配套K12高中数学第一章计数原理4简单计数问题导学案北师大版选修2_3
- 格式:doc
- 大小:188.50 KB
- 文档页数:8
§简单计数问题.进一步理解计数原理和排列、组合的概念.(重点).能够运用原理和公式解决简单的计数问题.(难点)[基础·初探]教材整理简单计数问题阅读教材~,完成下列问题..计数问题的基本解法()直接法:以为考察对象,先满足的要求,再考虑(又称元素分析法).或以为考察对象,先满足的要求,再考虑(又称位置分析法).()间接法:先不考虑附加条件,计算出所有的方法数,再减去不符合要求的方法数.【答案】()元素特殊元素其他元素位置特殊位置其他位置.解决计数问题应遵循的原则先后一般,先后排列,先后分步,充分考虑元素的特殊性,进行合理的分类与分步.【答案】特殊组合分类个不同的球放入个不同的盒子中,每个盒子至少一个球,若甲球必须放入盒,则不同放法总数是( )....【解析】分两类:第一类,盒只有甲球,则余下个球放入个不同的盒子中,每个盒子至少一个球,此时个球应分为三组,有种,每一种有种放法,共有种放法;第二类,盒中有甲球和另球,则有种排法.由分类加法计数原理,得共有放法总数+=种.【答案】[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问:解惑:疑问:解惑:疑问:解惑:[小组合作型]甲、乙排在相邻两天,丙不排在月日,丁不排在月日,则不同的安排方案共有( ) .种.种.种.种【精彩点拨】先安排甲、乙,再考虑丙、丁,最后安排其他员工.【自主解答】()若甲、乙安排在开始两天,则丁有种选择,共有安排方案=种;()若甲、乙安排在最后两天,则丙有种选择,共有=种;()若甲、乙安排在中间天,选择两天有种可能,若丙安排在月日,丁有种安排法,共有×=种;若丙安排在中间天的其他天,则丁有种安排法,共有×=种.所以共有+++=种.【答案】.本小题用到分类讨论的方法,按照特殊元素(甲、乙在一起,丙、丁不在特殊位置)进行讨论..较复杂的排列问题要注意模型化归,转化为常用的方法.[再练一题].由组成没有重复数字,且都不与相邻的六位偶数的个数是( ) 【导学号:】....。
高中数学第一章计数原理整合学案北师大版选修2-3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章计数原理整合学案北师大版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章计数原理整合学案北师大版选修2-3的全部内容。
高中数学第一章计数原理整合学案北师大版选修2-3知识建构综合应用专题一利用两个原理解排列组合问题的常用方法“两个原理”是两种重要的计数方法,它是列式计数时选择加法或者乘法的理论根据,在排列、组合应用题中,基本上全是用加法和乘法连结了排列数与组合数的计算。
所以正确地使用加法和乘法原理是解决排列、组合应用题的基础.一、树形图法【例1】将A、B、C、D四名同学按一定顺序排成一行,要求自左向右,且A不排在第一,B不排在第二,C不排在第三,D不排在第四,试写出他们四个人所有不同的排法。
解:由于A不排在第一,所以第一只能排B、C、D中的一个,据此可分为三类:由此可写出所有的排法为BADC,BCDA,BDAC,CADB,CDAB,CDBA,DABC,DCAB,DCBA.所以他们四个人共有9种不同的排法.二、依次排序法利用分步乘法计数原理求解与排列顺序有关的问题时,可以用依次排序法.依次排序法就是把数字或字母分为前后,首先排前面的数字或字母再依次排后面的数字或字母,将最后的数字或字母排完,则排列结束,这种方法多用于数字问题。
【例2】用1、2、3、4四个数字可重复地任意排成三位数,并把这些数由小到大排成一个数列{a n}.(1)写出这个数列的前11项;(2)求这个数列共有多少项;(3)若a n=341,求n。
§4 简单计数问题1.进一步理解计数原理和排列、组合的概念.(重点)2.能够运用原理和公式解决简单的计数问题.(难点)[基础·初探]教材整理 简单计数问题阅读教材P18~P21,完成下列问题.1.计数问题的基本解法(1)直接法:以________为考察对象,先满足________的要求,再考虑________(又称元素分析法).或以________为考察对象,先满足________的要求,再考虑________(又称位置分析法).(2)间接法:先不考虑附加条件,计算出所有的方法数,再减去不符合要求的方法数.【答案】 (1)元素 特殊元素 其他元素 位置 特殊位置 其他位置2.解决计数问题应遵循的原则先________后一般,先________后排列,先________后分步,充分考虑元素的特殊性,进行合理的分类与分步.【答案】 特殊 组合 分类5个不同的球放入4个不同的盒子中,每个盒子至少一个球,若甲球必须放入A盒,则不同放法总数是( )A.120 B.72 C.60 D.36【解析】 分两类:第一类,A盒只有甲球,则余下4个球放入3个不同的盒子中,243每个盒子至少一个球,此时4个球应分为2,1,1三组,有C种,每一种有A种放法,共2434有C A种放法;第二类,A盒中有甲球和另1球,则有A种排法.由分类加法计数原理,2434得共有放法总数C A+A=60种.【答案】 C[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑: [小组合作型]排列问题 某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天.若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( )A.504种 B.960种C.1 008种D.1 108种【精彩点拨】 先安排甲、乙,再考虑丙、丁,最后安排其他员工.214【自主解答】 (1)若甲、乙安排在开始两天,则丁有4种选择,共有安排方案A C A 4=192种;2144(2)若甲、乙安排在最后两天,则丙有4种选择,共有A C A=192种;(3)若甲、乙安排在中间5天,选择两天有4种可能,2143若丙安排在10月7日,丁有4种安排法,共有4×A C A=192种;213133若丙安排在中间5天的其他3天,则丁有3种安排法,共有4×A C C A=432种.所以共有192+192+192+432=1 008种.【答案】 C1.本小题用到分类讨论的方法,按照特殊元素(甲、乙在一起,丙、丁不在特殊位置)进行讨论.2.较复杂的排列问题要注意模型化归,转化为常用的方法.[再练一题]1.由1,2,3,4,5,6组成没有重复数字,且1,3都不与5相邻的六位偶数的个数是( ) 【导学号:62690018】A.72 B.96 C.108 D.14432【解析】 第一步将2,4,6全排,有A种;第二步分1,3相邻且不与5相邻,有A A 23332233种;1,3,5均不相邻,有A种.故总的排法为A(A A+A)=108种,故选C.【答案】 C组合问题 某班有54位同学,其中正、副班长各1名,现选派6名同学参加某科课外小组,在下列各种情况中,各有多少种不同的选法?(只列式不计算)(1)正、副班长必须入选;(2)正、副班长只有1人入选;(3)正、副班长都不入选;(4)正、副班长至多有1人入选;(5)班长以外的某3人不入选;(6)班长有1人入选,班长以外的某2人不入选.【精彩点拨】 这是一道有限制条件的组合问题,先处理特殊元素,然后考虑一般元素.【自主解答】 (1)先选正、副班长,再从剩下的52人中选4人.由分步乘法计数原2452理,得C·C种.(2)先从正、副班长中选1人,再从剩下的52人中选5人.由分步乘法计数原理,得12552C·C种.02652(3)因为正、副班长都不选,因此从剩下的52人中选6人,共C·C种,即C652种.1255202652(4)只有一个班长入选,或两个班长都不入选,故共有C·C+C·C种,或6542452C-C·C种.03651651(5)某3人可除外,故共有C·C种,即C种.120255012550(6)C·C·C种,即C·C种.解答组合应用题的总体思路1.整体分类,对事件进行整体分类,从集合的意义讲,分类要做到各类的并集等于全集,以保证分类的不遗漏,任意两类的交集等于空集,以保证分类的不重复,计算结果时使用加法原理.2.局部分步,整体分类以后,对每一类进行局部分步,分步要做到步骤连续,以保证分步的不遗漏,同时步骤要独立,以保证分步的不重复,计算每一类的相应结果时,使用乘法原理.[再练一题]2.将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排两名学生,那么互不相同的分配方案共有( )A .252种B .112种C .20种D .56种【解析】 不同的分配方案共有C C +C C +C C +C C =112(种).275374473572【答案】 B[探究共研型]排列、组合的综合应用探究1 从集合{1,2,3,4}中任取两个不同元素相乘,有多少个不同的结果?完成的“这件事”指的是什么?【提示】 共有C ==6(个)不同结果.244×32完成的“这件事”是指:从集合{1,2,3,4}中任取两个不同元素并相乘.探究2 从集合{1,2,3,4}中任取两个不同元素相除,有多少个不同结果?这是排列问题,还是组合问题?完成的“这件事”指的是什么?【提示】 共有A -2=10(个)不同结果.这个问题属于排列问题.完成的“这件事”24是指:从集合{1,2,3,4}中任取两个不同元素并相除.探究3 完成“从集合{0,1,2,3,4}中任取三个不同元素组成一个是偶数的三位数”这件事需先分类,还是先分步?有多少个不同的结果?【提示】 由于0不能排在百位,而个位必须是偶数.0是否排在个位影响百位与十位的排法,所以完成这件事需按0是否在个位分类进行.第一类:0在个位,则百位与十位共A 种排法;第二类:0不在个位且不在百位,则需先从2,4中任选一个排个位再从剩下24非零数字中取一个排百位,最后从剩余数字中任取一个排十位,共C C C =18(种)不同的121313结果,由分类加法原理,完成“这件事”共有A +C C C =30(种)不同的结果.24121313 有5个男生和3个女生,从中选出5人担任5门不同学科的课代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文课代表;(3)某男生必须包括在内,但不担任数学课代表;(4)某女生一定要担任语文课代表,某男生必须担任课代表,但不担任数学课代表.【精彩点拨】 (1)按选中女生的人数多少分类选取.(2)采用先选后排的方法.(3)先安排该男生,再选出其他人担任4科课代表.(4)先安排语文课代表的女生,再安排“某男生”课代表,最后选其他人担任余下三科的课代表.【自主解答】 (1)先选后排,先选可以是2女3男,也可以是1女4男,共有352345135C C+C C种,后排有A种,352345135共(C C+C C)·A=5 400种.474(2)除去该女生后,先选后排,有C·A=840种.47144(3)先选后排,但先安排该男生,有C·C·A=3 360种.3613(4)先从除去该男生、该女生的6人中选3人有C种,再安排该男生有C种,其余3336133人全排有A种,共C·C·A=360种.解决排列、组合综合问题要遵循两个原则1.按事情发生的过程进行分步.2.按元素的性质进行分类.解决时通常从以下三个途径考虑:(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列或组合数.[再练一题]3.某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案共有( )A.16种 B.36种 C.42种 D.60种24232【解析】 若选择了两个城市,则有C C A=36种投资方案;若选择了三个城市,则343有C A=24种投资方案,因此共有36+24=60种投资方案.【答案】 D[构建·体系]1.(2016·长武高二检测)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A .14B .24C .28D .48【解析】 (间接法):6人中选派4人的组合数为C ,其中都选男生的组合数为C .464所以至少有1名女生的选派方案有C -C =14(种).464【答案】 A2.在1,2,3,4,5这五个数字所组成的没有重复数字的三位数中,其各个数字之和为9的三位数共有( )A .6个B .9个C .12个D .18个【解析】 由题意知,所求三位数只能是1,3,5或2,3,4的排列,共有A +A =12(个).33【答案】 C3.6个人排成一行,其中甲、乙两人不相邻的不同排法共有________种(用数字作答). 【导学号:62690019】【解析】 6个人排成一行,其中甲、乙两人不相邻的不同排法:排列好甲、乙两人外的4人,有A 种方法,然后把甲、乙两人插入4个人的5个空位,有A 种方法,所以425共有:A ·A =480.425【答案】 4804.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有________种(用数字作答).【解析】 有C ·C ·A =36种满足题意的分配方案.其中C 表示从3个乡镇中任132421324选定1个乡镇,且其中某2名大学生去的方法数;C表示从4名大学生中任选2名到上一2步选定的乡镇的方法数;A表示将剩下的2名大学生分配到另2个乡镇去的方法数.【答案】 365.车间有11名工人,其中5名是钳工,4名是车工,另外两名老师傅既能当车工又能当钳工,现在要在这11名工人里选派4名钳工,4名车工修理一台机床,问有多少种选派方法.【解】 法一:设A,B代表两名老师傅.454A,B都不在内的选派方法有:C·C=5(种);A,B都在内且当钳工的选派方法有:2254C·C·C=10(种);A,B都在内且当车工的选派方法有:24524C·C·C=30(种);A,B都在内,一人当钳工,一人当车工的选派方法有:223534C·A·C·C=80(种);A,B有一人在内且当钳工的选派方法有:12354C·C·C=20(种);A,B有一人在内且当车工的选派方法有:124534C·C·C=40(种).所以共有45422542452422353412354124534C·C+C·C·C+C·C·C+C·A·C·C+C·C·C+C·C·C=185(种)选派方法.法二:5名钳工有4名被选上的方法有:4546C·C=75(种);5名钳工有3名被选上的方法有:354512C·C·C=100(种);25245名钳工有2名被选上的方法有:C·C·C=10(种).所以一共有75+100+10=185(种)选派方法.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2) 学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.从乒乓球运动员男5名、女6名中组织一场混合双打比赛,不同的组合方法种数为( )25262526A.C C B.C A2522622526C.C A C A D.A A25【解析】 分两步进行:第一步,选出两名男选手,有C种方法;第二步,从6名女262526生中选出2名且与已选好的男生配对,有A种.故有C A种.【答案】 B2.某食堂每天中午准备4种不同的荤菜,7种不同的素菜,用餐者可以按下述方法搭配午餐:①任选两种荤菜,两种素菜和白米饭;②任选一种荤菜,两种素菜和蛋炒饭,则每天不同午餐的搭配方法有( )A.22种B.56种C.210种D.420种24271427【解析】 按第一种方法有C C种不同的搭配方法,按第二种方法共有C C种不同24271427的搭配方法,故共有C C+C C=6×21+4×21=210种搭配方法,故答案选C.【答案】 C3.将A,B,C,D四个球放入编号为1,2,3的三个盒子中,每个盒子中至少放一个球且A,B两个球不能放在同一盒子中,则不同的放法有( )A.15B.18C.30D.36243【解析】 间接法,所有的不同放法有C·A种.A,B两球在同一个盒子中的放法22432种数为3×A,满足题意的放法种数为C A-3×A=6×6-3×2=36-6=30.【答案】 C4.某班班会准备从甲、乙等7名学生中选派4名进行发言,要求甲、乙两人至少有一人参加.当甲、乙同时参加时,他们两人的发言不能相邻.那么不同的发言顺序的种数为( )A .360B .520C .600D .720【解析】 当甲或乙只有一人参加时,不同的发言顺序的种数为2C A =480,当甲、354乙同时参加时,不同的发言顺序的种数为A A =120,则不同的发言顺序的种数为2523480+120=600,故选C.【答案】 C5.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有( )A .23个B .24个C .18个D .6个【解析】 各位数字之和为奇数可分两类:都是奇数或两个偶数一个奇数,故满足条件的三位数共有A +C A =24个.3133【答案】 B 二、填空题6.现有6张风景区门票分配给6位游客,若其中A ,B 风景区门票各2张,C ,D 风景区门票各1张,则不同的分配方案共有________种. 【导学号:62690020】【解析】 6位游客选2人去A 风景区,有C 种,余下4位游客选2人去B 风景区,26有C 种,余下2人去C ,D 风景区,有A 种,所以分配方案共有C C A =180(种).24226242【答案】 1807.用数字0,1,2,3,4,5,6组成没有重复的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有________个(用数字作答).【解析】 分两种情况:第一类:个、十、百位上各有一个偶数,有C A +C A C =90个;13323314第二类:个、十、百位上共有两个奇数一个偶数,有C A C +C C A C =234个.共233141323313有90+234=324个.【答案】 3248.某餐厅供应盒饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需准备不同的素菜品种为________种.(结果用数值表示)【解析】 在5种不同的荤菜中选出2种的选择方式的种数是C ==10.因选255×42择方式至少为200种,设素菜为x 种,则有C C ≥200.即≥20,化简得x(x -1)2x 25x x -12≥40,解得x≥7.所以至少应准备7种素菜.【答案】 7三、解答题9.3名男同志和3名女同志到4辆不同的公交车上服务.(1)若每辆车上都要有人服务,但最多安排男女各一名,有多少种不同的安排方法?(2)若男女各包两辆车,有多少种安排方法?34【解】 (1)先将3名男同志安排到车上,有A种方法,在未安排男同志的那辆车上1323341323安排一名女同志,有C种方法,还有2名女同志有A种安排方法.共有A C A=432种安排方法.2323(2)男同志分2组有C种方法,女同志分2组有C种分法,将4组安排到4辆车上有423234A种方法.共有C C A=216种安排方法.10.按照下列要求,分别求有多少种不同的方法?(1)6个不同的小球放入4个不同的盒子;(2)6个不同的小球放入4个不同的盒子,每个盒子至少一个小球;(3)6个相同的小球放入4个不同的盒子,每个盒子至少一个小球.【解】 (1)每个小球都有4种方法,根据分步乘法计数原理,共有46=4 096种不同放法.(2)分两类:第1类,6个小球分3,1,1,1放入盒中;第2类,6个小球分2,2,1,1放36143262424入盒中,共有C·C·A+C·C·A=1 560(种)不同放法.1424(3)法一:按3,1,1,1放入有C种方法,按2,2,1,1,放入有C种方法,共有1424C+C=10(种)不同放法.法二:(挡板法)在6个球之间的5个空中插入三个挡板,将6个球分成四份,共有35C=10(种)不同放法.[能力提升]1.(2015·四川高考)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A.144个B.120个C.96个D.72个【解析】 分两类进行分析:第一类是万位数字为4,个位数字分别为0,2;第二类是万位数字为5,个位数字分别为0,2,4.当万位数字为4时,个位数字从0,2中任选一个,341334共有2A个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有C A个偶341334数.故符合条件的偶数共有2A+C A=120(个).【答案】 B2.从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有( )23A.240种B.180种C.120种D.60种【解析】 取一双同色手套有C种取法,在剩下的5双手套中取2只不同色的手套,16有C22种取法,由分步乘法计数原理知,恰好有一双同色手套的取法有C C·22=240 251625种.【答案】 A3.(2016·孝感高级中学期中)正五边形ABCDE中,若把顶点A,B,C,D,E染上红、黄、绿、黑四种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法共有________种.【解析】 若用三种颜色,有C A种染法,若用四种颜色,有5·A种染法,则不同15344的染色方法有C A+5·A=240(种).15344【答案】 2404.已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?【解】 (1)先排前4次测试,只能取正品,有A种不同测试方法,再从4件次品中46选2件排在第5和第10的位置上测试,有C A=A种测法,再排余下4件的测试位置,24224有A种测法.4所以共有不同测试方法A·A·A=103 680种.46244(2)第5次测试恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现,所以共有不同测试方法C·C·A=576种.16344。
高中数学第一章计数原理4 简单计数问题同步测控北师大版选修2-3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章计数原理4 简单计数问题同步测控北师大版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章计数原理4 简单计数问题同步测控北师大版选修2-3的全部内容。
高中数学 第一章 计数原理 4 简单计数问题同步测控 北师大版选修2—3我夯基,我达标1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( )A.42 B 。
30 C.20 D.12解析:分两步:第一步,把新增的第一个节目插入原5个节目中,有6种方法;第二步,把新增的第二个节目插入前6个节目中,有7种方法,故共有6×7=42种插法。
答案:A2.从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n 种.在这些取法中,以取出的三条线段为边可组成的钝角三角形的个数为m,则nm等于( ) A.101 B.51 C 。
103 D 。
52 解析:n=C 35=10,由余弦定理知可组成钝角三角形的有“2、3、4”和“2、4、5”,故m=2,∴n m =102=51. 答案:B3.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有( )A.140种B.120种 C 。
35种 D 。
34种解析:既有女生又有男生,可以分类表示,三男一女有C 34·C 13种选法,二男二女有C 24C 23种选法,一男三女有C 14·C 33种选法,则总的不同的选法有C 34·C 13+C 24·C 23+C 14·C 33=34种。
第一章 计数原理学习目标 1.理解分类加法计数原理和分步乘法计数原理,会利用两种原理解决一些实际问题.2.理解排列数和组合数公式的推导过程,掌握排列组合在实际问题中的应用.3.掌握二项式定理和二项展开式的性质.1.分类加法计数原理完成一件事,可以有n 类办法,在第一类办法中有m 1种方法,在第二类方案中有m 2种方法,……,在第n 类办法中有m n 种方法,那么,完成这件事共有N =__________种方法. 2.分步乘法计数原理完成一件事需要n 个步骤,缺一不可,做第一步有m 1种方法,做第二步有m 2种方法,……,做第n 步有m n 种方法,那么,完成这件事共有N =____________种方法.3.排列数与组合数公式及性质4.二项式定理(1)二项式定理的内容:(a +b )n=_______________________________________________________. (2)通项公式:T r +1=C r n an -r b r,r ∈{0,1,2,…,n }.(3)二项式系数的性质:①与首末两端等距离的两个二项式系数相等.②若n 为偶数,中间一项⎝ ⎛⎭⎪⎫第n 2+1项的二项式系数最大;若n 为奇数,中间两项⎝ ⎛⎭⎪⎫第n +12项和第n +12+1项的二项式系数相等且最大.③C 0n +C 1n +C 2n +…+C n n =2n ;C 0n +C 2n +…=C 1n +C 3n +…=2n -1.类型一 数学思想方法在求解计数问题中的应用 命题角度1 分类讨论思想例1 有12名划船运动员,其中3人只会划左舷,4人只会划右舷,其余5人既会划左舷又会划右舷,现在要从这12名运动员中选出6人平均分在左、右舷划船参加比赛,则有多少种不同的选法.反思与感悟解含有约束条件的排列、组合问题,应按元素的性质进行分类,分类时需要满足两个条件:(1)类与类之间要互斥(保证不重复);(2)总数要完备(保证不遗漏).跟踪训练1 从1,2,3,4,5,6这6个数字中,任取3个数字组成无重复数字的三位数,其中若有1和3时,3必须排在1的前面;若只有1和3中的一个时,它应排在其他数字的前面,这样不同的三位数共有________个.(用数字作答)命题角度2 “正难则反”思想例2 设集合S={1,2,3,4,5,6,7,8,9},集合A={a1,a2,a3}是S的子集,且a1,a2,a3满足a1<a2<a3,a3-a2≤6,那么满足条件的集合A的个数为( )A.78 B.76 C.83 D.84反思与感悟对于正面处理较复杂或不易求解的问题,常常从问题的对立面去思考.跟踪训练2 由甲、乙、丙、丁4名学生参加数学、写作、英语三科竞赛,每科至少1人(且每人仅报一科),若学生甲、乙不能同时参加同一竞赛,则不同的参赛方案共有________种.类型二排列与组合的综合应用例3 在高三一班元旦晚会上,有6个演唱节目,4个舞蹈节目.(1)当4个舞蹈节目要排在一起时,有多少种不同的节目安排顺序?(2)当要求每2个舞蹈节目之间至少安排1个演唱节目时,有多少种不同的节目安排顺序?(3)若已定好节目单,后来情况有变,需加上诗朗诵和快板2个节目,但不能改变原来节目的相对顺序,有多少种不同的节目演出顺序?反思与感悟 排列与组合的综合问题,首先要分清何时为排列,何时为组合.对含有特殊元素的排列、组合问题,一般先进行组合,再进行排列.对特殊元素的位置有要求时,在组合选取时,就要进行分类讨论,分类的原则是不重、不漏.在用间接法计数时,要注意考虑全面,排除干净.跟踪训练3 有5个男生和3个女生,从中选出5人担任5门学科的课代表,分别求符合下列条件的选法数.(1)有女生但人数必须少于男生: (2)某女生一定要担任语文课代表;(3)某男生必须包括在内,但不担任数学课代表;(4)某女生一定要担任语文课代表,某男生必须担任课代表,但不但任数学课代表.类型三 二项式定理及其应用 命题角度1 二项展开式的特定项问题例4 已知在⎝⎛⎭⎪⎪⎫x -23x n 的展开式中,第5项的系数与第3项的系数之比是56∶3. (1)求展开式中的所有有理项; (2)求展开式中系数绝对值最大的项; (3)求n +9C 2n +81C 3n +…+9n -1C nn的值.反思与感悟 (1)确定二项式中的有关元素:一般是根据已知条件,列出等式,从而可解得所要求的二项式中的有关元素.(2)确定二项展开式中的常数项:先写出其通项公式,令未知数的指数为零,从而确定项数,然后代入通项公式,即可确定常数项.(3)求二项展开式中条件项的系数:先写出其通项公式,再由条件确定项数,然后代入通项公式求出此项的系数.(4)求二项展开式中各项系数的和差:赋值代入.(5)确定二项展开式中的系数最大或最小项:利用二项式系数的性质.跟踪训练4 已知⎝ ⎛⎭⎪⎫41x+3x 2n的展开式的倒数第三项的系数为45.命题角度2 二项展开式的“赋值”问题 例5 若(x 2-3x +2)5=a 0+a 1x +a 2x 2+…+a 10x 10. (1)求a 2;(2)求a 1+a 2+…+a 10;(3)求(a 0+a 2+a 4+…+a 10)2-(a 1+a 3+…+a 7+a 9)2.反思与感悟 与二项式系数有关,包括求展开式中二项式系数最大的项、各项的二项式系数或系数的和、奇数项或者偶数项的二项式系数或系数的和以及各项系数的绝对值的和,主要方法是赋值法,通过观察展开式右边的结构特点和所求式子的关系,确定给字母所赋的值,有时赋值后得到的式子比所求式子多一项或少一项,此时要专门求出这一项,而在求奇数项或者偶数项的二项式系数或系数的和时,往往要两次赋值,再由方程组求出结果.跟踪训练5 若(x 2+1)(x -3)9=a 0+a 1(x -2)+a 2(x -2)2+a 3(x -2)3+…+a 11(x -2)11,则a 1+a 2+a 3+…+a 11的值为________.1.4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用一名大学生的情况有( ) A .24种 B .36种 C .48种D .60种2.已知关于x 的二项式⎝⎛⎭⎪⎪⎫x +a 3x n 展开式的二项式系数之和为32,常数项为80,则a 的值为( ) A .1 B .±1 C .2D .±23.某校一社团共有10名成员,从周一到周五每天安排两人值日.若甲、乙必须排在同一天,且丙、丁不能排在同一天,则不同的安排方案有( ) A .21 600种 B .10 800种 C .7 200种D .5 400种4.若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=________.5.航天员拟在太空授课,准备进行标号为0,1,2,3,4,5的六项实验,向全世界人民普及太空知识,其中0号实验不能放在第一项,最后一项的标号小于它前面相邻一项的标号,则实验顺序的编排方法种数为________.(用数字作答)1.排列与组合(1)排列与组合的区别在于排列是有序的,而组合是无序的.(2)排列问题通常分为无限制条件和有限制条件,对于有限制条件的排列问题的考虑途径①元素分析法:先考虑特殊元素的要求,再考虑其他元素.②位置分析法:先考虑特殊位置的要求,再考虑其他位置.(3)排列与组合综合应用是本章内容的重点与难点,一般方法是先分组,后分配.2.二项式定理(1)与二项式定理有关,包括定理的正向应用、逆向应用,题型如证明整除性、近似计算、证明一些简单的组合恒等式等,此时主要是要构造二项式,合理应用展开式.(2)与通项公式有关,主要是求特定项,比如常数项、有理项、x的某次幂等,此时要特别注意二项展开式中第r+1项的通项公式是T r+1=C r n a n-r b r(r=0,1,…,n),其中二项式系数是C r n,而不是C r+1n,这是一个极易错点.(3)与二项式系数有关,包括求展开式中二项式系数最大的项、各项的二项式系数或系数的和、奇数项或者偶数项的二项式系数或系数的和以及各项系数的绝对值的和等主要方法是赋值法.答案精析知识梳理 1.m 1+m 2+…+m n 2.m 1×m 2×…×m n 3.(n -m +1) n !n -m ! A mn A m mn n -n -n -m +m !n !m !n -m !C n -m n C mn +14.(1)C 0n a n+C 1n a n -1b 1+…+C r n a n -r b r +…+C n n b n(n ∈N +)题型探究 例1 解 分四类第一类:3个只会左舷的人全不选,有C 03C 35C 36=200(种); 第二类:3个只会划左舷的人中只选1人,有C 13C 25C 37=1 050(种); 第三类:3个只会划左舷的人中只选2人,有C 23C 15C 38=840(种); 第四类:3个只会划左舷的人全选,有C 33C 39=84(种), 所以共有200+1 050+840+84=2 174(种)选法. 跟踪训练1 60 例2 C 跟踪训练2 30例3 解 (1)第一步先将4个舞蹈节目捆绑起来,看成1个节目,与6个演唱节目一起排,有A 77=5 040(种)方法;第二步再松绑,给4个节目排序,有A 44=24(种)方法. 根据分步乘法计数原理,一共有5 040×24=120 960(种)安排顺序.(2)第一步将6个演唱节目排成一列(如下图中的“□”),一共有A 66=720(种)方法. ×□×□×□×□×□×□×第二步再将4个舞蹈节目排在一头一尾或两个演唱节目中间,这样相当于7个“×”选4个来排,一共有A 47=840(种)方法.根据分步乘法计数原理,一共有720×840= 604 800(种)安排顺序.(3)若所有节目没有顺序要求,全部排列,则有A 1212种排法,但原来的节目已定好顺序,需要消除,所以节目演出的方式有A 1212A 1010=A 212=132(种)排列.跟踪训练3 解 (1)先选后排.课代表的选法有C 35C 23+C 45C 13种,排列方法有A 55种,所以满足题意的选法有(C 35C 23+C 45C 13)A 55=5 400(种).(2)除去该女生后,即相当于剩余的7名学生选4名担任4门学科的课代表,有A 47=840(种)选法. (3)先选后排.从剩余的7名学生中选出4名有C 47种选法,排列方法有C 14A 44,所以选法共有C 47C 14A 44=3 360(种). (4)先从除去该男生和女生的6人中选出3人,有C 36种选法,该男生的安排方法有C 13种,其余3人全排,有A 33种选法,因此满足题意的选法共有C 36C 13A 33=360(种).例4 解 (1)由C 4n (-2)4∶C 2n (-2)2=56∶3,解得n =10,因为通项T r +1=C r 10(x )10-r ⎝⎛⎭⎪⎪⎫-23x r=(-2)r C r10556rx-,r =0,1,2, (10)当5-5r6为整数时,r 可取0,6,于是有理项为T 1=x 5和T 7=13 440. (2)设第r +1项系数的绝对值最大,则⎩⎪⎨⎪⎧C r102r≥C r -1102r -1,C r 102r≥C r +1102r +1,解得⎩⎪⎨⎪⎧r ≤223,r ≥193,又因为r ∈{1,2,3,…,9},所以r =7,当r =7时,T 8=-15 360x -56,又因为当r =0时,T 1=x 5, 当r =10时,T 11=(-2)10103x-=1 024103x-,所以系数的绝对值最大的项为T 8=-15 36056x -.(3)原式=10+9C 210+81C 310+…+910-1C 1010=9C 110+92C 210+93C 310+…+910C 10109=C 010+9C 110+92C 210+93C 310+…+910C 1010-19=+10-19=1010-19.跟踪训练4 解 已知展开式中倒数第三项的系数为45,则C n -2n =45,即C 2n =45,得n 2-n =90,解得n =-9(舍去)或n =10. (1)通项T r +1=C r10(14x-)10-r(23x )r=C r1010233r rx--+(0≤r ≤10,r ∈N ),令-10-r 4+2r3=3,得r =6.故含有x 3的项是第7项,T 7=C 610x 3=210x 3.(2)∵⎝⎛⎭⎪⎫41x +3x 210的展开式共11项, ∴系数最大项是第6项,T 6=C 510(14x-)5·(23x )5=2522512x .例5 解 (1)(x 2-3x +2)5=(x -1)5(x -2)5,a 2是展开式中x 2的系数,∴a 2=C 55(-1)5C 35(-2)3+C 45(-1)4C 45·(-2)4+C 35(-1)3C 55(-2)5=800. (2)令x =1,代入已知式可得,a 0+a 1+a 2+…+a 10=0,而令x =0,得a 0=32,∴a 1+a 2+…+a 10=-32. (3)令x =-1可得,(a 0+a 2+a 4+…+a 10)-(a 1+a 3+…+a 7+a 9)=65, 再由(a 0+a 2+a 4+…+a 10)+(a 1+a 3+…+a 7+a 9)=0, 把这两个等式相乘可得,(a 0+a 2+a 4+…+a 10)2-(a 1+a 3+…+a 7+a 9)2=65×0=0. 跟踪训练5 5 当堂训练1.D 2.C 3.B 4.364 5.300。
——教学资料参考参考范本——高中数学第一章计数原理4简单计数问题教学案北师大版选修2_3______年______月______日____________________部门有限制条件的组合问题[例1] 20xx年7月23日,甬温线发生特大铁路交通事故,某医院从10名医疗专家中抽调6名奔赴事故现场抢救伤员,其中这10名医疗专家中有4名是外科专家.问:(1)抽调的6名专家中恰有2名是外科专家的抽调方法有多少种?(2)至少有2名外科专家的抽调方法有多少种?(3)至多有2名外科专家的抽调方法有多少种?[思路点拨] 选取医疗专家不需要考虑顺序,因此是组合问题,解答本题应首先分清“恰有”“至少”“至多”的含义,正确的分类或分步.[精解详析] (1)分两步:首先从4名外科专家中任选2名,有C 种选法,再从除外科专家的6人中选取4人,有C种选法,所以共有CC=90种抽调方法.(2)“至少”的含义是不低于,有两种解答方法,法一(直接法):按选取的外科专家的人数分类:①选2名外科专家,共有CC种选法;②选3名外科专家,共有CC种选法;③选4名外科专家,共有CC种选法.根据分类加法计数原理,共有CC+CC+CC=185种抽调方法.法二(间接法):不考虑是否有外科专家,共有C种选法,若选取1名外科专家参加,有CC种选法;没有外科专家参加,有C种选法,所以共有C-CC-C=185种抽调方法.(3)“至多2名”包括“没有”“有1名”“有2名”三种情况,分类解答.①没有外科专家参加,有C种选法;②有1名外科专家参加,有CC种选法;③有2名外科专家参加,有CC种选法.所以共有C+CC+CC=115种抽调方法.[一点通] (1)解决有约束条件的组合问题与解决有约束条件的排列问题的方法一样,都是遵循“谁特殊谁优先”的原则,在此前提下,采用分类或分步法或用间接法.(2)要正确理解题中的关键词,如“至少”“至多”“含”“不含”等的确切含义,正确分类,合理分步.(3)要谨防重复或遗漏,当直接法中分类较复杂时,可考虑用间接法处理,即“正难则反”的策略.1.某乒乓球队有9名队员,其中2名是种子选手,现在挑选5名选手参加比赛,种子选手都必须在内,那么不同的选手共有( ) A.26 B.84C.35 D.21解析:从7名队员中选出3人有C==35种选法.答案:C2.从5名男医生,4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( )A.70种 B.80种C.100种 D.140种解析:可分两类,男医生2名,女医生1名或男医生1名,女医生2名.∴共有CC+CC=70种.答案:A3.某医科大学的学生中,有男生12名女生8名在某市人民医院实习,现从中选派5名参加青年志愿者医疗队.(1)某男生甲与某女生乙必须参加,共有多少种不同的选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙二人至少有一人参加,有多少种选法?解:(1)只需从其他18人中选3人即可,共有选法C=816种.(2)只需从其他18人中选5 人即可,共有选法C=8 568种.(3)分两类:甲、乙中只有一人参加,则有C·C种选法;甲、乙两人都参加,则有C种选法.故共有选法CC+C=6 936种.几何中的组合问题[例2]平面上有9个点,其中有4个点共线,除此外无3点共线.(1)经过这9个点,可确定多少条直线?(2)以这9个点为顶点,可以确定多少个三角形?(3)以这9个点为顶点,可以确定多少个四边形?[思路点拨] 解答本题可用直接法或间接法进行.[精解详析] 法一(直接法):共线的4点记为A,B,C,D.(1)第一类:A,B,C,D确定1条直线;第二类:A,B,C,D以外的5个点可确定C条直线;分)第三类:从A,B,C,D中任取1点,其余5点中任取1点可确定CC条直线.(3分)根据分类加法计数原理,共有不同直线1+C+CC=1+10+20=31条.分)(2)第一类:从A,B,C,D中取2个点,可得CC个三角形;第二类:从A,B,C,D中取1个点,可得CC个三角形;第三类:从其余5个点中任取3点,可得C个三角形.共有CC+CC+C=80个三角形.分)(3)分三类:从其余5个点中任取4个,3个,2个点共得C+CC+CC=105个四边形.分)法二(间接法):(1)可确定直线C-C+1=31条.(2)可确定三角形C-C=80个.(3)可确定四边形C-C-CC=105个.[一点通] 利用组合知识解决与几何有关的问题,要注意:①几何图形的隐含条件:如三角形的三个顶点不共线;四边形的四个顶点中任意三点都不共线等.②根据实际情况选择直接法或间接法.③确定分类的标准,合理分类.4.从正方体ABCDA′B′C′D′的8个顶点中选取4个,作为四面体的顶点,可得到的不同四面体的个数为( )A.C-12 B.C-8C.C-6 D.C-4解析:从8个顶点中任取4个有C种方法,其中6个面和6个对角面上的四个顶点不能作为四面体的顶点,故有(C-12)个不同的四面体.答案:A5.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有________个.解析:C-3=32.答案:326.平面内有两组平行线,一组有m条,另一组有n条,这两组平行线相交,可以构成__________个平行四边形.解析:第一步,从m条中任选2条有C种选法;第二步,从n条中任选2条有C种选法.由分步乘法计数原理,得共有CC.答案:CC2n解有限制条件的组合应用题的基本方法是“直接法”和“间接法”(排除法).(1)用直接法求解时,则应坚持“特殊元素优先选取”“特殊位置优先安排”的原则.(2)选择间接法的原则是“正难则反”,也就是若正面问题分的类较多、较复杂或计算量较大,特别是涉及“至多”“至少”等组合问题时更是如此.不妨从反面问题入手,试试看是否简捷些.此时,正确理解“都不是”“不都是”“至多”“至少”等词语的确切含义是解决这些组合问题的关键.1.9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品,抽出产品中至少有2件一等品的抽法种数为( ) A.81 B.60C.6 D.11解析:分三类:恰有2件一等品,有CC=60种取法;恰有3件一等品,有CC=20种取法;恰有4件一等品,有C=1种取法.∴抽法种数为60+20+1=81.答案:A2.以一个正三棱柱的顶点为顶点的四面体有( )A.6个 B.12个C.18个 D.30个解析:从6个顶点中任取4个有C=15种取法,其中四点共面的有3种.所以满足题意的四面体有15-3=12个.答案:B3.从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为( )A.85 B.56C.49 D.28解析:由条件可分为两类:一类是甲、乙两人只有一人入选,有C·C=42种不同选法,另一类是甲、乙都入选,有C·C=7种不同选法,所以共有42+7=49种不同选法.答案:C4.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( ) A.10 B.11C.12 D.15解析:与信息0110至多有两个位置上的数字对应相同的信息包括三类:第一类:与信息0110只有两个对应位置上的数字相同有C=6个;第二类:与信息0110只有一个对应位置上的数字相同有C=4个;第三类:与信息0110没有一个对应位置上的数字相同有C=1个.∴与信息0110至多有两个对应位置上的数字相同的信息有6+4+1=11个.答案:B5.(大纲全国卷)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有________种.(用数字作答)解析:第一步决出一等奖1名有C种情况,第二步决出二等奖2名有C种情况,第三步决出三等奖3名有C种情况,故可能的决赛结果共有CCC=60种情况.答案:606.某校开设9门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门.学校规定,每位同学选修4门,共有________种不同选修方案.(用数字作答)解析:分两类完成:第一类,A,B,C三门课程都不选,有C种不同的选修方案;第二类,A,B,C三门课程恰好选修一门,有C·C种不同选修方案.故共有C+C·C=75种不同的选修方案.答案:757.12件产品中,有10件正品,2件次品,从这12件产品中任意抽出3件.(1)共有多少种不同的抽法?(2)抽出的3件中恰好有1件次品的抽法有多少种?(3)抽出的3件中至少有1件次品的抽法有多少种?解:(1)有C=220种抽法.(2)分两步:先从2件次品中抽出1件有C种方法;再从10件正品中抽出2件有C种方法,所以共有CC=90种抽法.(3)法一(直接法):分两类:即包括恰有1件次品和恰有2件次品两种情况,与(2)小题类似共有CC+CC=100种抽法.法二(间接法):从12件产品中任意抽出3件有C种方法,其中抽出的3件全是正品的抽法有C种方法,所以共有C-C=100种抽法.8.10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求各有多少种情况出现如下结果:(1)4只鞋子没有成双的;(2)4只鞋子恰成两双;(3)4只鞋中有2只成双,另2只不成双.解:(1)从10双鞋子中选取4双,有C种不同选法,每双鞋子中各取一只,分别有2种取法,根据分步乘法计数原理,选取种数为N=C·24=3 360(种).即4只鞋子没有成双有3 360种不同取法.(2)从10双鞋子中选取2双有C种取法,所以选取种数为N=C=45(种),即4只鞋子恰成双有45种不同取法.(3)先选取一双有C种选法,再从9双鞋中选取2双有C种选法,每双鞋只取一只各有2种取法.根据分步乘法计数原理,不同取法为N =CC·22=1 440(种).。
第一章计数原理1 两个计数原理的灵活应用计数问题是数学中的重要研究对象,除了分类加法计数原理和分步乘法计数原理的理论支持,对于较复杂的计数问题要针对其问题特点,灵活的运用列举法、列表法、树形图法等方法来帮助解决,使问题的解决更加实用、直观.下面通过典例来说明.一、列举法例1 某公司电脑采购员计划用不超过300元的资金购买单价分别为20元、40元的鼠标和键盘,根据需要,鼠标至少买5个,键盘至少买3个,则不同的选购方式共有( )A.7种 B.8种 C.9种 D.10种解析依据选购鼠标和键盘的不同个数分类列举求解.若买5个鼠标,则可买键盘3、4、5个;若买6个鼠标,则可买键盘3、4个;若买7个鼠标,则可买键盘3、4个;若买8个鼠标,则可买键盘3个;若买9个鼠标,则可买键盘3个.根据分类加法计数原理,不同的选购方式共有3+2+2+1+1=9种.故选C.答案 C点评本题背景中的数量不少,要找出关键数字,通过恰当分类和列举可得.列举看似简单,但在解决问题中显示出其实用性,并且我们还可以通过列举的方法去寻求问题中的规律.二、树形图法例2 用前6个大写英文字母和1~9九个阿拉伯数字,以A1,A2,…,B1,B2,…的方式给教室里的座位编号,总共能编出多少个不同的号码?解编写一个号码要先确定一个英文字母,后确定一个阿拉伯数字,我们可以用树形图列出所有可能的号码,如图.由于前6个英文字母中的任意一个都能与9个数字中的任何一个组成一个号码,而且它们各不相同,因此共有6×9=54(个)不同的号码.三、列表法例3 四个人各写一张贺年卡,放在一起,然后每个人取一张不是自己写的贺年卡,共有多少种不同的取法?解把四个人分别编号①、②、③、④,对应写的贺年卡编号分别为1,2,3,4,将4张贺年卡的各种方法全部列举出来,如下表:由表格可知,共有9种不同的方法.点评本题是一个错排问题,难以直接运用两个计数原理计算.借助表格,把各种情况一一列出,使问题直观解决.四、直接法例4 已知某容器中,H有3种同位素,Cl有2种同位素,Na有3种同位素,O有4种同位素,请问共可组成多少种HCl和NaOH分子?解因为HCl由两种元素构成,所以分两步完成:第1步:选择氢元素,共有3种.第2步:选择氯元素,共有2种.由分步乘法计数原理得共有6种HCl分子.同理,对于NaOH而言,分三步完成.第1步:选择钠元素,有3种选法.第2步:选择氧元素,有4种选法.第3步:选择氢元素,有3种选法.由分步乘法计数原理知共有3×4×3=36(种)NaOH分子.点评当问题情景中的规律明显,已符合分类加法计数原理或分步乘法计数原理中的某一类型时,可直接应用公式计算结果,但此法的关键是分清是“分类”还是“分步”问题.2 排列、组合的破解之术排列、组合,说它难吧,其实挺简单的,就是分析事件的逻辑步骤,然后用乘法原理、加法原理计算就可.说简单吧,排列、组合却是同学们(包括很多学习很好的同学)最没把握的事情,同样难度的几道题,做顺了,三下五除二,几分钟内解决问题;做不顺,则如一团乱麻,很长时间也理不顺思路.下面就来谈谈破解常见排列、组合模型的常用方法!一、特殊元素——优先法对于有特殊要求的元素的排列、组合问题,一般应对有特殊要求的元素优先考虑.例1 将数字1,2,3,4,5,6排成一列,记第i个数为a i(i=1,2,…,6),若a1≠1,a3≠3,a5≠5,a1<a3<a5,则不同的排列方法有________种(用数字作答).解析由题意,a1≠1,a3≠3,a5≠5,a1<a3<a5.第一步,可以先排a1,a3,a5,只有5种方法;第二步,再排a2,a4,a6,有A33种方法.由乘法原理得,不同的排列方法共有5A33=30(种).答案30二、相邻问题——捆绑法把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”一起排列,最后再“松绑”,将特殊元素在这些位置上排列.例2 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A.1 440种B.960种C.720种D.480种解析先将两位老人排在一起有A22种排法,再将5名志愿者排在一起有A55种排法,最后将两位老人插入5名志愿者间的4个空位中有C14种插入方法,由分步乘法计数原理可得,不同的排法有A22·A55·C14=960(种).答案 B三、不相邻问题——插空法某些元素不能相邻或某些元素要在某个特殊位置时可采用插空法,即先安排好没有限制条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间.例3 五名男生与两名女生排成一排照相,如果男生甲必须站在中间,两名女生必须相邻,符合条件的排法共有( )A.48种B.192种C.240种D.288种解析(用排除法)将两名女生看作1人,与四名男生一起排队,有A55种排法,而女生可互换位置,所以共有A55×A22种排法,男生甲插入中间位置,只有一种插法;而4男2女排列中2名女生恰在中间的排法共有A22×A44(种),这时男生甲若插入中间位置不符合题意,故符合题意的排列种数为A55×A22-A44×A22=192.答案 B四、至多至少问题——间接法对于某些排列、组合问题的正面情况较复杂而其反面情况较简单,可先考虑无限制条件的排列,再减去其反面情况的种数.例4 从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种(用数字作答).解析 从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员共有A 35种选法,其中甲、乙中有一人担任文娱委员的选法有C 12A 24种,故共有A 35-C 12A 24=36(种)选法. 答案 36五、多类元素组合——分类取出当题目中元素较多,取出的情况也有多种时,可按结果要求,分成不相容的几类情况分别计算,最后总计.例5 如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有____________种(用数字作答).解析 如果用两种颜色,则有C 26种颜色可以选择,涂法有2种.如果用3种颜色涂色,有C 36种颜色可以选择,涂法有C 13·C 12(C 12+1)=18(种). 所以,不同涂色种数为C 26·2+C 36·18=390(种). 答案 390六、排列、组合混合——先选后排对于排列与组合的混合问题,宜先用组合选取元素,再进行排列.例6 某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有________种.(用数字作答)解析 首先把5个班分成4组,即2,1,1,1,有C 25C 13C 12C 11A 33种方法.然后把4组分配到4个工厂,每个工厂安排一组有A 44种方法.由分步乘法计数原理可得不同的安排方法有C 25C 13C 12C 11A 33·A 44=240(种). 答案 2403 正方体中的计数问题在解决关于正方体的排列、组合问题时,要善于利用几何性质,借助图形帮助思考,这对解决问题将起到事半功倍的效果.下面举例说明:例1 从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( )A.8种B.12种C.16种D.20种解析从正方体的6个面中任取3个面共有C36种不同选法,其中3个面均相邻的选法共有8种(此时三个面共有一个顶点),故符合题意的选法共有C36-8=12(种).答案 B变式训练1 正方体的一条对角线与它的12条棱组成的异面直线共有________对.答案 6例2 连接正方体任意两个顶点的直线中异面直线有____________________________对.解析确定一对异面直线需要四个不共面的点,而四个不共面的点可以构成一个四面体,而一个四面体有三对异面直线,因此“异面直线的对数=3×四面体数”,由于以正方体的顶点为顶点的四面体共有58个,所以共有异面直线3×58=174(对).答案174变式训练2 过三棱柱任意两个顶点的直线共有15条,其中异面直线有( )A.18对 B.24对 C.30对 D.36对答案 D例3 从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为( ) A.56 B.52 C.48 D.40解析由于正方体的各个面都是矩形,而1个矩形有4个直角三角形,因此有对应关系“直角三角形数=4×矩形数”,正方体共有12个矩形的面,所以直角三角形共有4×12=48(个).答案 C变式训练 3 从正方体的八个顶点中任取三个点为顶点作三角形,其中正三角形的个数为________.答案84 “隔板法”在计数问题中的妙用“隔板法”在计数问题中有其特殊的适用背景,并且“隔板法”往往会使很复杂的问题得到巧妙的解决.下面剖析一下隔板法适用条件,并选择几个实例来加以说明.一、隔板法的适用条件排列、组合中的相同小球放进不同的盒子、名额分配或相同物品的分配等问题,是排列、组合中的难点问题,这类问题的基本模型是:将n个相同元素分组到m个不同对象中(n≥m),每个对象至少有一个元素.这类问题必须满足三个条件:①小球必须相同;②盒子必须不同;③每个盒子至少有一个小球.当满足这三个条件时,我们可以采用隔板法.二、隔板法的实际应用应用1 20个相同的小球放入编号为1号、2号、3号的三个盒子里,要求每个盒子都不空,问有多少种放法?解如右图,用“0”表示小球,0000|00000000|00000000在0与0之间的19个空档中插入2块隔板即可将小球分成3组,同时能够保证每组中至少有一个小球,所以一共有C219=171种放法.点评解决此类问题的关键是,看题目情景是否满足隔板法的条件,若满足,则直接套用公式即可.应用2 方程x1+x2+x3+x4=20的正整数解有多少个?解该问题转化为:将方程左边的x1、x2、x3、x4看成是4个盒子得到的小球数,右边的20看成是20个相同的小球.这样就相当于20个相同的小球放入4个盒子里,要求每个盒子至少有一个小球,共有多少种不同的分配方法?这样,类似应用1可知,所以共有C319=969(种).点评不定方程x1+x2+x3+…+x m=n(n,m∈N+,n≥m)的正整数解个数问题可以转化为“将n个相同元素分给m个不同对象(n≥m),每个对象至少有一个元素”的模型,进而采用隔板法求解.整体概括:通过对隔板法的应用,可得下列结论:结论1:把n个相同的元素分成m组分配给m个人,每组不允许落空,则可将n个元素排成一排,从n-1个间隔中,选出m-1个插上隔板,每一种隔板的插法对应一种分配方法,则分配方法数N=C m-1n-1.结论2:把n个相同的元素分成m组分配给m个人,某些组允许落空,则可将m-1个隔板和n个元素排成一排,每一种隔板的插法对应一种分配方法,则分配方法数N=C m-1m+n-1.试一试1.将7个相同的小球放入4个不同的盒子中.(1)不出现空盒时的放入方式共有多少种?(2)可出现空盒时的放入方式共有多少种?解(1)将7个相同的小球排成一排,在中间形成的6个空格中插入无区别的3个“隔板”将球分成4份,每一种插入隔板的方式对应一种球的放入方式,则不同的放入方式共有C36=20(种).(2)每种放入方式对应于将7个相同的小球与3个相同的“隔板”进行一次排列,即从10个位置中选3个位置安排隔板,故共有C310=120(种)放入方式.2.将10个优秀名额分配到一班、二班、三班3个班级中,若各班名额数不小于班级序号数,共有多少种不同的分配方案?解先拿3个优秀名额分配给二班1个,三班2个,这样原问题就转化为将7个优秀名额分配到3个班级中,每个班级中至少分配到1个.利用“隔板法”可知,共有C26=15(种)不同的分配方案.3.某市教委准备在当地的9所重点中学中选派12名优秀青年教师参加在职培训,每所学校至少一个名额,求不同的分配方案的种数.解从结果入手,理解相同元素的分堆问题,设计“隔板法分堆”,将一种分配方法和一个组合建立一一对应,实际问题化归为组合数求解.该事件的实质为将12个相同的元素分成9堆,每一堆至少一个元素,“隔板法分堆”,即在12个相同元素构成的11个空中插入8个隔板,其方法有C811=165(种).5 排列、组合中的数学思想一、分类讨论思想例1 如果一个三位正整数形如“a1a2a3”,满足a1<a2,且a3<a2,则称这样的三位数为凸数(120,363,374等),那么所有的凸数个数为( )A.240 B.204C.729 D.920解题提示本题中的三位正整数,要求中间一位数字最大,需根据中间数字所有可能的情况分类讨论;另外要注意首位与个位上的数字允许重复.解析由题意知:a1≠0,a2≥2.下面只需对a2=2,a2=3,…,a2=9分别进行讨论,并求其值后求和.当a2=2时,a1,a3只能从0,1中取,a1只能取1,a3可取0,1,排出“a1a2a3”共有2种;当a2=3时,a1从1,2中任取一个有C12种,a3从0,1,2中任取一个有C13种,所以共有C12·C13种;当a2=4时,a1从1,2,3中任取一个有C13种,a3从0,1,2,3中任取一个有C14种,所以共有C13·C14种;…;当a2=9时,a1从1,2,3,…,8中任取一个有C18种,a3从0,1,2,…,8中任取一个有C19种,共有C18·C19种.综上,可得组合成所有的凸数个数为2+C12·C13+C13·C14+C14·C15+C15·C16+C16·C17+C17·C18+C18·C19=240.答案 A点评本题中分类的标准非常明确,即中间数字的取值情况.对于分类标准明确、分类情况多的题目,要有耐心逐个求解,最后求和.正确地进行求解运算也是求解此类题目的一个关键点.例2 从-3,-2,-1,0,1,2,3,4八个数字中任取3个不重复的数字分别作为a、b、c的值构成二次函数y=ax2+bx+c.试问:(1)共可组成多少个不同的二次函数?(2)在这些二次函数图像中,以y轴为对称轴的有多少条?经过原点且顶点在第一或第三象限的有多少条?解题提示二次函数要求a≠0,可以优先考虑a的取值;也可以用排除法.结合顶点在第一象限或第三象限对a ,b ,c 的符号要求进行分析是解决第(2)问的关键.解 (1)方法一 因为y =ax 2+bx +c 是二次函数,所以a ≠0.因此,可从-3,-2,-1,1,2,3,4中选取一个排在a 的位置上,有C 17种选法.b ,c 的取值没有特殊要求,所以从剩余的6个非零元素加上0共7个元素中选取两个有C 27种选法,再把它们排在b ,c 的位置上有A 22种排法.由分步乘法计数原理共有C 17·C 27·A 22=7×7×62×2=294(个)不同的二次函数. 方法二 利用排除法,从所有情况中去掉“0”排在a 位置的情况. C 38·A 33-C 27·A 22=8×7×63×2×1×3×2×1-7×62×2=294(个)不同的二次函数.(2)当对称轴为y 轴时,b =0,这样的抛物线有A 27=42(条).当抛物线过原点时,c =0,抛物线的顶点为⎝ ⎛⎭⎪⎫-b2a,-b 24a .①当顶点在第一象限时,有⎩⎪⎨⎪⎧ -b2a>0,-b24a >0,故⎩⎪⎨⎪⎧ a <0,b >0,这样的抛物线有A 13·A 14=12(条);②当顶点在第三象限时,有⎩⎪⎨⎪⎧-b2a<0,-b24a <0,故⎩⎪⎨⎪⎧a >0,b >0,这样的抛物线有A 24=12(条).故经过原点且顶点在第一或第三象限的共有24条.点评 当排列、组合问题与相关数学问题背景联系在一起时,要注意结合数学背景对涉及的字母a ,b ,c 的要求,合理地转化为a ,b ,c 的直接要求,再进行分类.实际问题数学化,文字表述代数化是解决实际背景问题的常规思想方法. 二、数形结合思想例3 以圆x 2+y 2-2x -2y -1=0内横坐标与纵坐标均为整数的点为顶点的三角形个数为( )A .76B .78C .81D .84解题提示 将圆的一般方程化为标准方程,画出图形,结合图形从所有情况中去掉三点共线的情况.解析 本题是一个综合问题,首先求出圆内的整数点个数,然后求组合数,方程化为(x -1)2+(y -1)2=3.如图,圆内共有9个整数点,组成的三角形的个数为C 39-8=76.答案 A点评 整点个数的计算,三点共线情况的寻找都需要我们在平面直角坐标系下正确画出本题中的圆以及与整点共线有关的8条直线.与几何图形探求有关的组合问题,画出相关图形,结合图形求解是解决此类题目常用的方法. 三、转化与化归思想例4 某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3件,磁盘至少买2盒,则不同的选购方式共有( ) A .5种 B .6种 C .7种D .8种解析 设买单片软件x 件,盒装磁盘y 盒,则命题转化为不等式组⎩⎪⎨⎪⎧60x +70y ≤500,x ≥3,y ≥2(x ,y ∈N )的解的个数,不难求得(3,2),(3,3),(3,4),(4,2),(4,3),(5,2),(6,2)为其解,所以不同的选购方式共有7种. 答案 C点评 本题若直接列举讨论,情况较复杂,根据题目条件设出相关变量x ,y ,列出不等式组缩小讨论范围,简化了求解过程.例5 如图①,A ,B ,C ,D 为海上的四个小岛,要建三座桥,将这四个小岛连接起来,则不同的建桥方案共有( ) A .8种 B .12种 C .16种D .20种解析 如图②,构造三棱锥A -BCD ,四个顶点表示四个小岛,六条棱表示连接任意两岛的桥梁.由题意,只需求出从六条棱中任取三条不共面的棱的不同取法.从六条棱中任取三条棱的不同取法有C36种,任取三条共面棱的不同取法为4种,所以从六条棱中任取三条不共面的棱的不同取法有C36-4=16(种).答案 C点评本题根据问题特征,巧妙地构建恰当的立体几何图形,用几何知识去解,显得直观清晰、简洁明快.6 排列、组合问题错解分类剖析排列、组合问题类型繁多、方法丰富、富于变化,稍不注意,极易出错.本文选择一些在教学中学生常见的错误进行正误解析.一、没有理解两个基本原理出错排列、组合问题基于两个基本计数原理,即加法原理和乘法原理,故理解“分类用加、分步用乘”是解决排列、组合问题的前提.例1 从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装与组装计算机各两台,则不同的取法有________种.误解因为可以取2台原装与3台组装计算机或是3台原装与2台组装计算机,所以只有2种取法.错因分析误解的原因在于没有意识到“选取2台原装与3台组装计算机或是3台原装与2台组装计算机”是完成任务的两“类”办法,每类办法中都还有不同的取法.正解由分析,完成第一类办法还可以分成两步:第一步在原装计算机中任意选取2台,有C26种方法;第二步是在组装计算机中任意选取3台,有C35种方法,据乘法原理共有C26·C35种方法.同理,完成第二类办法中有C36·C25种方法.据加法原理完成全部的选取过程共有C26·C35+C36·C25=350(种)方法.例2 在一次运动会上有四项比赛的冠军在甲、乙、丙三人中产生,那么不同的夺冠情况的种数为( )A.A34 B.43 C.34 D.C34误解把四个冠军,排在甲、乙、丙三个位置上,选A.错因分析误解是没有理解乘法原理的概念,盲目地套用公式.正解四项比赛的冠军依次在甲、乙、丙三人中选取,每项冠军都有3种选取方法,由乘法原理共有3×3×3×3=34(种),故选C.说明本题还有同学这样误解,甲、乙、丙夺冠均有四种情况,由乘法原理得43,这是由于没有考虑到某项冠军一旦被一人夺得后,其他人就不再有4种夺冠可能.二、判断不出是排列还是组合出错在判断一个问题是排列还是组合问题时,主要看元素的组成有没有顺序性,有顺序的是排列,无顺序的是组合.例3 有大小形状相同的3个红色小球和5个白色小球,排成一排,共有多少种不同的排列方法?误解因为是8个小球的全排列,所以共有A88种方法.错因分析误解中没有考虑3个红色小球是完全相同的,5个白色小球也是完全相同的,同色球之间互换位置是同一种排法.正解8个小球排好后对应着8个位置,题中的排法相当于在8个位置中选出3个位置给红球,剩下的位置给白球,由于这3个红球完全相同,所以没有顺序,是组合问题.这样共有C38=56(种)排法.三、重复计算出错在排列、组合中常会遇到元素分配问题、平均分组问题等,这些问题要注意避免重复计数,产生错误.例4 某交通岗共有3人,从周一到周日的七天中,每天安排一人值班,每人至少值2天,其不同的排法共有多少种?误解第一个人先挑选2天,第二个人再挑选2天,剩下的3天给第三个人,这三个人再进行全排列.共有:C27C25A33=1 260.错因分析这里是均匀分组问题.比如:第一人挑选的是周一、周二,第二人挑选的是周三、周四;也可能是第一个人挑选的是周三、周四,第二人挑选的是周一、周二,所以在全排列的过程中就重复计算了.正解C27C25A332=630(种).四、遗漏某些情况出错在排列、组合问题中还可能由于考虑问题不够全面,因为遗漏某些情况而出错.例5 用数字0,1,2,3,4组成没有重复数字的比1 000大的奇数共有( )A.36个B.48个C.66个D.72个误解如图,最后一位只能是1或3,有两种取法,又因为第1位不能是0,在最后一位取定后只有3种取法,剩下3个数排中间两个位置有A23种排法,共有2×3×A23=36(个).错因分析误解只考虑了四位数的情况,而比1 000大的奇数还可能是五位数.正解任一个五位的奇数都符合要求,共有2×3×A33=36(个),再由前面分析知满足题意的四位数和五位数共有72个,选D.五、忽视题设条件出错在解决排列、组合问题时,一定要注意题目中的每一句话甚至每一个字和符号,不然就可能多解或漏解.例6 如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有______种(以数字作答).误解 先着色第一区域,有4种方法,剩下3种颜色涂四个区域,即有一种颜色涂相对的两块区域,有C 13·2·A 22=12(种),由乘法原理共有4×12=48(种).错因分析 据报道,在高考中有很多考生填了48种.这主要是没有看清题设“有4种颜色可供选择..”,不一定需要4种颜色全部使用,用3种也可以完成任务. 正解 当使用四种颜色时,由前面的误解知有48种着色方法;当仅使用三种颜色时,从4种颜色中选取3种有C 34种方法,先着色第一区域,有3种方法,剩下2种颜色涂四个区域,只能是一种颜色涂第2、4区域,另一种颜色涂第3、5区域,有2种着色方法,由乘法原理知有C 34×3×2=24(种).综上,共有48+24=72(种)方法.例7 已知ax 2-b =0是关于x 的一元二次方程,其中a 、b ∈{1,2,3,4},求解集不同的一元二次方程的个数.误解 从集合{1,2,3,4}中任意取两个元素作为a 、b ,方程有A 24个,当a 、b 取同一个数时方程有1个,共有A 24+1=13(个).错因分析 误解中没有注意到题设中:“求解集不同....的……”所以在上述解法中要去掉同解情况,由于⎩⎪⎨⎪⎧ a =1b =2和⎩⎪⎨⎪⎧ a =2b =4同解、⎩⎪⎨⎪⎧ a =2b =1和⎩⎪⎨⎪⎧ a =4b =2同解,故要减去2个.正解 由分析,共有13-2=11(个)解集不同的一元二次方程.六、未考虑特殊情况出错在排列、组合中要特别注意一些特殊情况,一有疏漏就会出错.例8 现有1角、2角、5角、1元、2元、5元、10元、50元人民币各一张,100元人民币2张,从中至少取一张,共可组成不同的币值种数是( )A .1 024种B .1 023种C .1 536种D .767种误解 因为共有人民币10张,每张人民币都有取和不取2种情况,减去全不取的1种情况,共有210-1=1 023(种),故选B.错因分析 这里100元面值比较特殊有两张,在误解中被计算成4种情况,实际上只有不取、取一张和取二张3种情况.正解 除100元人民币以外每张均有取和不取2种情况,100元人民币的取法有3种情况,再减去全不取的1种情况,所以共有28×3-1=767(种),故选D.七、题意的理解偏差出错例9 现有8个人排成一排照相,其中有甲、乙、丙三人不能相邻的排法的种数为( )A .A 36·A 55B .A 88-A 66·A 33C .A 35·A 33D .A 88-A 46误解 除了甲、乙、丙三人以外的5人先排,有A 55种排法,5人排好后产生6个空档,插入甲、乙、丙三人有A 36种方法,这样共有A 36·A 55种排法,选A.错因分析 误解中没有理解“甲、乙、丙三人不能相邻”的含义,得到的结果是“甲、乙、丙三人互不相邻....”的情况.“甲、乙、丙三人不能相邻”是指甲、乙、丙三人不能同时相邻,但允许其中有两人相邻.正解 在8个人全排列的方法数中减去甲、乙、丙全相邻的方法数,就得到甲、乙、丙三人不相邻的方法数,即A 88-A 66·A 33,故选B.排列、组合问题虽然种类繁多,但只要能把握住最常见的原理和方法,即“分步用乘、分类用加、有序排列、无序组合”,留心容易出错的地方就能够以不变应万变,把排列、组合学好.7 用五种意识求解二项式问题在历年高考中都有涉及二项式定理的试题,本文总结了五种解题意识,旨在强化同学们解此类问题的目的性及方向性,避免低效性和盲目性,使解题能力得以提高.一、通项意识凡涉及到展开式的项及其系数问题,常是先写出其通项公式T r +1=C r n an -r b r ,再根据题意进行求解.因此通项意识是解二项式问题的首选意识.例1 若⎝ ⎛⎭⎪⎫2x 3+1x n的展开式中含有常数项,则最小的正整数n 为________.解析 展开式的通项为T r +1=C r n (2x 3)n -r ⎝ ⎛⎭⎪⎫1x r =C r n ·2n -r 732r n x -.令3n -7r 2=0,得r =6n 7, ∵r ∈N +且r ≤n ,∴n 必须能被7整除,∴满足条件的最小正整数n =7.。
§ 简单计数问题自主整理.区别排列问题与组合问题的关键是元素是否..解决相邻元素问题的方法是..解决元素不相邻问题的方法是..有特殊要求的元素问题常用..有特殊要求的位置问题常用..无序平均分组问题常用..相同元素分组问题常用..“至多”“至少”问题常用.高手笔记.捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”.例如,一般地,个不同元素排成一列,要求其中某(≤)个元素必相邻的排列有·个.其中是一个“整体排列”,而则是“局部排列”..插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.运用插空法解决“元素不相邻问题”时,要同时借助框图和数数法求解..占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则..调序法:当某些元素次序一定时,可用此法.解题方法是:先将个元素进行全排列有种,(<)个元素的全排列有种,由于要求个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到调序的作用,即若个元素排成一列,其中个元素次序一定,共有种排列方法.记忆规律是:顺序一定作除法.名师解惑.解排列、组合应用题应注意哪些问题?剖析:做排列、组合的应用题,一般来讲要解决好三大难题:一是确定问题的属性,即所给问题是排列还是组合;二是确定解题策略,即是要分类求解还是分步求解;三是选择恰当的解题方法,即是用直接法还是间接法.而这三大难题的关键则是真正弄清“三对关系”的深刻含义.()“分类与分步”的关系分类复杂事件的排列与组合问题,需要对在一个标准下分类讨论,把分解为类简单事件,,…,. 分类的原则是:∪∪…∪∩(≠、,…).在这样的原则下对事件分类,能够确保分类的不漏不重.把分为,,…,的同时,对应的办法也随之被分为类办法,,…,,且∪∪…∪∩(≠、,…).其结果用分类加法计数原理计算.分步事件完成分类以后,对每一类要进行分步,分步要做到“步骤连续”和“步骤独立”,这样就可以确保对每一类事件的分步不漏不重.事件的分步对应方法的分步.如分为步,,…,,则对应的有被分为种方法,,…,.其结果用分步乘法计数原理计算.由此可见,我们可以得到两点结论:其一,分类与分步是区别选用分类加法计数原理和分步乘法计数原理的唯一标准,即分类相加,分步相乘;其二,若把事件分为类简单事件,…,并且完成事件又需分作步(,…),对应每一步又可有(,…)种不同方法,这样完成事件就共有(··…)(··…)…(··…)种不同方法.()“有序与无序”的关系界定排列与组合问题的唯一标准是“顺序”,“有序”是排列问题,“无序”是组合问题.排列与组合问题并存的时候,解答排列与组合问题,一般采用先组合后排列的方法解答. ()“元素与位置”的关系解答排列与组合问题,界定哪些事物是元素,哪些事物是位置至关重要,又没有唯一的定势标准,所以要辩证地去看待元素与位置.解题过程中,要优先安排有限制条件的特殊元素和特殊位置,并灵活运用“捆绑法”和“插空法”,“直接法”和“间接法”..排列、组合应用题的基本题型与解题策略是什么?剖析:排列、组合应用题的常见类型及解题策略如下表:类型特征常见题型解题策略组合排列指定元素型从个不同元素中每次取出个不同元素作排列(或组合),规定某个元素都包含在内先后策略分类求解策略从个不同元素中每次取出个不同元素作排列(或组合),规定某个元素都不包含在内从个不同元素中每次取出个不同元素作排列(或组合),规定每个排列(或组合)都只包含某个元素中的个元素从个不同元素中每次取出个不同元素作排列(或组合),规定每一个排列(或组合),都至少包含某个元素中的个元素分类求解策略从个不同元素中每次取出个不同元素作排列(或组合),规定每一个排列(或组合),都至多包含某个元素中的个元素。
§4 简单计数问题自主整理1.区别排列问题与组合问题的关键是元素是否_____________________.2.解决相邻元素问题的方法是____________________.3.解决元素不相邻问题的方法是____________________.4.有特殊要求的元素问题常用____________________.5.有特殊要求的位置问题常用____________________.6.无序平均分组问题常用____________________.7.相同元素分组问题常用____________________.8.“至多”“至少”问题常用____________________. 高手笔记1.捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”.例如,一般地,n 个不同元素排成一列,要求其中某m(m≤n)个元素必相邻的排列有A 11+-+-m n m n ·A mm 个.其中A 11+-+-m n m n 是一个“整体排列”,而A mm 则是“局部排列”.2.插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.运用插空法解决“元素不相邻问题”时,要同时借助框图和数数法求解.3.占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.4.调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有A nn 种,m(m<n)个元素的全排列有A mm 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有m mn nA A 种排列方法.记忆规律是:顺序一定作除法.名师解惑1.解排列、组合应用题应注意哪些问题?剖析:做排列、组合的应用题,一般来讲要解决好三大难题:一是确定问题的属性,即所给问题是排列还是组合;二是确定解题策略,即是要分类求解还是分步求解;三是选择恰当的解题方法,即是用直接法还是间接法.而这三大难题的关键则是真正弄清“三对关系”的深刻含义.(1)“分类与分步”的关系 分类复杂事件A 的排列与组合问题,需要对A 在一个标准下分类讨论,把A 分解为n 类简单事件A 1,A 2,…,A n .分类的原则是:A=A 1∪A 2∪…∪A n ,A i ∩A j =(i≠j,i、j=1,2,…,n).在这样的原则下对事件A 分类,能够确保分类的不漏不重.把A分为A1,A2,…,A n的同时,对应的办法S也随之被分为n类办法S1,S2,…,S n,且S=S1∪S2∪…∪S n,S i∩S j =(i≠j;i、j=1,2,…,n).其结果用分类加法计数原理计算.分步事件A完成分类以后,对每一类要进行分步,分步要做到“步骤连续”和“步骤独立”,这样就可以确保对每一类事件的分步不漏不重.事件的分步对应方法的分步.如A1分为n步B1,B2,…,B n,则对应的有S1被分为n种方法S11,S12,…,S1n.其结果用分步乘法计数原理计算.由此可见,我们可以得到两点结论:其一,分类与分步是区别选用分类加法计数原理和分步乘法计数原理的唯一标准,即分类相加,分步相乘;其二,若把事件A分为n类简单事件A1,A2,…,A n,并且完成事件A k又需分作S k步(k=1,2,3,…,n),对应每一步又可有S ki(i=1,2,3,…,n)种不同方法,这样完成事件A就共有N=(S11·S12·S13…S1n)+(S21·S22·S23…S2n)+…+(S n1·S n2·S n3…S nn)种不同方法.(2)“有序与无序”的关系界定排列与组合问题的唯一标准是“顺序”,“有序”是排列问题,“无序”是组合问题.排列与组合问题并存的时候,解答排列与组合问题,一般采用先组合后排列的方法解答. (3)“元素与位置”的关系解答排列与组合问题,界定哪些事物是元素,哪些事物是位置至关重要,又没有唯一的定势标准,所以要辩证地去看待元素与位置.解题过程中,要优先安排有限制条件的特殊元素和特殊位置,并灵活运用“捆绑法”和“插空法”,“直接法”和“间接法”.2.排列、组合应用题的基本题型与解题策略是什么?剖析:排列、组合应用题的常见类型及解题策略如下表:类型特征常见题型解题策略组合排列指定元素型从n个不同元素中每次取出k个不同元素作排列(或组合),规定某r个元素都包含在内先C后A策略分类求解策略C rkrnrrC--C kkrkrnrrAC--从n个不同元素中每次取出k个不同元素作排列(或组合),规定某r个元素都不包含在内krnC-kkkrnAC-从n个不同元素中每次取出k个不同元素作排列(或组合),规定每个排列(或组合)都只包含某r个元素中的s个元素skrnsrCC--kkskrnsrACC--从n个不同元素中每次取出k个不同元素作排列(或组合),规定每一个排列(或组合),都至少包含某r分类求解策略kkNA1+--+=srskrnsrCCCN1----++krnrrskrnCCC个元素中的s个元素从n个不同元素中每次取出k个不同元素作排列(或组合),规定每一个排列(或组合),都至多包含某r 个元素中的s个元素kkNA1rkrnrCCCN+=-skrnsrkrnCCC----++1定位型从n个不同元素中每次取出k个不同元素作排列,规定某r个元素都包含在内,并且都排在某r个指定位置分步求解策略rkrnrrAA--相邻型把n个不同元素作全排列,规定某r个元素连排在一起捆绑策略11+-+-rnrnrrAA相离型把n个不同元素作全排列,规定某r个元素中的任意两个元素都不相邻(r≤21+n)插空策略rrnrnrnAA1+---平均分组型把kn个不同元素平均分成k组,每组n个,共有几种分法排异除重策略kknnnnkACC)1(nk nC-∙环状型把n个不同元素围绕一个圆进行排列,共有几种不同的排列11--=nnnn AnA顺序一定型把n个不同元素作全排列,规定某r个元素必须按一定顺序排列,共有几种不同排列rrnnAA讲练互动【例1】7个人按下列要求并排站成一排,分别有多少种不同的站法?(1)甲不站在正中间,也不站在两端;(2)甲、乙两人相邻;(3)甲、乙之间相隔2人;(4)甲站在乙的右边;(5)甲、乙都与丙不相邻.(6)若7个人站成两排,第一排3人,第二排4人,共有多少种站法?(7)若7个人站成一个圆环,有多少种站法?分析:(1)的限制条件甲不站在正中间与两端,意思是说甲只能站在余下的4个位置,因此可以先在这4个位置上排上甲而后再排其他人员,或者先从其余六人中选出三人排在正中间和两端.(2)由于甲、乙两人相邻,因此可把甲、乙两人合看作一个元素(捆绑法)参加全排列,但不要忘记甲、乙两人的局部排列问题.(3)可以先从其余五人中选两人站在甲、乙之间,然后将此二人连同甲、乙四人看作一个元素(捆绑法)参加全排列,同样甲、乙之间也要进行全排列;还可以运用“数数法”将甲、乙站的位置确定出来,即甲、乙只能在1与4,2与5,3与6,4与7这四种位置上. (4)甲不是站在乙的右边,就是站在乙的左边,两者必居其一,因此可以用“调序法”求解,或先按题目的要求从七个位置中选两个将甲、乙排好,然后再排其余人员.(5)本题可分成甲、乙相邻但不与丙相邻及甲、乙不相邻且都不与丙相邻两类进行研究. (6)把元素排成几排的问题,可化归为一排考虑,再在一排中分段处理.(7)7人站成一个圆环,剪开排成一排,对应7个排列.故环状排列问题用剪断直排法处理.(1)解法一:先让甲站在余下的四个位置中的任一位置上,有C14种,再让余下的6人站在其他位置上,有A66种不同站法,根据分步计数原理,共有N=C14·A66=2 880种不同站法.解法二:甲不站正中间也不站在两端,可先从其余6人中任选3人站在这3个位置上(占位法),有A36种站法,再让剩下的4人(含甲)站在其他4个位置上,有A44种站法,根据分步乘法计数原理,知共有N=A36·A44=2 880种不同站法.解法三:先让甲以外的6人站成一排,有A66种站法,再让甲插入这6个人之间的4个空档位置(不插在正中间),有A14种方法.故共有N=A66·A14=2 880种不同的站法.解法四:整体排异法.无限制条件的7人并排站成一排,有A77种站法,去掉甲站在正中间及两端的情况,共有A13A66种,故共有N=A77-A13A66=2 880种不同站法.(2)解法一:捆绑法.先把甲、乙两人合在一起看作一个元素,参加全排列共有A66种站法,然后甲、乙两人局部排列,共有A22种站法,根据分步乘法计数原理,共有N=A66·A22=1 440种不同站法.解法二:插空法.先让甲、乙以外的5个人站队,有A55种站法,再把甲、乙两人合在一起作为一个元素插入5个人形成的6个空档中,有A16种站法,最后甲、乙两人局部排列,有A22种站法,根据分步乘法计数原理,共有N=A55A16A22=1 440种不同站法.(3)解法一:捆绑法.先从甲、乙以外的5人中任选2人站在甲、乙之间,有A25种站法,再将甲、乙及中间二人共4人看作一个整体参加全排列,有A44种站法,最后甲、乙进行局部排列,有A22种站法.根据分步乘法计数原理,知共有N=A25·A44·A22=960种不同站法.解法二:数数法与插空法相结合.先让甲、乙以外的5人站队,有A 55种站法,再在5人形成的6个空档中的1与4,2与5,3与6,4与7的位置上排上甲、乙,共有4A 22种站法,根据分步乘法计数原理,有N=A 55·4A 22=960种不同站法.(4)解法一:组合法——顺序一定用组合.先在7个位置中选2个位置排上甲、乙(甲在乙的右边——顺序一定问题),有C 27种站法,再在余下的5个位置上站其余5人,有A 55种站法,根据分步乘法计数原理,知共有N=C 27·A 55=2 520种.解法二:调序法.甲在乙的右边与甲在乙的左边的情况是一一对应的,因此,甲在乙的右边的站法是7人任意站法的一半.故共有N=21A 77=2 520种. (5)解法一:直接法.分类求解.将问题分成甲与乙相邻但不与丙相邻及甲、乙、丙互不相邻两类研究.第一类情况可先让其余4人站队,有A 44种站法,他们之间形成5个空档,再把甲、乙两人看作一个整体与丙共两个元素插入5个空档,有A 25种站法,最后甲、乙两人进行局部排列,有A 22种站法,故这类情况有A 44·A 25·A 22种不同站法;第二类情况也可先让其余4人站队,有A 44种方法,再把甲、乙、丙3人插入5个空档,共有A 35种方法,因此这类情况有A 44·A 35种,根据分类加法计数原理,知共有N=A 44·A 25·A 22+A 44·A 35=2 400种不同站法.解法二:间接法.整体排异,7个人排成一排,有A 77种方法.甲、乙都与丙相邻的站法,即丙站在甲、乙中间的站法共有A 55·A 22种;甲与丙相邻或乙与丙相邻的站法均为A 66·A 22种.但甲、丙相邻与乙、丙相邻的站法中都包括了丙站在甲、乙中间,故根据分类计数原理和整体排异策略知,共有N=A 77-2A 66·A 22+A 55·A 22=2 400种不同方法. (6)A 77=5 040种不同站法.(7)777A =720种不同的站法.绿色通道:“在”与“不在”,“相邻”与“不相邻”或“相间”,是常见的有限制条件的排列问题.“在”一般用“直接法”求解,“不在”可用“间接法”;“相邻”问题一般用“捆绑法”,“不相邻”问题用“插空法”;“顺序一定”可用“调序法”或“组合法”.一般来说,解排列、组合应用题除了上述方法外,有时还用“占位法”或“数数法”,更多情况下需要对问题进行恰当的分类或分步.分类时要注意“类与类”之间的并列性和独立性、完整性;分步时要注意“步与步”之间的连续性和独立性、依赖性,做到不重不漏..变式训练1.安排7位工作人员在10月1日至10月7日值班,每人值班一天,其中甲、乙二人都不安排在10月1日和2日.不同的安排方法共有________________种.(用数字作答)解析:因为甲、乙二人都不安排在10月1日和2日,可安排在其余5日值班,有A 25种方法;再安排其余5人,有A 55种方法.根据分步乘法计数原理,不同的安排方法共有A 25·A 55=2 400种.答案:2 400【例2】由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数小于十位数的共有________________个.解析:没有重复数字的六位数共有C 15A 55=600个,其中个位数小于十位数的与十位数小于个位数的各占一半.∴符合题意的共有300个. 答案:300 变式训练2.(2006高考北京卷,3)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有( )A.36个B.24个C.18个D.6个解析:由各位数字之和为奇数,分两类:三位数都是奇数或两个偶数一个奇数,满足条件的三位数共有A 33+C 13A 33=24个.答案:B【例3】现有10个完全相同的小球分配到三个班级,每个班级至少分得1个小球,问有多少种不同分法?分析:对于相同元素的分组分配问题,常规解法烦琐而易错,若掌握隔板法,则操作方便且易懂.将10个完全相同的小球排成一行,10个球之间出现9个空档,用“隔板”把10个小球隔成有序的三份,每个班级依次按班级序号分到对应位置的几个球. 解:根据以上分析,分球的方法实际上为隔板的隔法:即9个空插入2个隔板,其方法数为:N=C 2913110C =--=36种.绿色通道:n 个相同..的元素分配到m 个不同的单元中(n≥m),不能有空放,常用隔板法,有C 11--m n 种不同的分配方法.变式训练3.8个相同的球放入标号为1、2、3的三个盒子中,问有多少种不同的放法?解法一:与例3不同的是,此题中的盒子可以为空.还是利用隔板原理将8个球分为三堆,只不过有的堆的球数为零,即在8个球之间及两端插入两块隔板.首先将8个球排成一排,就有9个空,任取一个空插入一块隔板,有C 19种;然后再将第二块隔板插入前面8个球和第一块隔板形成的10个空中,有C 110种,但这两种放法中有重复的,要除以2;最后将第一块隔板左边的球放入1号盒子中,两块隔板之间的球放入2号盒子中,第二块隔板右边的球放入3号盒子中.故共有21C 19C 110=C 210=45种. 解法二:分三类:第一类,把8个小球放入一个盒内,有C 13种放法.第二类,把8个小球放入两个盒内,先去掉一个空盒有C 13种方法,然后在8个小球的7个空隙中插入一个隔板分成两份,分别放入两个盒内有C 17种方法,故第二类共有C 13·C 17种方法.第三类,三个盒子都不空,利用隔板法将8个小球分成三份,分别放入3个盒中,共有C 27种方法,故共有C 13+C 13·C 17+C 27=45种方法.【例4】有甲、乙、丙三项任务,甲需由2人承担,乙、丙各需由1人承担,从10人中选派4人承担这三项任务,不同的选法共有多少种?分析:有序分配问题是指把元素按要求分成若干组,常采用逐步分组法求解.解:先从10人中选出2人承担甲项任务,再从剩下8人中选1人承担乙项任务,最后从另外7人中选1人承担丙项任务,根据乘法原理可知不同的方法种数共计C 210·C 18·C 17=2 520种.绿色通道:有序分配问题通常是根据需要选出人员分配给各个任务或项目.. 变式训练4.(2006高考重庆卷,8)将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有( )A.30种B.90种C.180种D.270种解:设三个班级为甲、乙、丙,则5名实习教师分配到三个班级,由题意知,一定有一个班级只分配到一名实习教师,其余两个班级每个班级分到了两名实习教师.故分步:第一步,选一名教师安排在一个班级中有C 15C 13种方法;第二步,余下的4名教师平均分配给剩下的两个班级,有C 24C 22种方法.故共有C 15C 13·C 24C 22=90种分配方案.【例5】有甲、乙、丙、丁四种不同的种子,要选出三种在三块不同的土地上试种.若甲被选,则甲必在第一块土地上试种,问不同的试种方法有多少种?分析:列举法即一一列举,它虽然不如其他方法简捷,但思维更加严谨、清晰.解:如果甲被选,则有甲、乙、丙,甲、丙、乙,甲、丙、丁,甲、丁、丙,甲、乙、丁,甲、丁、乙6种不同的选法;如果甲未被选,则有乙、丙、丁,乙、丁、丙,丙、乙、丁,丙、丁、乙,丁、乙、丙,丁、丙、乙6种不同的选法. 故有N=6+6=12种.绿色通道:当完成一件事情没有直接的公式可用且数目较小时,我们可以按着“次序”一一地“数”出来,这就是列举法.用列举法解排列组合问题时,通常要借助图表来表示,这样不仅可以帮助我们在选取时避免重复和遗漏,而且可以使分析过程更清晰明了.. 变式训练5.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字都不相同的填法有多少种?解:采用树形图如下:故填法有9种.。