免疫共沉淀实验原理及方法
- 格式:doc
- 大小:67.50 KB
- 文档页数:6
免疫共沉淀原理
免疫共沉淀是一种通过特异性抗体结合和沉淀目标蛋白质的方法。
其原理基于抗体与特定抗原之间的高度特异性结合。
在免疫共沉淀实验中,首先将目标蛋白质与特异性抗体孵育,使其形成抗原-抗体复合物。
然后,通过添加沉淀剂(如蛋白A/G 琼脂糖或亲和素琼脂糖)或离心的方式,将这些复合物沉淀下来。
最后,通过洗涤和溶解等步骤,分离并获得目标蛋白质。
免疫共沉淀的优势在于其高度特异性和对低丰度蛋白质的检测敏感性。
通过选择合适的抗体,可以将免疫共沉淀用于检测特定蛋白质间的相互作用、蛋白质复合物的组成以及信号通路的调控等研究领域。
此外,免疫共沉淀还可以与其他技术(如质谱分析)结合使用,进一步鉴定沉淀物中的蛋白质成分,提供更加全面的信息。
然而,免疫共沉淀也存在一些限制。
首先,抗体的选择需要十分精确,以确保其对目标蛋白质的高亲和力和特异性。
其次,沉淀后的复合物需要经过洗涤步骤以去除非特异性结合的蛋白质,这一步骤可能会引入一定的误差。
此外,免疫共沉淀通常需要较长的实验时间,并且在不同样品之间的重复性可能存在差异。
总体而言,免疫共沉淀是一种常用的实验技术,广泛应用于各种生命科学研究领域。
其原理简单易懂,操作灵活,能够提供关于蛋白质相互作用和功能调控的重要信息。
免疫共沉淀试验原理及方法免疫共沉淀试验基于抗体-抗原相互作用的原理进行。
首先,通过对目标蛋白质进行免疫反应,用特异性的抗体与目标蛋白质形成抗原-抗体复合物。
然后,将抗体与目标蛋白质的复合物与磷酸化的蛋白质、蛋白质复合物或其他特定蛋白质结合,形成更大的复合物。
最后,通过沉淀这些复合物,从而使复合物分离于整个细胞提取物中。
1.固相免疫共沉淀:该方法使用固相支持材料,如蛋白A或蛋白G结合的琼脂糖磁珠或亲和树脂柱。
首先,将目标蛋白质与特异性抗体免疫反应,然后将抗体与蛋白A或蛋白G结合的支持材料结合。
接下来,将细胞提取物与抗体-蛋白质复合物和支持材料一起孵育。
随后,用磁力或离心将复合物分离,并通过洗涤去除非特异性结合的蛋白质。
最后,用洗涤液溶解复合物,并通过离心或磁力分离来收集目标蛋白质及其相互作用伴侣。
2.液相免疫共沉淀:该方法使用溶液中的特异性抗体与目标蛋白质进行免疫反应。
首先,将目标蛋白质与特异性抗体免疫反应,然后添加蛋白A或蛋白G结合的琼脂糖磁珠或亲和树脂,形成抗体-蛋白质复合物。
接下来,将细胞提取物加入到抗体-蛋白质复合物中,使复合物与目标蛋白质的相互作用伴侣结合。
随后,用磁力或离心将复合物分离,并通过洗涤去除非特异性结合的蛋白质。
最后,用洗涤液溶解复合物,并通过离心或磁力分离来收集目标蛋白质及其相互作用伴侣。
1.直接鉴定特定蛋白质的相互作用伴侣。
2.可以识别特定蛋白质的翻译后修饰形式,如磷酸化、乙酰化等。
3.可以从复杂的细胞提取物中寻找目标蛋白质的结合伴侣。
然而,免疫共沉淀试验也存在一些局限性,包括:1.需要具有较高特异性的抗体。
2.可能产生伪阳性结果,特别是在存在非特异性结合的情况下。
3.难以从细胞提取物中完全分离复合物。
总结:免疫共沉淀试验是一种常用的实验技术,可以用于寻找细胞中特定蛋白质的相互作用伴侣或靶向蛋白的修饰形式。
根据不同的实验需求,可以选择固相免疫共沉淀或液相免疫共沉淀方法进行。
免疫共沉淀实验原理及详细步骤免疫沉淀(immunoprecipitation,简称IP)是一种广泛应用于生物学和生物化学研究中的实验方法,用于检测和分离复合物中的特定蛋白质。
它结合了特异性抗体与蛋白质-抗体相互作用的原理,利用抗体选择性地沉淀出目标蛋白质,并与其相关的复合物。
本文将详细介绍免疫共沉淀实验的原理及步骤。
免疫共沉淀实验利用抗体与目标蛋白质相互结合的特异性,通过该特异性结合,将目标蛋白质及其相关的复合物选择性地沉淀出来。
该实验主要包括以下几个步骤:1.抗体与抗原的结合:在实验中,需要选择特异性的抗体与目标蛋白质结合。
2.抗体与蛋白质-抗体复合物的沉淀:将抗体结合的蛋白质与复合物从样本中沉淀。
3.洗涤:洗涤沉淀的复合物,去除非特异性结合的蛋白质和杂质。
4.释放目标蛋白质:将目标蛋白质从抗体中释放出来,以进行后续的下游分析。
1.细胞预处理:在进行免疫共沉淀实验之前,需要将细胞或组织进行必要的处理,例如刺激剂的刺激或疾病模型的建立。
可以选择不同条件下的实验处理组和对照组进行对比。
同时,还需要对实验样本进行适当的裂解,以确保目标蛋白质的充分释放。
2.抗体选择:选择特异性的抗体与目标蛋白质结合。
抗体可以是单克隆抗体或多克隆抗体,也可以是特异性抗体。
此外,需要选择适当的免疫沉淀试剂盒,确保实验的准确性。
3.抗原结合:将适当的抗体与目标蛋白质结合,形成抗原-抗体复合物。
这一步骤可以在实验前进行或将其加入样本中进行。
为确保抗原-抗体结合的充分性,可以进行一定的反应时间和反应温度。
4.免疫沉淀:将抗原-抗体复合物选择性地沉淀出来。
可以采用多种方法进行免疫沉淀,例如蛋白A/G琼脂糖,特效筛选柱等。
通过离心或过滤等方式从沉淀中收集复合物。
5.洗涤:洗涤步骤用于去除非特异性结合的蛋白质和杂质。
洗涤液的组成可以根据实验需要进行调整。
洗涤步骤需要进行多次,确保洗涤得到干净的复合物。
6.释放目标蛋白质:将目标蛋白质从抗体中释放出来,以进行后续的下游分析。
免疫共沉淀原理及其应用免疫共沉淀(Immunoprecipitation,简称IP)是一种常用的分子生物学实验技术,用于研究蛋白质相互作用以及蛋白质与其他生物分子的结合。
其原理是利用抗体对目标蛋白进行特异性识别,并通过与抗体结合的蛋白质一起沉淀下来,从而分离出目标蛋白及其结合的分子。
免疫共沉淀的基本步骤包括以下几个关键步骤:1. 抗体结合:将特异性抗体与目标蛋白发生特异性结合,形成免疫复合物。
通常,抗体会提前与特定的固相载体(如蛋白A/G琼脂糖或磁珠)结合,以便后续步骤的操作。
2. 细胞裂解:将含有目标蛋白的细胞裂解,释放出蛋白质组分。
裂解可以使用生理盐溶液或其他细胞裂解缓冲液。
3. 共沉淀:将抗体结合的载体加入细胞裂解液中,使抗体与目标蛋白及其结合分子发生特异性结合。
通过旋转、摇动或磁力等方法,使免疫复合物与固相载体结合并沉淀下来。
4. 洗涤:通过多次洗涤的步骤,去除非特异性结合的蛋白质和其他污染物,使得只有目标蛋白及其结合分子与固相载体保持结合。
5. 释放:通过改变溶液条件(如改变pH或加入脱离剂),使目标蛋白及其结合分子从固相载体上释放下来。
免疫共沉淀的应用广泛,以下是一些主要应用领域:1. 蛋白质相互作用研究:免疫共沉淀可用于研究蛋白质与蛋白质之间的相互作用关系,帮助鉴定和验证蛋白质间的相互作用伙伴。
可以通过免疫共沉淀来确定蛋白质复合物的组成成员,研究其结构和功能。
2. 蛋白质与核酸的相互作用研究:免疫共沉淀也可用于研究蛋白质与核酸(如DNA、RNA)之间的相互作用关系。
通过免疫共沉淀,可以分离出与特定蛋白质结合的核酸分子,并进一步研究其功能和调控机制。
3. 翻译后修饰研究:免疫共沉淀可用于研究蛋白质的翻译后修饰,如磷酸化、泛素化等。
通过特异性抗体的使用,可以选择性地富集含有特定修饰的蛋白质,从而深入了解其在信号传导、细胞周期等生物过程中的功能和调控。
总之,免疫共沉淀是一种重要的实验技术,通过特异性抗体的利用,可以分离和富集目标蛋白质及其结合分子,为研究蛋白质相互作用和调控提供了有效的工具和方法。
免疫共沉淀实验原理免疫共沉淀是一种常用的实验方法,用于研究蛋白质间的相互作用。
其原理是利用特异性抗体结合目标蛋白质,将其与抗体一起沉淀下来,从而富集目标蛋白质及其相互作用的蛋白质分子。
这种实验方法常用于研究蛋白质的定位、亚细胞定位、蛋白质复合物的组成以及蛋白质间的相互作用等。
下面将详细介绍免疫共沉淀实验的原理及步骤。
免疫共沉淀实验的原理可以简单描述为以下几个步骤:1. 抗体结合:首先,选择特异性抗体,该抗体能够与目标蛋白质结合。
抗体可以是单克隆抗体或多克隆抗体,其选择应根据实验需求来确定。
将抗体与目标蛋白质结合形成免疫复合物。
2. 免疫复合物的富集:将免疫复合物与磁珠或琼脂糖等固相载体结合,形成免疫磁珠或免疫琼脂糖。
这些固相载体具有良好的亲和力,能够高效地捕获免疫复合物。
3. 样品处理:将待测样品加入到含有免疫磁珠或免疫琼脂糖的溶液中,使样品中的目标蛋白质与免疫复合物结合。
同时,对样品进行适当的处理,如细胞裂解、蛋白质交联等,以保持样品的完整性并增加结合效率。
4. 免疫共沉淀:将含有样品和免疫复合物的溶液进行充分混合,并进行一定时间的孵育,使目标蛋白质与免疫磁珠或免疫琼脂糖结合。
通过外加磁场或离心的方式,将免疫磁珠沉淀下来,从而富集目标蛋白质及其相互作用的蛋白质分子。
5. 洗涤:对沉淀下来的免疫磁珠或免疫琼脂糖进行洗涤,以去除非特异性结合的蛋白质和其他杂质。
洗涤的条件需要根据实验需求进行优化,通常包括洗涤缓冲液的浓度、洗涤次数和洗涤时间等。
6. 析出:将洗涤后的免疫磁珠或免疫琼脂糖进行脱盐或去除洗涤缓冲液,最终得到含有富集的目标蛋白质及其相互作用蛋白质的沉淀物。
7. 分析:对沉淀物进行进一步的分析,如Western blotting、质谱分析、原位杂交等,以研究蛋白质的相互作用关系、定位及功能等。
总结起来,免疫共沉淀实验是一种通过特异性抗体结合目标蛋白质,将其与抗体一起沉淀下来,从而富集目标蛋白质及其相互作用蛋白质的实验方法。
免疫共沉淀实验原理及方法实验原理:实验步骤:1.细胞培养和样品收集:将需要进行免疫共沉淀的细胞株培养至适当的密度,接种到培养皿中。
细胞生长至适当的程度后,进行诱导或处理,然后收集样品。
2.细胞裂解:将收集到的细胞样品进行裂解,以释放细胞内的蛋白质。
可以使用裂解缓冲液来破坏细胞膜,并释放细胞内蛋白质。
可以添加蛋白酶抑制剂来防止蛋白质降解。
3.抗体预处理:将抗体与载体蛋白质混合,形成抗体-载体复合物。
载体蛋白质可使抗体更容易结合,并增强免疫共沉淀的效率。
4.抗体结合:将抗体-载体复合物加入到裂解的细胞提取物中,使其与靶蛋白相互结合。
对于一些低表达或低丰度的蛋白质,可以使用前处理来提高抗原的浓度。
5.免疫沉淀:将抗体结合的蛋白质复合物使用特定的技术进行沉淀,如使用蛋白A/G琼脂糖或磁珠沉淀。
可以通过离心或洗涤的方式分离复合物。
6.溶解复合物:将沉淀得到的复合物进行溶解,以获得蛋白质样品。
可以使用洗脱缓冲液将复合物从沉淀物上释放出来。
7. 分析复合物:使用各种方法对蛋白质样品进行分析,如SDS-、Western blotting、质谱分析等。
这些分析方法可以帮助鉴定免疫共沉淀物中的蛋白质。
1.简便快速:相对于其他的蛋白质相互作用检测方法,免疫共沉淀方法的操作相对简单,减少了操作步骤和时间。
2.高特异性:使用抗体作为识别蛋白质的工具,具有高度特异性,可以用于检测特定的蛋白质交互作用。
3.可定量性:免疫共沉淀方法可以通过改变沉淀条件来进行定量研究,如优化抗体和载体蛋白质的浓度,改变洗涤条件等。
4.多样性:免疫共沉淀可以与其他技术(如质谱分析等)相互结合使用,从而得到更加全面的分析结果。
尽管免疫共沉淀是一种常用的蛋白质相互作用研究方法,但也存在一些限制,如需要特异性较好的抗体、样品准备以及沉淀物的纯化等。
因此,在使用免疫共沉淀方法时,需要根据具体的研究目的和实验条件进行合理的设计和操作,以获得可靠和有意义的结果。
免疫共沉淀原理及实验方法免疫共沉淀是一种通过使用抗体分子来使特定蛋白质复合物沉淀下来的方法。
在这个过程中,抗体与蛋白质复合物结合,形成抗原-抗体共沉淀复合物。
这种方法可以用于研究蛋白质间的相互作用、检测特定蛋白质的存在以及分离蛋白质复合物等。
1.细胞裂解:将目标细胞或组织加入裂解缓冲液中,破坏细胞膜,使蛋白质释放到溶液中。
2.抗体结合:将特异性抗体加入裂解液中,与目标蛋白质结合。
3.免疫沉淀:将抗原-抗体复合物与免疫沉淀剂(如蛋白A/G琼脂糖或蛋白A/G磁珠)结合,形成免疫复合物。
4.洗涤:通过多次洗涤步骤去除非特异性结合物质,以提高免疫复合物的纯度。
5.去除抗原-抗体结合:使用酸性溶液或高盐浓度缓冲液等方式解离免疫复合物,分离出目标蛋白质。
6. 分析:通过Western blot、免疫印迹、质谱等手段对分离出的蛋白质进行分析。
免疫共沉淀的原理是利用抗体与特定目标蛋白质的结合来将其沉淀下来。
抗体通常是由动物制备得到的,可以选择单克隆抗体或多克隆抗体。
在实验中,抗体可以特异性地结合到目标蛋白质的表位上,形成稳定的免疫复合物。
随后,通过与免疫沉淀剂结合,可以使免疫复合物沉淀下来。
免疫共沉淀这种实验方法在生物医学研究中具有广泛的应用,例如检测蛋白质间的相互作用、鉴定细胞中的蛋白质复合物、研究信号转导通路等。
通过免疫共沉淀可以揭示蛋白质的功能和相互作用网络,深入理解生物学过程中蛋白质的功能和调控机制。
然而,免疫共沉淀实验也存在一些局限性。
首先,抗体需具有高度的特异性和亲合力,以保证免疫复合物的选择性。
其次,免疫共沉淀依赖于抗体与目标蛋白质的免疫反应,在一些情况下可能出现低表达的蛋白质无法被充分沉淀的问题。
此外,非特异性结合和高背景信号也会影响实验结果的准确性。
综上所述,免疫共沉淀是一种基于抗体-抗原相互作用原理的实验方法,可用于研究蛋白质间的相互作用和分离特定蛋白质复合物等。
这种方法广泛应用于生物医学研究领域,对于揭示蛋白质功能和调控机制具有重要意义。
免疫共沉淀实验原理及方法免疫共沉淀(CoIP)概述及原理免疫共沉淀(Co-Immunoprecipitation,CoIP)是研究蛋白-蛋白间相互作用的经典方法,属于免疫沉淀技术的一类,常被用于鉴定特定蛋白复合物的中未知蛋白组分。
免疫共沉淀的设计理念是,假设一种已知蛋白是某个大的蛋白复合物的组成成员,那么利用这种蛋白的特异性抗体,就可能将整个蛋白复合物从溶液中“拉”下来(常说的“pull-down”),进而可以用于鉴定这个蛋白复合物中的其他未知成员。
免疫共沉淀的特点可以概括为两点,第一是天然状态,第二是蛋白复合物。
免疫共沉淀的优势:与其他研究蛋白质相互作用技术(如GST-Pull down、酵母双杂交等)相比,免疫共沉淀鉴定的相互作用蛋白是在细胞内与目的蛋白发生的天然结合,避免了人为的影响,因此符合体内实际情况,得到的蛋白可信度更高。
免疫共沉淀的局限性和注意事项:1. 免疫共沉淀是建立在蛋白复合物成员间彼此紧密结合的基础上,意味着松散结合的蛋白组分很可能检测不到;2. 由于蛋白质形成复合物以后,某些表位就会被掩盖,因此可能导致使用某一种pull-down抗体,无论怎么增加抗体浓度,也极少能将不到一半的目标蛋白复合物沉淀出来,如有必要最好使用多种不同抗体分别进行CoIP;3. 由于检测的是天然状态,因此在不同的时间和不同的处理下,CoIP拉下来的蛋白复合物都可能是不同的,当然随着实验次数的增加,得到的蛋白复合物成员也会越来越庞大;4. 如果使用Western Blot的方法检测的蛋白复合物中的目标蛋白,则需要在试验前进行预测,具有一定的冒险性;当然如果将蛋白复合物直接进行质谱分析就不存在上述问题,但需要得到较高纯度和浓度的蛋白复合物样品也非易事,并且成本较高;5. CoIP鉴定得到的蛋白间相互作用可能是直接作用也可能是间接作用,进一步区分还需要进行GST-Pull down等实验检测;6. 为了保证CoIP实验的可靠性和严谨性,需要使用复合物的不同成员分别独立进行CoIP实验,并且结果应该能够彼此验证,因为原则上使用复合物的任一成员进行CoIP都会得到其他所有成员[1]免疫共沉淀的一般操作流程(中英文对照):1.用预冷的PBS洗涤细胞两次;Carefully wash cultured cells with pre-chilled PBS for 2 times.2. 加入预冷的RIPA裂解缓冲液(107细胞加入1ml);Add in cold RIPA lysis buffer (1ml for 107cells).3. 用预冷的细胞刮将细胞从培养介质上刮离,并转移到干净的1.5EP管中。
免疫共沉淀原理及步骤免疫共沉淀(immunoprecipitation)是一种用于分离和富集特定蛋白质的常见实验技术。
它利用抗体的特异性和高亲和力,将目标蛋白与其所结合的抗体共同沉淀下来。
该技术常用于研究蛋白质-蛋白质相互作用、鉴定修饰的蛋白质以及分析蛋白质的上调或下调。
免疫共沉淀的原理基于抗体与抗原之间的特异结合。
通常,首先需要用目标蛋白免疫动物制备抗体,或者使用商业提供的针对该目标蛋白的抗体。
然后,抗体与经过适当处理的细胞或组织提取物一起反应,使抗体能够与目标蛋白结合。
接下来,将抗体和目标蛋白的免疫复合物与可沉淀的载体(如蛋白A或蛋白G)结合,形成稳定的复合物。
最后,通过沉淀,将复合物从其他非特异性蛋白质中分离出来。
1.细胞或组织的处理:将目标细胞或组织用合适的缓冲液裂解,以释放细胞内的蛋白质。
裂解液添加蛋白酶抑制剂和磷酸酯酶抑制剂,以避免蛋白质降解。
2.抗体与样品的孵育:将抗体加入到裂解液中,使抗体与目标蛋白相互结合。
孵育时间和温度根据具体实验需要而定。
3. 添加载体:添加蛋白A或蛋白G等具有高亲和力的载体,以结合与抗体结合的蛋白质。
蛋白A主要结合IgG的Fab区域,而蛋白G则能结合多种类别的抗体。
4.免疫复合物的沉淀:通过加入沉淀剂(比如蛋白质A/A洗涤缓冲液、蛋白G洗涤缓冲液等)将免疫复合物与载体结合,使其沉淀下来。
通常,将混合物在低温条件下(4℃)离心沉淀,使复合物完全分离。
5.沉淀物的洗涤:将沉淀物洗涤,以去除非特异性的蛋白质和污染物。
洗涤使用的缓冲液通常包括含盐的洗涤缓冲液。
6.沉淀物的溶解:将沉淀物溶解在适当的缓冲液中,以获得目标蛋白。
根据后续的实验需求,选择适当的缓冲液进行溶解。
在免疫共沉淀实验过程中,为了增加结果的可靠性,常常需要进行对照组实验。
控制实验组通常为使用无关的非特异性抗体和样品进行操作,以检验沉淀结果是否为特异性。
总结来说,免疫共沉淀技术是一种有效的蛋白质识别和富集方法。
免疫共沉淀实验方法一、介绍免疫共沉淀(immunoprecipitation,简称IP)是一种常用的实验方法,用于研究蛋白质相互作用、蛋白质与其他生物分子的结合以及蛋白质的定位等。
该方法基于抗体的高特异性与目标蛋白质结合的原理,通过将目标蛋白质与其结合的分子一同沉淀下来,从而实现对目标蛋白质及其相关分子的富集。
二、常用的免疫共沉淀方法2.1 直接免疫共沉淀直接免疫共沉淀是最常用的方法之一。
该方法需要选择适当的抗体,将其与目标蛋白质结合,形成抗原-抗体复合物。
随后,通过添加沉淀剂如蛋白A/G琼脂糖或磁珠,使抗原-抗体复合物与沉淀剂结合,然后经过洗涤步骤去除非特异性结合物,最后获得目标蛋白质及其结合分子。
2.2 间接免疫共沉淀间接免疫共沉淀是另一种常用的方法,其优势在于可以使用不同物种的抗体。
首先,选择一种抗体与目标蛋白质结合,形成抗原-抗体复合物。
然后,通过添加第二种抗体与第一种抗体结合,形成复合物。
随后,将沉淀剂与第二种抗体结合,将目标蛋白质及其结合分子一同沉淀下来。
2.3 交叉免疫共沉淀交叉免疫共沉淀是一种结合了直接和间接免疫共沉淀的方法。
该方法可以同时检测多个蛋白质相互作用或结合的情况。
首先,选择多种抗体与目标蛋白质结合,形成多个抗原-抗体复合物。
然后,将这些复合物与沉淀剂结合,将目标蛋白质及其结合分子一同沉淀下来。
三、免疫共沉淀实验步骤3.1 样品制备1.收集细胞或组织样品,可以通过细胞培养、动物模型或临床样本等方式获取。
2.将样品进行裂解,可以使用裂解缓冲液如RIPA缓冲液,含有蛋白酶抑制剂和磷酸酶抑制剂等。
3.离心样品,去除细胞碎片和细胞核等。
3.2 抗体选择1.根据实验目的选择合适的抗体,可以使用商业提供的特异性抗体或自制抗体。
2.对于直接免疫共沉淀,选择与目标蛋白质结合的一抗体。
3.对于间接免疫共沉淀,选择与目标蛋白质结合的一抗体和第二抗体。
3.3 抗原-抗体结合1.将抗体与样品中的目标蛋白质结合,可以通过加入抗体到样品中并进行孵育来实现。
免疫共沉淀实验原理及方法
免疫共沉淀(CoIP)概述及原理
免疫共沉淀(Co-Immunoprecipitation,CoIP)是研究蛋白-蛋白间相互作用的经典方法,属于免疫沉淀技术的一类,常被用于鉴定特定蛋白复合物的中未知蛋白组分。
免疫共沉淀的设计理念是,假设一种已知蛋白是某个大的蛋白复合物的组成成员,那么利用这种蛋白的特异性抗体,就可能将整个蛋白复合物从溶液中“拉”下来(常说的“pull-down”),进而可以用于鉴定这个蛋白复合物中的其他未知成员。
免疫共沉淀的特点可以概括为两点,第一是天然状态,第二是蛋白复合物。
免疫共沉淀的优势:
与其他研究蛋白质相互作用技术(如GST-Pull down、酵母双杂交等)相比,免疫共沉淀鉴定的相互作用蛋白是在细胞内与目的蛋白发生的天然结合,避免了人为的影响,因此符合体内实际情况,得到的蛋白可信度更高。
免疫共沉淀的局限性和注意事项:
1. 免疫共沉淀是建立在蛋白复合物成员间彼此紧密结合的基础上,意味着松散结合的蛋白组分很可能检测不到;
2. 由于蛋白质形成复合物以后,某些表位就会被掩盖,因此可能导致使用某一种pull-down抗体,无论怎么增加抗体浓度,也极少能将不到一半的目标蛋白复合物沉淀出来,如有必要最好使用多种不同抗体分别进行CoIP;
3. 由于检测的是天然状态,因此在不同的时间和不同的处理下,CoIP拉下来的蛋白复合物都可能是不同的,当然随着实验次数的增加,得到的蛋白复合物成员也会越来越庞大;
4. 如果使用Western Blot的方法检测的蛋白复合物中的目标蛋白,则需要在试验前进行预测,具有一定的冒险性;当然如果将蛋白复合物直接进行质谱分析就不存在上述问题,但需要得到较高纯度和浓度的蛋白复合物样品也非易事,并且成本较高;
5. CoIP鉴定得到的蛋白间相互作用可能是直接作用也可能是间接作用,进一步区分还需要进行GST-Pull down等实验检测;
6. 为了保证CoIP实验的可靠性和严谨性,需要使用复合物的不同成员分别独立进行CoIP实验,并且结果应该能够彼此验证,因为原则上使用复合物的任一成员进行CoIP都会得到其他所有成员[1]
免疫共沉淀的一般操作流程(中英文对照):
用预冷的PBS洗涤细胞两次;
Carefully wash cultured cells with pre-chilled PBS for 2 times.
2. 加入预冷的RIPA裂解缓冲液(107细胞加入1ml);
Add in cold RIPA lysis buffer (1ml for 107cells).
3. 用预冷的细胞刮将细胞从培养介质上刮离,并转移到干净的1.5EP管中。
并置于低速摇床,4℃缓慢晃动15min;
Scrap cells off to clean 1.5ml eppendorf tubes with a clean, cold scraper. Put them on a low-speed rotat ing shaker for 15 min at 4°C.
4. 4℃,14000g离心15min,立即将上清转移到一个新的离心管中
Centrifuge at 14,000 g 4°C for 15min, transfer the supernatant to new tubes immediately.
5. 将Protein A/G-agarose微球用PBS 洗两遍,用PBS配制成50%的protein A/G-agarose工作液;
Wash protein A/G-agarose beads for 2 times with PBS and make a 50% protein A/G agarose working solution (in PBS)
6. 在样品中以每1ml中加100μl的比例,加入50%的Protein A/G agarose工作液。
水平摇床4℃摇动10min(该步骤的目的是去除非特异性结合的蛋白)
Add in 50% protein A/G agarose with ratio of 100μl for a 1ml sample solution. Shake o n horizontal shaker for 10min, 4°C (This step aims to eliminate non-specific binding proteins)
7. 4℃,14000g离心15min,将上清转移到一个新的离心管中,去除protein A/G-agraose 微球;
Centrifuge 14,000g at 4°C for 15min, transfer the supernatant to new tubes and discard protein A/G-agraose beads
8. 使用BCA法或者其他方法测定总蛋白的浓度
Quantify total protein with BCA assay or other methods.
9. 用PBS将总蛋白稀释到1 μg/μl以降低裂解液中去垢剂的浓度。
如果你觉得你的目的蛋白的浓度低了,你可以将总蛋白浓度提高到10 μg/μl(假设浓度够的话)Dilute the total protein to 1μg/μl with PBS to decline the concentrations of detergents. If you feel the concentration of your target protein is low, you can dilute the total protein to 10μg/μl. (if it’s high enough)
10. 加入一定体积的一抗,至总体积约为500μl;
Add in appropriate amount of primary antibody to approximately 500μl total volume.
11. 用摇床缓慢摇动抗原抗体混合物,4℃过夜
Slowly shake antigen-antibody complex on rotating shaker at 4°C for overnight.
注意:如果如果下游用于激酶或磷酸酶的酶活测定,则最好将11步改为室温孵育2h;Note: if downstream experiment is enzyme activity assay for kinase or phosphatase, it’s better to change step 11 to a 2h incubation at room temperature.
12. 14000g离心5s,收集沉淀,并且用预冷的洗涤缓冲液(或者预冷的PBS)洗涤3遍(每次加入800μl)
Centrifuge 14,000g for 5s, keep the pellet and wash with pre-chilled washing buffer (or cold PBS) for 3 times. (800μl each)
13. (用合适体积的上样缓冲液重悬)收集上清,用于进一步的下游SDS-PAGE,western-blot或者质谱分析
Collect the supernatant to proceed to SDS-PAGE, western-blot, or mass spectra analysis.
注意:该CoIP操作步骤是将抗体先结合到Protein A/G-argarose微球上,然后再与抗原混合。
相对其他方法,最终的得率较低,但避免了抗体共洗脱的问题。
如果你希望获得高纯度的目的蛋白,而不考虑非特异性结合的话,你可以将抗体和蛋白样品在加入Protein A/G-argarose微球之前进行混合,这样最后抗体也会和目的蛋白一同被洗脱下来,从而可能会对western blot检测造成干扰。
Note: This Co-IP protocol is to bind antibody to the Protein A/G-argarose beads and then mix with the antigen. It gives lesser yield than the other one and avoids the problem of co-elution of antibodies. If you want to yield high purity of target protein regardless of non-specific binding, you can mix antibody with protein sample prior to addition of Protein A/G-agarose beads, thus in the end the antibodies are also co-eluted with target protein and interference might occurs in western blot detection.
[2]
参考资料:
3.
4.
5.
6.
7.
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
可复制、编制,期待你的好评与关注)8.
9.。