:对数值大小的比较7.已知函数在上是增函数,则a的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:复合函数的单调性8.若函数的定义域为,则k的取值范围是( )A. B.C. D.解题思路:试题难度:三颗星知识点:对数函数的定义域9.已知函数在上恒有,则a的取值范围是( )A.(1,2)B.C.(1,3)D.(2,3)答案:A解题思路:试题难度:三颗星知识点:对数函数的值域与最值10.下列函数中既不是奇函数,又不是偶函数的是( )A. B.C. D.解题思路:试题难度:三颗星知识点:对数函数的图象与性质。
可编辑修改精选全文完整版对数函数一、选择题1.设0.32a =,20.3b =,2log 0.3c =,则,,a b c 的大小关系( )A. a b c <<B. b c a <<C. c b a <<D. c a b <<2.已知0.1 1.32log 0.3,2,0.2a b c ===,则,,a b c 的大小关系是( ) A .a b c << B .c a b << C .a c b << D .b c a <<3.式子25123lg lg lg +-= ( )A.2B.1C.0D.﹣24.使式子 2(1)log (1)x x -- 有意义的 x 的值是( )A. 1x <- 或 1x >B. 1x > 且 2x ≠C. 1x >D. 2x ≠5.函数()()22log 23f x x x =+-的定义域是( )A. []3,1-B. ()3,1-C. (][),31,-∞-⋃+∞D. (,3)(1,)-∞-⋃+∞6.已知0a >,且1a ≠,函数x y a =与log ()a y x =-的图像只能是图中的( ) A. B. C. D.7.函数()2()ln 28f x x x =--的单调递增区间是( )A. (),2-∞-B. (),1-∞C. ()1,+∞D. ()4,+∞ 8.函数()()20.5f log 2x x x =-++的单调递增区间为( ) A. 11,2⎛⎫- ⎪⎝⎭ B. 1,22⎛⎫ ⎪⎝⎭ C. 1,2⎛⎫+∞ ⎪⎝⎭ D.前三个答案都不对二、填空题9.计算: =-⨯5log 3132log 9log 125278__________.10.计算: 4413log 3log 32⨯=__________.11.如图所示的曲线是对数函数log a y x =当a 取4个不同值时的图像,已知a 的值分别为4313,,,3510,则相应于1234,,,C C C C 的a 值依次为__________.12.函数()()log 21a f x x =--(0,)a a >≠的图像恒过定点__________.13.函数()log 23a y x =++ (0a >且1a ≠)的图像过定点__________.14.若3436x y ==,则21 x y+=__________. 15.已知()()0.450.45log 2log 1x x +>-,则实数x 的取值范围是______.三、解答题16.解不等式: ()()2log 4log 2a a x x ->-.17. 求函数()22log 65y x x =-+的定义域和值域.18.求函数212log (32)y x x =+-的值域.19.已知()()4log 41x f x =-.1.求()f x 的定义域;2.讨论()f x 的单调性;3.求()f x 在区间1,22⎡⎤⎢⎥⎣⎦上的值域.20.已知指数函数()(0,1)x f x a a a =>≠且.(1)写出()f x 的反函数()g x 的解析式;(2)解不等式()log (23)a g x x ≤-参考答案1.答案:C解析:因为1a >,01b <<,0c <,所以c b a <<,故选C.2.答案:C解析:由对数和指数的性质可知,∵2log 0.30a =<,0.10221b =>=,1.300.20.21c =<=,∴a c b <<.3.答案:A解析:4.答案:B解析:由 210{1011x x x ->->-≠,解得 1x > 且 2x ≠. 5.答案:D解析:由题意,得2230x x +->,事实上,这是个一元二次不等式,此处,我们有两种解决方法:一是利用函数223y x x =+-的图像观察得到,要求图像正确、严谨;二是利用符号法则,即2230x x +->可因式分解为()()310x x +⋅->,则30,{10x x +>->或30,{10,x x +<-<解得1x >或3x <-, 所以函数()f x 的定义域为(,3)(1,)-∞-⋃+∞.6.答案:B解析:可以从图象所在的位置及单调性来判别.也可以利用函数的性质识别图象,特别注意底数a 对图象的影响。
高中数学复习:对数函数的图像和性质练习及答案1.已知函数f (x)=133,1log,1x xx x⎧≤⎪⎨>⎪⎩则函数y=f (1-x)的大致图象是()A. B. C.D.【答案】D【解析】先画出函数f (x)=133,1log,1x xx x⎧≤⎪⎨>⎪⎩的草图,令函数f (x)的图象关于y轴对称,得函数f (-x)的图象,再把所得的函数f (-x)的图象,向右平移1个单位,得到函数y=f (1-x)的图象,故选:D.2.函数f(x)=10x与函数g(x)=lgx的图象A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于y=x 对称 【答案】D【解析】因为f (x )=10x 与函数g (x )=lgx 是一对反函数,所以其图象关于y=x 对称.故选D.3.函数f (x )=ln|11x x +-|的大致图象是( ) A. B. C. D.【答案】D【解析】因为()()11ln ln 11x x f x f x x x-+-==-=-+-,所以函数()f x 是奇函数,图象关于原点对称,可排除,A C ;由()2ln30f =>,可排除B ,故选D.4.函数f (x )=log 2(x+1)与g (x )=2﹣x +1在同一直角坐标系下的图象大致是( )A. B. C. D.【答案】B【解析】定义域为,函数为增函数;定义域为,函数为减函数,所以结合指数函数对数函数的性质可知B 图像正确5.已知函数f(x)=-x 2+2,g(x)=log 2|x |,则函数F(x)=f(x)·g(x)的图象大致为( )A. B. C. D.【答案】B【解析】由题意得,函数()(),f x g x 为偶函数,∴函数()()()F x f x g x =为偶函数,其图象关于y 轴对称,故只需考虑0x >时的情形即可.由函数()(),f x g x 的取值情况可得,当0x >时,函数()F x 的取值情况为先负、再正、再负, 所以结合各选项得B 满足题意.故选B.6.设函数()()21ln 11f x x x =+-+,则使()()21f x f x >-成立的x 的取值范围是( ) A.1,13⎛⎫⎪⎝⎭ B.()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C.11,33⎛⎫- ⎪⎝⎭D.11,,33⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭ 【答案】A【解析】因为函数()()21ln 11f x x x =+-+定义域为R ,关于原点对称, 且()()()()()2211ln 1ln 111f x x x f x x x -=+--=+-=++-, 所以函数()f x 是偶函数,又()f x 在()0,∞+是增函数,所以()()21f x f x >-等价于()()21fx f x >-, 所以2213410x x x x >--+<,, 解得113x <<, 故选:A7.函数2()ln(1)x xe ef x x --=+在[3,3]-的图象大致为( ) A. B. C.D.【答案】C 【解析】函数2()ln(1)x x e e f x x --=+, 则2()()ln(1)x xe ef x f x x ---==-+,所以()f x 为奇函数,排除B 选项; 当x →+∞时,2()ln(1)x xe ef x x --=→+∞+,所以排除A 选项; 当1x =时,11 2.720.37(1) 3.4ln(11)ln 20.69e e e ef -----==≈≈+, 排除D 选项;综上可知,C 为正确选项,故选:C.8.函数()1ln 1y x x=-+的图象大致为( ) A. B. C. D.【答案】A【解析】0x >时,函数为减函数,排除B ,10x -<<时,函数也是减函数,排除D ,又1x =时,1ln 20y =->,排除C ,只有A 可满足.故选:A.9.函数()()22ln 11x f x x +=+的大致图像为( )A. B. C. D.【答案】B【解析】因为()()22ln 11x f x x +=+是由()22ln x g x x=向左平移一个单位得到的, 因为()22ln ()(0)()x g x g x x x --==≠-, 所以函数()22ln x g x x =为偶函数,图像关于y 轴对称, 所以()f x 的图像关于1x =-对称,故可排除A ,D 选项;又当2x <-或0x >时,2ln 10x +>,()210x +>,所以()0f x >,故可排除C 选项故选:B .10.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( ) A. B. C. D.【答案】D【解析】当01a <<时,函数x y a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1x y a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.故选:D11.函数()24ln x f x x =的部分图象大致为( ) A. B. C. D.【答案】A【解析】因为()24ln x f x x =是偶函数,排除B ,当01x <<时,ln 0x <,()204ln x f x x=<,排除C , 当x e =时()214e f e =>,排除D. 故选:A.12.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2﹣2x ﹣3,求当x ≤0时,不等式f (x )≥0整数解的个数为( )A.4B.3C.2D.1【答案】A【解析】由函数为奇函数可知当x ≤0时,不等式f (x )≥0整数解的个数与0x ≥时()0f x ≤的个数相同,由奇函数可知()00f =,由2230x x --≤得()()320x x -+≤,所以整数解为1,2,3,所以满足题意要求的整数点有4个 13.若x 1,x 2是方程2x =12⎛⎫⎪⎝⎭+1-1x 的两个实数解,则x 1+x 2=________.【答案】-1【解析】∵2x =1112x -+⎛⎫ ⎪⎝⎭ ,∴2x =112x - ,∴x =1x-1,∴x 2+x -1=0.∴x 1+x 2=-1.故答案:-114.已知函数()lg f x x =. (1)画出函数()y f x =的草图,并根据草图求出满足()1f x >的x 的集合;(2)若0a b <<,且()()f a f b >,求证:1ab <.【答案】(1)图见解析,(0,110)∪(10,+∞).(2)证明见解析 【解析】(1)画出函数()y f x =的草图,如图所示:令()1f x =,则lg 1,lg 1x x ==±,可得10x =或110x =. 故满足()1f x >的x 的集合为1(0,)(10,)10⋃+∞. (2)证明:若0a b <<,且()()f a f b >,则lg lg a b >.当01a b <<≤时, lg lg a b >显然成立且1ab <.当01a b <≤≤,因为lg lg a b >则lg lg lg +lg 0lg 01a b a b ab ab -><⇒<⇒<,成立 当1a b ≤<时, lg lg a b >不成立.综上所述1ab <成立.15.已知函数2()4||3f x x x =-+,(1)试证明函数()f x 是偶函数;(2)画出()f x 的图象;(要求先用铅笔画出草图,再用黑色签字笔描摹,否则不给分)(3)请根据图象指出函数()f x 的单调递增区间与单调递减区间;(不必证明)(4)当实数k 取不同的值时,讨论关于x 的方程24||3x x k -+=的实根的个数;(不必求出方程的解)【答案】(1)详见解析(2)详见解析(3)增区间()()+∞-,2,0,2减区间)2,0(),2,(--∞(4)①当1k <-时,方程无实数根;②当1k =-或3k >时,方程有两个实数根;③当3k =时,方程有三个实数根;④当13k -<<时,方程有四个实数根【解析】(1)()f x 的定义域为R ,且2()()4||3f x x x -=---+24||3()x x f x =-+=故()f x 为偶函数;(2)如图(3)递增区间有:()()+∞-,2,0,2递减区间有:)2,0(),2,(--∞(4)根据图象可知,①当1k <-时,方程无实数根;②当1k =-或3k >时,方程有两个实数根;③当3k =时,方程有三个实数根;④当13k -<<时,方程有四个实数根;16.已知函数f (x )=x ln x -x .(1)设g (x )=f (x )+|x -a |,a ∈R.e 为自然对数的底数.①当32a e =-时,判断函数g (x )零点的个数; ②1,x e e ⎡⎤∈⎢⎥⎣⎦时,求函数g (x )的最小值. (2)设0<m <n <1,求证:()2201m f n m +<+ 【答案】(1)① g (x )有且仅有两个零点.②a -e.(2)证明见解析【解析】(1)①当32a e =-时, g (x )=x ln x -x +|x +32e |=x ln x +32e , g ′(x )=1+ln x ,当0<x <1e 时,g ′(x )<0;当x >1e时,g ′(x )>0; 因此g (x )在(0,1e )上单调递减,在(1e ,+∞)上单调递增, 又434412424g =0e e e e e -⎛⎫-=> ⎪⎝⎭,g (1e )=-1e +23322e e e-=<0,g (1)=32e >0, 所以g (x )有且仅有两个零点.②(i )当a ≤1e 时,g (x )=x ln x -x +x -a =x ln x -a , 因为x ∈[1e,e ],g ′(x )=1+lnx ≥0恒成立, 所以g (x )在[1e ,e ]上单调递增,所以此时g (x )的最小值为g (1e )=-1e-a . (ii )当a ≥e 时,g (x )=x ln x -x +a -x =x ln x -2x +a ,因为x ∈[1e,e],g ′(x )=ln x -1≤0恒成立, 所以g (x )在[1e,e ]上单调递减,所以此时g (x )的最小值为g (e )=a -e . (iii )当1e<a <e 时, 若1e ≤x ≤a ,则g (x )=x ln x -x +a -x =x ln x -2x +a , 若a ≤x ≤e ,则g (x )=x ln x -x +x -a =x ln x -a ,由(i ),(ii )知g (x )在[1e,a ]上单调递减,在[a ,e ]上单调递增, 所以此时g (x )的最小值为g (a )=a ln a -a ,综上有:当a ≤1e 时,g (x )的最小值为-1e-a ;当1e<a <e 时,g (x )的最小值为a ln a -a ; 当a ≥e 时,g (x )的最小值为a -e . (2)设h (x )=221x x +, 则当x ∈(0,1)时,h ′(x )=()()222211x x -+>0,于是h (x )在(0,1)单调递增, 又0<m <n <1,所以h (m )<h (n ),从而有()()()2222ln 111m f n f n h n n n m n ⎛⎫+<+=-+ ⎪++⎝⎭设φ(x )=22ln 11n n -++,x >0 则φ′(x )=()()()222222114011x x x x x x --=≥++因此φ(x )在(0,+∞)上单调递增,因为0<n <1,所以φ(n )<φ(1)=0,即ln n -1+221n +<0, 因此()2222ln 1011m f n n n m n ⎛⎫+<-+< ⎪++⎝⎭ 即原不等式得证.17.已知函数f (x )=xln x ,g (x )=-x 2+ax -2(e 为自然对数的底数,a ∈R ).(1)判断曲线y =f (x )在点(1,f (1))处的切线与曲线y =g (x )的公共点个数;(2)当1[,]x e e ∈时,若函数y =f (x )-g (x )有两个零点,求a 的取值范围.【答案】(1)答案不唯一,见解析;(2)3<a ≤e +2e+1. 【解析】(1)()1f x lnx '=+,所以切线的斜率()11k f ='=,又()10f =,所以曲线在点(1,0)处的切线方程为1y x =-, 由221y x ax y x ⎧=-+-⎨=-⎩,得2(1)10x a x +-+=,由△22(1)423(1)(3)a a a a a =--=--=+-可得, 当△0>时,即1a <-或3a >时,有两个公共点, 当△0=时,即1a =-或3a =时,有一个公共点, 当△0<时,即13a -<>时,没有公共点, (2)2()()2y f x g x x ax xlnx =-=-++, 由0y =,得2a x lnx x=++, 令2()h x x lnx x=++,则2(1)(2)()x x h x x -+'=,当1[x e∈,]e 时,由()0h x '=,得1x =,所以()h x 在1[e,]e 上单调递减,在[1,]e 上单调递增,因此()()13min h x h ==, 由11()21h e e e =+-,()21h e e e =++,比较可知()1h h e e ⎛⎫> ⎪⎝⎭,所以,结合函数图象可得, 当231a e e<++时,函数()()y f x g x =-有两个零点. 18.根据函数f(x)=log 2x 的图像和性质解决以下问题: (1)若f(a)>f(2),求a 的取值范围; (2)求y =log 2(2x -1)在[2,14]上的最值.【答案】(1) (2,+∞) (2) 最小值为log 23,最大值为log 227【解析】(1)由函数2()log f x x =的单调性及()(2)f a f >,即可求出a 的取值范围;(2)根据定义域为[2,14],表示出21x -的取值范围,结合对数函数的性质,即可求得最值. 试题解析:函数f (x )=log 2x 的图象如图:(1)因为f (x )=log 2x 是增函数,故f (a )>f (2),即log 2a >log 22,则a >2.所以a 的取值范围为(2,+∞). (2)∵2≤x ≤14,∴3≤2x -1≤27, ∴log 23≤log 2(2x -1)≤log 227.∴函数y =log 2(2x -1)在[2,14]上的最小值为log 23,最大值为log 227.19.已知定义在R 上的函数()y f x =满足()()()111f x f x f x -=+=-,当[]12x ∈,时,2()log f x x =,若方程()0f x ax -=在()0+∞,上恰好有两个实数根,则正实数a 的值为( ) A.2log eeB.1ln 2e C.12D.2【答案】C【解析】由()()()111f x f x f x -=+=-,可知()f x 为偶函数,且一条对称轴为1x =, 再由()()11f x f x +=-,可得()2()f x f x +=,即函数()f x 的周期为2.根据[]12x ∈,时,2()log f x x =作出函数()f x 的草图,如图所示:方程()0f x ax -=在()0+∞,上恰好有两个实数根, ∴函数y ax =与()y f x =的图象在y 轴右侧有两个交点,设y ax =与2log y x =相切时,切点坐标为()020log x x ,, 由1ln2y x '=,得2000log 1ln2x x x =,解得02x e =>.∴由图象可知,当直线y ax =过点()21,时,方程()0f x ax -=在()0+∞,上恰好有两个实数根, 12a ∴=. 故选:C .20.已知函数2|1|,0()log ,0x x f x x x +≤⎧=⎨>⎩,若方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则()3122341x x xx x++的取值范围是().A.(1,)-+∞ B.[1,1)- C.(,1)-∞ D.(]1,1-【答案】D【解析】函数()21,0|log,0x xf xx x⎧+⎪=⎨>⎪⎩,的图象如下:根据图象可得:若方程()f x a=有四个不同的解1x,2x,3x,4x,且1234x x x x<<<,则11x a+=-,21x a+=,23log x a=-,24log x a=.(01)a<≤122x x+=-,32ax-=,42ax=∴则31222344()22221222a aa a ax x xx x---++=-⋅+=-⋅.令2a t,(1t∈,2],而函数2y tt=-在(1,2]单调递增.所以211tt-<-≤,则21212aa∴-<-.故选:D.21.函数()log1xaf x a x=-有两个不同的零点,则实数a的取值范围是()A.()1,10 B.()1,+∞C.0,1D.()10,+∞【答案】B【解析】函数()f x有两个零点等价于1xya⎛⎫= ⎪⎝⎭与log ay x=的图象有两个交点,当01a<<时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a>时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B.22.已知函数()2,11,12x a x f x x a x ⎧+≤⎪=⎨+>⎪⎩,其中a R ∈.如果函数()f x 恰有两个零点,则a 的取值范围为( )A.1,2⎛⎤-∞- ⎥⎝⎦B.[)2,-+∞C.12,2⎡⎤--⎢⎥⎣⎦D.12,2⎡⎫--⎪⎢⎣⎭【答案】D【解析】当1x ≤时,(]2,2xy a a a =+∈+,当1x >时,11,22y x a a ⎛⎫=+∈++∞ ⎪⎝⎭, 两段均为增函数,函数()f x 恰有两个零点,可得102200a a a ⎧+<⎪⎪⎨+≥⎪⎪<⎩,解得12,2a ⎡⎫∈--⎪⎢⎣⎭. 故选:D23.给出下列四个结论:(1)若集合A ={x,y },B ={0,2x },且A=B ,则x =1,y =0;(2)若函数f (x )的定义域为(-1,1),则函数f (2x +1)的定义域为(-1,0); (3)函数1()f x x=的单调减区间是{}0x x ≠; (4)若()()()f x y f x f y +=⋅,且(1)2f =,则(2)(4)(2014)(2016)(2018)2018(1)(3)(2013)(2015)(2017)f f f f f f f f f f +++++=其中不正确的有______.【答案】(3)【解析】(1)因为A=B ,所以20,0,1x y x x x ≠==∴=,故(1)正确;(2)因为函数f (x )的定义域为(-1,1),所以121110x x -<+<∴-<<,故(2)正确; (3)函数1()f x x=的单调减区间是(,0)-∞和(0,)+∞,故(3)错误; (4)因为()()()f x y f x f y +=⋅,所以(1)()(1)2()f x f x f f x +=⋅=, 因此(2)(4)(2014)(2016)(2018)210092018(1)(3)(2013)(2015)(2017)f f f f f f f f f f +++++=⨯=,故(4)正确;故答案为:(3) 24.已知1275a -⎛⎫= ⎪⎝⎭,1357b ⎛⎫= ⎪⎝⎭,25log 7c =,则a 、b 、c 的大小关系是( ). A.b a c << B.c b a <<C.c a b <<D.b c a <<【答案】C 【解析】12125757a -⎛⎫=⎛⎫= ⎝⎭⎪⎭⎪⎝<135()7b =,225log log 107c =<= 因此c a b << 故选:C.25.函数()log (2)a f x ax =-(0a >且1a ≠)在[]0,3上为增函数,则实数a 的取值范围是( )A.2,13⎛⎫⎪⎝⎭B.(0,1)C.20,3⎛⎫ ⎪⎝⎭D.[)3,+∞ 【答案】C【解析】因为0a >且1a ≠,令2t ax =-,所以函数2t ax =-在[]0,3上为减函数, 所以函数log a y t =应是减函数,()f x 才可能是增函数, ∴01a <<,因为函数()f x 在[]0,3上为增函数, 由对数函数性质知230a ->,即23<a ,综上023a <<. 故选:C .26.设3log 7a =, 1.12b =, 3.10.8c =,则( ) A.b a c << B.a c b <<C.c b a <<D.c a b <<【答案】D【解析】因为333log 7(log 3,log 9)a =∈,所以(1,2)a ∈; 1.122b =>; 3.100.80.81c =<=; 所以c a b <<, 故选D.27.三个数0.76,60.7,0.7log 6的大小顺序是( )A.60.70.7log 60.76<<B.60.70.70.76log 6<< C.0.760.7log 660.7<<D.60.70.70.7log 66<<【答案】A【解析】因为0.70661>=,6000.70.71<<=,0.70.7log 6log 10<=;所以60.70.7log 60.76<<.故选:A.28.已知0.42x =,2lg 5y =,0.425z ⎛⎫= ⎪⎝⎭,则下列结论正确的是( ) A.x y z << B.y z x << C.z y x << D.z x y <<【答案】B 【解析】0.4221x =>=,2lg lg105y =<=,0.421525z ⎛⎫<= ⎪⎝⎫⎭⎭⎛=⎪⎝,又0z >,即01z <<. 因此,y z x <<. 故选:B.考点1函数的反函数1.函数y=ln x+1(x>0)的反函数为( )A.y=e x+1(x∈R)B.y=e x-1(x∈R)C.y=e x+1(x>1)D.y=e x-1(x>1)【答案】B【解析】由y=ln x+1,得x=e y-1.又因为函数y=ln x+1的值域为R,于是y=ln x+1的反函数为y=e x-1(x∈R).故选B.2.函数f(x)=(x-1)2+1(x<1)的反函数为( )A.f-1(x)=1+(x>1)B.f-1(x)=1-(x>1)C.f-1(x)=1+(x≥1)D.f-1(x)=1-(x≥1)【答案】B【解析】∵x<1⇒y=(x-1)2+1,∴(x-1)2=y-1⇒x-1=-,∴反函数为f-1(x)=1-(x>1).3.已知指数函数f(x)=ax(a>0,a≠1),f(x)的反函数记为y=g(x),且g(x)过点(4,2),则f(x)的解析式是( )A.f(x)=log4xB.f(x)=log2xC.f(x)=2xD.f(x)=4x【答案】C【解析】指数函数的解析式为:f(x)=a x(a>0,a≠1),∵f(x)的反函数记为y=g(x)函数的图象经过(4,2)点,∴f(x)的图象经过(2,4)点,∴4=a2,a=2,∴指数函数的解析式为y=2x.故选C.4.已知函数f(x)的反函数为g(x)=log2x+1,则f(2)+g(2)等于( )A.1 B.2 C.3 D.4【答案】D【解析】因为函数f(x)的反函数为g(x)=log2x+1,所以f(2)+g(2)=f(2)+2.而根据反函数的图象与性质可知f(2)=2,因此选D.5.函数y=f(x)的图象与y=2x的图象关于直线y=x对称,则函数y=f(4x-x2)的递增区间是________.【答案】(0,2)【解析】∵函数y=f(x)的图象与y=2x的图象关于直线y=x对称,∴y=f(x)与y=2x互为反函数,∵y=2x的反函数为y=log2x,∴f(x)=log2x,f(4x-x2)=log2(4x-x2).令t=4x-x2,则t>0,即4x-x2>0,∴x∈(0,4),又∵t=4x-x2的对称轴为x=2,且对数的底数大于1,∴y=f(4x-x2)的递增区间为(0,2).6.设f-1(x)为f(x)=2x-2+,x∈[0,2]的反函数,则y=f(x)+f-1(x)的最大值为________.【答案】4【解析】由题意得:f(x)在[0,2]上单调递增,值域为[,2],所以f-1(x)在[,2]上单调递增,因此y =f(x)+f-1(x)在[,2]上单调递增,其最大值为f(2)+f-1(2)=2+2=4.7.函数f(x)=a x+log a(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为( )A. B. C.2 D.4【答案】B【解析】函数f(x)=a x+log a(x+1),令y1=a x,y2=log a(x+1),显然在[0,1]上,y1=a x与y2=log a(x+1)同增或同减.因而[f(x)]max+[f(x)]min=f(1)+f(0)=a+log a2+1+0=a,解得a=.8.设函数y=f(x)的图象与y=2x+a的图象关于直线y=-x对称,且f(-2)+f(-4)=1,则a等于( ) A.-1 B.1 C.2 D.4【答案】C【解析】设(x,y)是函数y=f(x)的图象上任意一点,它关于直线y=-x对称点为(-y,-x),由已知知(-y,-x)在函数y=2x+a的图象上,∴-x=2-y+a,解得y=-log2(-x)+a,即f(x)=-log2(-x)+a,∴f(-2)+f(-4)=-log22+a-log24+a=1,解得a=2.9.方程log2x+log2(x-1)=1的解集为M,方程22x+1-9·2x+4=0的解集为N,那么M与N的关系是( ) A.M=N B.M N C.M N D.M∩N=∅【答案】B【解析】由log2x+log2(x-1)=1,得x(x-1)=2,解得x=-1(舍)或x=2,故M={2};由22x+1-9·2x+4=0,得2·(2x)2-9·2x+4=0,解得2x=4或2x=,即x=2或x=-1,故N={2,-1},因此有M N.10.已知函数f(x)=若f(a)>f(-a),则实数a的取值范围是( )A.(-1,0)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)【答案】C【解析】①当a>0时,f(a)=log2a,f(-a)=,f(a)>f(-a),即log2a>=log2,∴a>,解得a>1.②当a<0时,f(a)=,f(-a)=log2(-a),f(a)>f(-a),即>log2(-a)=,∴-a<,解得-1<a<0,由①②得-1<a<0或a>1.11.若函数f(x)=x2lg a-2x+1的图象与x轴有两个交点,则实数a的取值范围是( ) A.0<a<10B.1<a<10C.0<a<1D.0<a<1或1<a<10【答案】D【解析】lg a≠0且Δ=4-4lg a>0,解得0<a<1或1<a<10,故选D.12.已知集合A={x|x2≥1,x∈R},B={x|log2x<2,x∈R},则∁R A∩B等于( ) A.[0,1]B.(0,1)C.(-3,1)D.[-3,1]【答案】B【解析】集合A={x|x2≥1,x∈R}={x|x≥1,或x≤-1},B={x|log2x<2,x∈R}={x|0<x<4},∴∁R A=(-1,1),∴∁R A∩B=(0,1),故选B.13.已知函数f(x)=log a(x-1)(a>0,且a≠1),g(x)=log a(3-x)(a>0,且a≠1).(1)求函数h(x)=f(x)-g(x)的定义域;(2)利用对数函数的单调性,讨论不等式f(x)≥g(x)中x的取值范围.【答案】(1)要使函数h(x)=f(x)-g(x)=log a(x-1)-log a(3-x)有意义,需有解得1<x<3,故函数h(x)=f(x)-g(x)的定义域为(1,3).(2)因为不等式f(x)≥g(x),即log a(x-1)≥log a(3-x),当a>1时,有解得2≤x<3.当0<a<1时,有解得1<x≤2.综上可得,当a>1时,不等式f(x)≥g(x)中x的取值范围为[2,3);当0<a<1时,不等式f(x)≥g(x)中x 的取值范围为(1,2].14.已知函数f(x)=log a(1+x),g(x)=log a(1-x),(a>0,且a≠1).(1)设a=2,函数f(x)的定义域为[3,63],求函数f(x)的最值;(2)求使f(x)-g(x)>0的x的取值范围.【答案】(1)当a=2时,函数f(x)=log2(x+1)为[3,63]上的增函数,故f(x)max=f(63)=log2(63+1)=6,f(x)min=f(3)=log2(3+1)=2.(2)f(x)-g(x)>0,即log a(1+x)>log a(1-x),①当a>1时,1+x>1-x>0,得0<x<1.②当0<a<1时,0<1+x<1-x,得-1<x<0.15.下列函数关系中,可以看成是指数型函数y=ka x(k∈R,a>0且a≠1)模型的是( )A.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)B.我国人口年自然增长率为1%,我国人口总数随年份的变化关系C.如果某人t s内骑车行进了1km,那么此人骑车的平均速度v与时间t的函数关系D.信件的邮资与其重量间的函数关系【答案】B【解析】A:竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系,是二次函数关系;B:我国人口年自然增长率为1%,我国人口总数随年份的变化关系,是指数型函数关系;C:如果某人t s内骑车行进了1km,那么此人骑车的平均速度v与时间t的函数关系,是反比例函数关系;D:信件的邮资与其重量间的函数关系,是正比例函数关系.故选B.16.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致为如图所示的( )A.B.C.D.【答案】D【解析】设原来森林蓄积量是a,则a(1+10.4%)y=ax,1.104y=x,所以y=log1.104x,故选D.17.如图是某池塘中野生水葫芦的面积与时间的函数关系图象.假设其函数关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积会超过30m2;③野生水葫芦从4m2蔓延到12m2只需1.5个月;④设野生水葫芦蔓延至2m2、3m2、6m2所需的时间分别为t1、t2、t3则有t1+t2=t3;其中正确的说法有________.(请把正确的说法的序号都填在横线上)【答案】①②④【解析】∵其关系为指数函数,图象过(4,16)点,∴指数函数的底数为2,故①正确;当t=5时,s=32>30,故②正确;4对应的t=2,经过1.5月后面积是23.5<12,故③不正确;∵t1=1,t2=log23,t3=log26,∴有t1+t2=t3,故④正确.综上可知,①②④正确.故答案为①②④.18.我国辽东半岛普兰附近的泥炭层中,发掘出的古莲子,至今大部分还能发芽开花,这些古莲子是多少年以前的遗物呢?要测定古物的年代,可用放射性碳法.在动植物的体内都含有微量的放射性14C,动植物死亡后,停止了新陈代谢,14C不再产生,且原有的14C会自动衰变,经过5570年(叫做14C的半衰期),它的残余量只有原始量的一半,经过科学家测定知道,若14C的原始含量为a,则经过t年后的残余量a′(与a之间满足a′=a·e-kt).现测得出土的古莲子中14C残余量占原量的87.9%,试推算古莲子的生活年代.【答案】因为a′=a·e-kt,即=e-kt.两边取对数,得lg=-kt lge.①又知14C的半衰期是5570年,即当t=5570时,=.故lg=-5570k lge,即k lge=.代入①式,并整理,得t=-.这就是利用放射性碳法计算古生物年代的公式.现测得古莲子的是0.879,代入公式,得t=-≈1036.即古莲子约是1036年前的遗物.19.诺贝尔奖发放方式为:每年一次,把资金总额平均分成6份,奖励在6个领域(物理学、化学、文学、经济学、医学或生理学、和平事业)为人类作出最有益贡献的人,每年发放奖金总金额是基金在该年度所获利息的一半,另一半利息用于基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%,资料显示:1999年诺贝尔奖发放后基金总额约为19800万美元,设f(x)表示为第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依此类推).(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.03129≈1.32,1.031210≈1.36)【答案】(1)由题意知f(2)=f(1)(1+6.24%)-f(1)×6.24%=f(1)×(1+3.12%),f(3)=f(2)(1+6.4%)-f(2)×6.24%=f(1)(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9≈26107(万美元).2009年诺贝尔奖各项金额为×f(10)×6.24%≈136(万美元),与150万美元相比少了约14万美元.故该新闻是假的.20.某城市现有人口总数为100万,如果年自然增长率为1.2%,试解答下面的问题:(1)写出该城市的人口总数y(万人)与年份x(年)的函数解析式;(2)计算10年以后该城市人口总数(精确到0.1万人);(3)计算大约多少年后该城市人口总数将达到120万人.(精确到1年)[参考数据:(1+1.2%)10≈1.127,(1+1.2%)15≈1.196,(1+1.2%)16≈1.210]【答案】(1)1年后该城市人口总数为y=100+100×1.2%=100×(1+1.2%);2年后该城市人口总数为y=100(1+1.2%)+100(1+1.2%)×1.2%=100(1+1.2%)2;3年后该城市人口总数为y=100(1+1.2%)3…故x年后该城市人口总数为y=100(1+1.2%)x.(2)10年后该城市人口总数为y=100×(1+1.2%)10=100×1.01210≈112.7(万人).(3)令y=120,则有100(1+1.2%)x=120,解得x≈16.即大约16年后该城市人口总数将达到120万人.。
对数函数及其性质知识回顾1、对数函数的定义:2、对数函数的特征:(1) (2) (3)3、对数函数的性质(1)定义域 (2)值域 (3)图像(4)过定点 (5)对称性 (6)变化幅度 例题解析一、对数函数的基本概念1、下列函数中,是对数函数的有( ).(1)y =4x; (2)y =log x 2;(3)y =-log 3x; (4)y =log 0.4x ;(5)y =log (2a -1)x (a >12且a ≠1)(6)y =log 2(x +1).A .1个B .2个C .3个D .4个 二、定点问题例1、函数y =log a (x +2)+3(a >0且a ≠1)的图象过定点( ). A 、(-1,3) B .(3,3) C 、(-1,-3) D .(3,-3)例2、函数y =log a (2x -b )恒过定点(2,0),则b =__________. 练习:1.已知函数()()()1log 20,1a f x x a a =+->≠的图象经过定点(),A m n ,若正数x ,y 满足1m n x y+=,则2xx y y ++的最小值是( )A .5B .10C .533D .5+2.函数()()log 310,1a y x a a =+->≠的图像恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为( ) A .7 B .8C .9D .10三、对数函数的图像例1.把函数()()log 0,1a f x x a a =>≠的图象1C 向上平移一个单位,再把所得图象上每一个点的横坐标扩大为原来的2倍,而纵坐标不变,得到图象2C ,此时图象1C 恰与2C 重合,则a 为( ) A .4B .2C .12D .14例2.已知函数log ()a y x b =-的大致图象如下图,则幂函数ba y x =在第一象限的图象可能是( )A .B .C .D .练习:1.函数()f x = )A .B .C .D .2.函数1()2xf x ⎛⎫= ⎪⎝⎭与2()log g x x =-的大致图像是( ) A .B .C .D .3.已知0a >,1a ≠,函数x y a =,log ()a y x =-的图象大致是下面的( )A .B .C .D .4.函数lg 1()x x f x x-=的函数图象是( ) A .B .C .D .四、变化幅度和比较大小例17.图中曲线分别表示log a y x =,log b y x =,log c y x =,log d y x =的图象,则a ,b ,c ,d 的关系是( ).A .01a b d c <<<<<B .01b a c d <<<<<C .01d c a b <<<<<D .01c d a b <<<<<例2 比较下列各组数中两个值的大小:(1)log 23.4,log 28.5;(2)log a 5.1,log a 5.9(3)8.0log ,8.0log 6.05.0(4)6log ,7log 76 (5)8.0log ,log 23π练习:1.已知正实数a ,b ,c 满足:21()log 2a a =,21()log 3b b =,2log c c 1=,则( )A .a b c <<B .c b a <<C .b c a <<D .c a b <<2.若0.20.2log 5log 2a =-,0.30.2b =,0.23c =,则a ,b ,c 的大小关系为( ). A .a b c << B .c b a << C .c a b << D .b c a <<3.已知1a e π=,log e b π=,ln c π=,则a ,b ,c的大小关系为( )A .a c b >>B .b a c >>C .c a b >>D .a b c >>4.已知 5.10.9m =,0.90.95.1,log 5.1n p ==,则这三个数的大小关系是( )A .m<n<pB .m<p<nC .p<m<nD .p<n<m五、对数函数的单调性例1、求函数)23(log 221x x y -+=的单调区间。
对数函数及其性质(一)
班级_____________姓名_______________座号___________
1.函数f (x )=lg(x -1)+4-x 的定义域为( )
A .(1,4]
B .(1,4)
C .[1,4]
D .[1,4)
2.函数y =x |x |
log 2|x |的大致图象是( )
3.若log a 2<1,则实数a 的取值范围是( )
A .(1,2)
B .(0,1)∪(2,+∞)
C .(0,1)∪(1,2)
D .(0,12
) 4.设a =2log 3,b =2
1log 6,c =6log 5,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c
5.已知a >0且a ≠1,则函数y =a x 与y =log a (-x )的图象可能是( )
6.函数y =log 2x 在[1,2]上的值域是( )
A .R
B .[0,+∞)
C .(-∞,1]
D .[0,1]
7.函数y =log 12(x -1)的定义域是________. 8.若函数f (x )=log a x (0<a <1)在区间[a,2a ]上的最大值是最小值的3倍,则a 的值为________.
9.已知g (x )=,00ln e >≤⎩⎨⎧x x x x
则g [g (1
3)]=________. 10.f (x )=log 21+x a -x
的图象关于原点对称,则实数a 的值为________. 11.函数f (x )=log 12
(3x 2-ax +5)在[-1,+∞)上是减函数,求实数a 的取值范围.
第十八次作业 对数函数及其性质 (二) 班级__________姓名__________座号___________
1.对数式b a a =--)5(log 2中,实数a 的取值范围是
( ) A .)5,(-∞ B .(2,5) C .),2(+∞ D . )5,3()3,2(
2.如果lgx =lga +3lgb -5lgc ,那么
( ) A .x =a +3b -c B .c
ab x 53= C .53c ab x = D .x =a +b 3-c 3 3.若log a 2<log b 2<0,则下列结论正确的是( )
A .0<a <b <1
B .0<b <a <1
C .a >b >1
D .b >a >1
4.已知函数f (x )=2log 12
x 的值域为[-1,1],则函数f (x )的定义域是( ) A .[22
,2] B .[-1,1] C .[12,2] D .(-∞,22
]∪[2,+∞) 5.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为( ) A.14 B.12
C .2
D .4 6.函数y =log a (x +2)+3(a >0且a ≠1)的图象过定点________. 7.函数y =log 13
(-x 2+4x +12)的单调递减区间是________.
8.将函数x 2log y =的图象向左平移3个单位,得到图象1C ,再将1C 向上平移2个单位得到图象2C ,则2C 的解析式为 .
9.若函数)34(log y 2
2++=kx kx 的定义域为R ,则k 的取值范围是 . 的取值范围。
的时,求使当)(的奇偶性并证明;判断)的定义域;(求)()且(已知函数x 0f(x)1a 3(x)2)(11a 0a 11log )f(.10>>≠>+-=f x f x
x x a。