冀教版初一数学下册 整式的除法 含答案
- 格式:doc
- 大小:201.00 KB
- 文档页数:3
冀教版七年级下册数学第八章整式乘法含答案一、单选题(共15题,共计45分)1、下列计算不正确的是()A.a 2÷a 0•a 2=a 4B.a 2÷(a 0•a 2)=1C.(a+b)2•(a+b)3 =a 5+b 5D.(a+b)•(a-b)=a 2-b 22、下列计算正确的是()A. a 2+ a 2= a 4B.( a 2)3= a 6C.(3 a)•(2 a)=6a D.3 a- a=33、下列运算正确的是()A. B. C. D.4、计算(x3y)2÷(2xy)2的结果应该是()A. B. C. y D. y5、(x﹣3)(2x+1)=2x2+mx+n,则m,n的值分别是()A.5,﹣3B.﹣5,3C.﹣5,﹣3D.5,36、若a2﹣kab+9b2是完全平方式,则常数k的值为()A.±6B.12C.±2D.67、下列计算正确的是()A.a 2+a 3=a 5B.a 2·a 3=a 6C.(a 2)3=a 6D.(ab)2=ab 28、下列运算正确的是()A.2a+2a=2a²B.a²·a 3=a 6C.(-3a 4)²=-9a 8D.a 6÷a²=a 49、计算的结果是( )A. B. C. D.10、下列运算正确的是()A.a 2+a 2=a 4B.(-b 2)3=-b 6C.2x•2x 2=2x 3D.(m-n)2=m 2-n 211、下列运算正确的是()A.x 4•x 3=x 12B.(x 3)2=x 9C.x 4÷x 3=xD.x 3+x 4=x 712、下列运算正确的是()A.(ab)2=ab 2B.a 2·a 3=a 6C. =4D. ×=13、下列运算正确的是()A. B. C. D.14、在下列多项式中,与-x-y相乘的结果为x2-y2的多项式是( )A.x-yB.x+yC.–x+yD.–x-y15、下列运算正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、一个容量为16GB的便携式U盘的内存全部用来储数码照片,若每张照片文件大小为211KB,则这个U盘可以存储这样的数码照片________张.(16GB=224KB,用2为底的幂表示结果)17、已知下列等式:;①;②;③;④……由此规律,则________.18、已知10m=2,10n=3,则103m+2n=________.19、若x+y=5,x-y=1,则式子x2-y2的值是________.20、利用乘法公式计算:________.21、若 3x(x+1)=mx2+nx,则 m+n=________.22、若5x=12,5y=4,则5x-y=________23、当m=________时,x m﹣2•x m+3=x9成立.24、已知a+ = ,则a- =________25、计算或化简下列各题:⑴a2+a2+a2=________⑵a2·a3=________;⑶x·x4÷x2=________;⑷(2a)3=________;⑸(π-1)0=________;⑹(-2xy)(3x2y-2x+1)=________;三、解答题(共5题,共计25分)26、计算:27、甲、乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a前面的符号,得到的结果为6x2+18x+12;由于乙漏抄了第二个多项中的x的系数,得到的结果为2x2+2x﹣12,请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果.28、将多项式(x﹣2)(x2+ax﹣b)展开后不含x2项和x项.试求:2a2﹣b的值.29、已知a,b,c是的三边长,且满足=,=,求的周长.30、已知2×8x×16=223,求x的值.参考答案一、单选题(共15题,共计45分)1、C2、B3、A4、B5、C7、C8、D9、A10、B11、C12、D13、B14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、三、解答题(共5题,共计25分)27、28、29、。
初一数学整式的除法知识点例题1、单项式的除法法则单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
注意:首先确定结果的系数即系数相除,然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式2、多项式除以单项式的法则多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。
方法总结:①乘法与除法互为逆运算。
②被除式=除式×商式+余式整式的除法的例题一、选择题1.下列计算正确的是A.a6÷a2=a3B.a+a4=a5C.ab32=a2b6D.a-3b-a=-3b2.计算:-3b32÷b2的结果是A.-9b4B.6b4C.9b3D.9b43.“小马虎”在下面的计算中只做对一道题,你认为他做对的题目是A.ab2=ab2B.a32=a6C.a6÷a3=a2D.a3•a4=a124.下列计算结果为x3y4的式子是A.x3y4÷xyB.x2y3•xyC.x3y2•xy2D.-x3y3÷x3y25.已知a3b6÷a2b2=3,则a2b8的值等于A.6B.9C.12D.816.下列等式成立的是A.3a2+a÷a=3aB.2ax2+a2x÷4ax=2x+4aC.15a2-10a÷-5=3a+2D.a3+a2÷a=a2+a二、填空题7.计算:a2b3-a2b2÷ab2=_____.8.七年级二班教室后墙上的“学习园地”是一个长方形,它的面积为6a2-9ab+3a,其中一边长为3a,则这个“学习园地”的另一边长为_____.9.已知被除式为x3+3x2-1,商式是x,余式是-1,则除式是_____.10.计算:6x5y-3x2÷-3x2=_____.三、解答题11. 三峡一期工程结束后的当年发电量为5.5×109度,某市有10万户居民,若平均每户用电2.75×103度.那么三峡工程该年所发的电能供该市居民使用多少年?结果用科学记数法表示12.计算.130x4-20x3+10x÷10x232x3y3z+16x2y3z-8xyz÷8xyz36an+1-9an+1+3an-1÷3an-1.13.若xm÷x2n3÷x2m-n与2x3是同类项,且m+5n=13,求m2-25n的值.14.若n为正整数,且a2n=3,计算3a3n2÷27a4n的值.15.一颗人造地球卫星的速度是2.6×107m/h,一架飞机的速度是1.3×106m/h,人造地球卫星的速度飞机速度的几倍?整式的除法参考答案一、选择题1.答案:C解析:【解答】A、a6÷a2=a4,故本选项错误;B、a+a4=a5,不是同类项不能合并,故本选项错误;C、ab32=a2b6,故本选项正确;D、a-3b-a=a-3b+a=2a-3b,故本选项错误.故选C.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;积的乘方,把每一个因式分别乘方,再把所得的幂相乘,对各选项计算后利用排除法求解.2.答案:D解析:【解答】-3b32÷b2=9b6÷b2=9b4.故选D.【分析】根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式,计算即可.3.答案:B解析:【解答】A、应为ab2=a2b2,故本选项错误;B、a32=a6,正确;C、应为a6÷a3=a3,故本选项错误;D、应为a3•a4=a7,故本选项错误.故选B.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;对各选项分析判断后利用排除法求解.4.答案:B解析:【解答】A、x3y4÷xy=x2y3,本选项不合题意;B、x2y3•xy=x3y4,本选项符合题意;C、x3y2•xy2=x4y4,本选项不合题意;D、-x3y3÷x3y2=-y,本选项不合题意,故选B【分析】利用单项式除单项式法则,以及单项式乘单项式法则计算得到结果,即可做出判断.5.答案:B解析:【解答】∵a3b6÷a2b2=3,即ab4=3,∴a2b8=ab4•ab4=32=9.故选B.【分析】单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式,利用这个法则先算出ab4的值,再平方.6.答案:D解析:【解答】A、3a2+a÷a=3a+1,本选项错误;B、2ax2+a2x÷4ax=x+a,本选项错误;C、15a2-10a÷-5=-3a2+2a,本选项错误;D、a3+a2÷a=a2+a,本选项正确,故选D【分析】A、利用多项式除以单项式法则计算得到结果,即可做出判断;B、利用多项式除以单项式法则计算得到结果,即可做出判断;C、利用多项式除以单项式法则计算得到结果,即可做出判断;D、利用多项式除以单项式法则计算得到结果,即可做出判断.二、填空题7.答案:b-1解析:【解答】a2b3-a2b2÷ab2=a2b3÷a2b2-a2b2÷a2b2=b-1.【分析】本题是整式的除法,相除时可以根据系数与系数相除,相同的字母相除的原则进行,对于多项式除以单项式可以是将多项式中的每一个项分别除以单项式.8.答案:2a-3b+1解析:【解答】∵长方形面积是6a2-9ab+3a,一边长为3a,∴它的另一边长是:6a2-9ab+3a÷3a=2a-3b+1.故答案为:2a-3b+1.【分析】由长方形的面积求法可知由一边乘以另一边而得,则本题由面积除以边长可求得另一边.9.答案:x2+3x解析:【解答】[x3+3x2-1--1]÷x=x3+3x2÷x=x2+3x.【分析】有被除式,商及余数,被除式减去余数再除以商即可得到除式.10.答案:-2x3y+1解析:【解答】6x5y-3x2÷-3x2=6x5y÷-3x2+-3x2÷-3x2=-2x3y+1.【分析】利用多项式除以单项式的法则,先用多项式的每一项除以单项式,再把所得的商相加计算即可.三、解答题11.答案:2×10年解析:【解答】该市用电量为2.75×103×105=2.75×1085.5×109÷2.75×108=5.5÷2.75×109-8=2×10年.答:三峡工程该年所发的电能供该市居民使用2×10年.【分析】先求出该市总用电量,再用当年总发电量除以用电量;然后根据同底数幂相乘,底数不变指数相加和同底数幂相除,底数不变指数相减计算.12.答案:13x3-2x2+1;24x2y2+16xy2-1;3-3an+1+3an-1÷3an-1=-3a2+1.解析:【解答】130x4-20x3+10x÷10x=3x3-2x2+1;232x3y3z+16x2y3z-8xyz÷8xyz=4x2y2+16xy2-1;36an+1-9an+1+3an-1÷3an-1=-3an+1+3an-1÷3an-1=-3a2+1.【分析】1根据多项式除以单项式的法则计算即可;2根据多项式除以单项式的法则计算即可;3先合并括号内的同类项,再根据多项式除以单项式的法则计算即可.13.答案:39.解析:【解答】xm÷x2n3÷x2m-n=xm-2n3÷x2m-n=x3m-6n÷x2m-n=xm-5n因它与2x3为同类项,所以m-5n=3,又m+5n=13,∴m=8,n=1,所以m2-25n=82-25×12=39.【分析】根据同底数幂相除,底数不变指数相减,对xm÷x2n3÷x2m-n化简,由同类项的定义可得m-5n=2,结合m+5n=13,可得答案.14.答案:1解析:【解答】原式=9a6n÷27a4n= a2n,∵a2n=3,∴原式= ×3=1.【分析】先进行幂的乘方运算,然后进行单项式的除法,最后将a2n=3整体代入即可得出答案.15.答案:20.解析:【解答】根据题意得:2.6×107÷1.3×106=2×10=20,则人造地球卫星的速度飞机速度的20倍.感谢您的阅读,祝您生活愉快。
冀教版七年级数学下册第八章《整式的乘法》单元测试卷含答案解析一.选择题(本题共10小题,每小题3分,共30分)1.下列运算正确的是()A.1243a a a =⋅ B.()9633222b a ba −=− C.633a a a ÷= D. ()222b a b a +=+2.已知3,5=−=+xy y x 则22y x +=()A. 25. B 25− C 19 D 、19− 3.计算()()2016201522−+−所得结果()A. 20152− B. 20152C. 1D. 24. 若79,43==yx,则yx 23−的值为()A .74 B .47 C .3− D .72 5.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是() A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 86.23227(257)(______)55a b ab ab b −+÷=−括号内应填() A. ab 5 B. ab 5− C. b a 25 D. 25a b − 7.如果整式29x mx ++恰好是一个整式的平方,那么m 的值是() A. ±3 B. ±4.5 C. ±6 D. 98.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m n的值是() A. 2 B. 0 C. ﹣1 D. 1 9.下列等式正确的个数是( ) ①963326)2(y x y x −=−②()n n a a 632=−③9363)3(a a =④()5735(510)7103510⨯⨯⨯=⨯⑤2)25.0(2)5.0(100101100⨯⨯−=⨯−A. 1个B. 2个C. 3个D. 4个 10.3927的个位数是()A. 7B. 9C. 3D. 1二.填空题(本题共6小题,每题4分,共24分) 11.若622=−n m ,且3=−n m ,则=+n m 12.方程()()()()32521841x x x x +−−+−=的解是______13.已知2a=5,2b=10,2c=50,那么a 、b 、c 之间满足的等量关系是__________ 14.若13x x−=,则221x x +=15.若代数式232x x ++可以表示为2(x 1)(x 1)b a −+−+的形式,则a b += ________16.定义新运算“⊗”规定:2143a b a ab ⊗=−−则3(1)⊗−= ___________三.解答题(共7题,共66分)17(本题8分)计算下列各式: (1)()()222226633m n m n m m −−÷−(2)()()()()233232222x y x xy y x ÷−+−⋅18(本题8分)先化简,再求值: 6)6()3)(3(2+−−−+a a a a ,其中1a =.19(本题8分).已知751812,,1,1y y y x x x y x n m n n m =⋅=⋅>>−−−−,求n m ,的值20.(本题10分)(1)若0352=−+y x ,求yx 324⋅的值 (2)已知2x -y =10,求()()()222x yx y 2y x y 4y ⎡⎤+−−+−÷⎣⎦的值21(本题10分).观察下列等式,并回答有关问题:2233324121⨯⨯=+;223334341321⨯⨯=++;22333354414321⨯⨯=+++;(1)若n 为正整数,猜想=+⋅⋅⋅+++3333321n (2)利用上题的结论比较3333123100+++⋅⋅⋅+与25000的大小.22(本题10分)(1)关于x 的多项式乘多项式()()2321x x ax −−+,若结果中不含有x的一次项,求代数式:2(21)(21)(21)a a a +−+−的值。
初一数学整式的除法试题答案及解析1.若4x3﹣2x2+k﹣2x能被2x整除,则常数k的值为()A.1B.﹣1C.2D.0【答案】D【解析】因为多项式的前面几项均能被2x整除,所以k也能被2x整除,结合k为常数,可得k 只能为0.解:∵4x3、﹣2x2、﹣2x均能被2x整除,∴k也能被2x整除,又∵k为常数,∴k=0.故选D.2.(0.14m4n3﹣0.8m3n3)÷0.2m2n2等于()A.0.7m2n2﹣0.4mnB.0.28m2n﹣0.16nC.0.7m2n﹣4mnD.0.7m2n﹣4n【答案】C【解析】根据多项式除单项式,先把多项式的每一项除以单项式,再把所得的商相加的法则计算即可.解:(0.14m4n3﹣0.8m3n3)÷0.2m2n2,=0.14m4n3÷0.2m2n2﹣0.8m3n3÷0.2m2n2,=0.7m2n﹣4mn.故选C.3.如图,沿着正方形的对称轴对折,重合的两个小正方形的整式的乘积可得一新整式,则这样的整式共有()A.2个B.4个C.6个D.8个【答案】C【解析】从图中看出,有四个小正方形,即有四个整式,把对折后重合的两个小正方形内的整式相乘即可.解:正方形有四条对称轴,有六组对应整式的积:x(x+1),x2(x﹣1),x2(x+1),x(x﹣1),(x+1)(x﹣1),x•x2,故选C.4.计算(28a3﹣14a2+7a)÷(﹣7a)的结果为()A.﹣4a2+2a B.4a2﹣2a+1C.4a2+2a﹣1D.﹣4a2+2a﹣1【答案】D【解析】此题直接利用多项式除以单项式的法则即可求出结果,也可以提取公因式(﹣7a),然后得出结果.解:原式=(28a3﹣14a2+7a)÷(﹣7a)=28a3÷(﹣7a)﹣14a2÷(﹣7a)+7a÷(﹣7a)=﹣4a2+2a﹣1.故选D.5.若(x3+27y3)÷(x2﹣axy+by2)=x+3y,则a2+b=.【答案】18【解析】先计算(x3+27y3)÷(x+3y)=x2﹣3xy+9y2,依此可得a=3,b=9,再代入计算即可求解.解:∵(x3+27y3)÷(x+3y)=x2﹣3xy+9y2,∴a=3,b=9,∴a2+b=9+9=18.故答案为:18.6.已知一个长方形的面积为4a2﹣2ab+,其中一边长是4a﹣b,则该长方形的周长为.【答案】10a﹣b【解析】利用长方形面积除以长=宽,求得另一条边的长,再进一步求得长方形的周长即可.解:(4a2﹣2ab+)÷(4a﹣b)=(16a2﹣8ab+b2)÷(4a﹣b)=(4a﹣b)2÷(4a﹣b)=(4a﹣b);则长方形的周长=[(4a﹣b)+(4a﹣b)]×2=[a﹣b+4a﹣b]×2=[5a﹣b]×2=10a﹣b.故答案为:10a﹣b.7.已知多项式3x3+ax2+3x+1能被x2+1整除,且商式是3x+1,那么a的值是.【答案】1【解析】先根据被除式=商×除式(余式为0时),得出3x3+ax2+3x+1=(x2+1)(3x+1),再运用多项式乘多项式的法则将等式右边展开,然后根据多项式相等的条件,对应项的系数相等得出a的值.解:由题意,得3x3+ax2+3x+1=(x2+1)(3x+1),∴3x3+ax2+3x+1=3x3+x2+3x+1,∴a=1.故答案为1.8.÷a2=4a3b4﹣2a3b3+4.【答案】2a5b4﹣a5b3+4a2【解析】用商乘以除数求得被除数即可.解:∵(4a3b4﹣2a3b3+4)×a2=2a5b4﹣a5b3+4a2,∴2a5b4﹣a5b3+4a2÷a2=4a3b4﹣2a3b3+4.故答案为:2a5b4﹣a5b3+4a2.9.()÷0.3x3y2=27x4y3+7x3y2﹣9x2y.【答案】8.1x7y5+7x6y4﹣9x5y3【解析】由于被除式等于商乘以除式,所以只需计算(27x4y3+7x3y2﹣9x2y)•0.3x3y2即可.解:(27x4y3+7x3y2﹣9x2y)•0.3x3y2=8.1x7y5+7x6y4﹣9x5y3.故答案为8.1x7y5+7x6y4﹣9x5y3.10.计算3x3÷x2的结果是()A.2x2B.3x2C.3x D.3【答案】C【解析】单项式除以单项式分为三个步骤:①系数相除;②同底数幂相除;③对被除式里含有的字母直接作为商的一个因式.解:原式=3x3﹣2=3x.故选C.11.计算6a6÷(﹣2a2)的结果是()A.﹣3a3B.﹣3a4C.﹣a3D.﹣a4【答案】B【解析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算.解:6a6÷(﹣2a2)=[6÷(﹣2)]•(a6÷a2)=﹣3a4.故选B.12.一颗人造地球卫星的速度为2.88×107米/时,一架喷气式飞机的速度为1.8×106米/时,则这颗人造地球卫星的速度是这架喷气式飞机的速度的()A.1600倍B.160倍C.16倍D.1.6倍【答案】C【解析】根据速度=路程÷时间列出算式,再利用同底数幂相除,底数不变指数相减计算.解:(2.88×107)÷(1.8×106)=(2.88÷1.8)×(107÷106)=1.6×10=16,则这颗人造地球卫星的速度是这架喷气式飞机的速度的16倍.故选C.13.下列计算正确的是()A.(﹣a2)3=a6B.2a6÷a3=2a2C.a2÷a×=a2D.a2+2a2=3a2【答案】D【解析】根据幂的乘方,底数不变指数相乘;单项式的除法和同底数幂相除,底数不变指数相减;合并同类项,只把系数相加减,字母与字母的次数不变,对各选项分析判断后利用排除法求解.解:A、应为(﹣a2)3=﹣a6,故本选项错误;B、应为2a6÷a3=2a3,故本选项错误;C、应为a2÷a×=a×=1,故本选项错误;D、a2+2a2=3a2,正确.故选D.14.已知a=1.6×109,b=4×103,则a2÷b=()A.4×107B.8×1014C.6.4×105D.6.4×1014【答案】D【解析】根据题意得到a2÷b=(1.6×109)2÷(4×103),根据积的乘方得到原式=1.6×1.6×1018÷(4×103),再根据同底数的幂的除法法则得到原式=6.4×1014.解:a2÷b=(1.6×109)2÷(4×103)=1.6×1.6×1018÷(4×103)=6.4×1014.故选D.15.化简12a2b÷(﹣3ab)的结果是()A.4a B.4b C.﹣4a D.﹣4b【答案】C【解析】按照单项式的除法的运算法则进行运算即可;解:12a2b÷(﹣3ab)=12÷(﹣3)(a2÷a)(b÷b)=﹣4a,故选C.16.(﹣a4)2÷a3的计算结果是()A.﹣a3B.﹣a5C.a5D.a3【答案】C【解析】先算乘方(﹣a4)2=a8,再根据同底数幂的除法法则进行计算即可.解:原式=a8÷a3=a5,故选C.17.计算:9x3÷(﹣3x2)=.【答案】﹣3x【解析】根据单项式的除法和同底数幂相除,底数不变,指数相减,进行计算.解:9x3÷(﹣3x2)=﹣3x.18.计算:(﹣2a)2÷a=.【答案】4a【解析】本题是积的乘方与同底数幂的除法的混合运算,求解时按照各自的法则运算即可.解:(﹣2a)2÷a=4a2÷a=4a.故填4a.19.计算:6x3÷(﹣2x)=.【答案】﹣3x2【解析】根据单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式,利用这个法则就可以求出结果.解:6x3÷(﹣2x)=﹣(6÷2)x3﹣1=﹣3x2.20.计算:(a2b)2÷a4=.【答案】b2【解析】根据积的乘方,单项式除单项式的运算法则计算即可.解:(a2b)2÷a4=a4b2÷a4=b2.故填b2.。
七年级下册数学冀教版第八章整式的乘除时间:60分钟满分:100分一、选择题(本大题共12小题,每小题3分,共36分.每小题给出的四个选项中,只有一项是符合题目要求的)1.下列计算正确的是()A.a·a2=a2B.(x3)2=x5C.(2a)2=4a2D.(x+1)2=x2+12.如图是小明的测试卷,则他的成绩为()A.25分B.50分C.75分D.100分3.一个长方体的长、宽、高分别为3a-4,2a,a,它的体积等于()A.3a3-4a2B.a2C.6a3-8aD.6a3-8a24.式子(2a-b)(-b+2a)的运算结果正确的是()A.4a2-4ab+b2B.4a2+4ab+b2C.2a2-b2D.4a2-b25.若(x2-mx+1)(x-1)中x2项的系数为零,则常数m的值是()A.-2B.-1C.1D.26.若ab2=-6,则-ab(a2b5-ab3-b)的值为()A.216B.246C.-216D.1747.计算5(6+1)(62+1)(64+1)+1的结果为()A.616B.68C.68+1D.68-18.已知(x-1)|x|-1有意义且恒等于1,则x的值为()A.-1或2B.1C.±1D.09.从边长为a的正方形内剪掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个长方形(如图2),上述操作所能验证的等式是()A.(a-b)2=a2-2ab+b2B.a2-b2=(a+b)(a-b)C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)10.已知a m=7,b n=17,则(-a3m b n)2(a m b2n)3的值为()A.1B.-1C.7D.1711.若(m+n)2=11,(m-n)2=3,则(mn)-2=()A.-14B.14C.-114D.1812.设x,y为任意数,定义运算:x*y=(x+1)(y+1)-1.给出下列五个结论:①x*y=y*x;②x*(y+2)=x*y+x*2;③(x+1)*(x-1)=x*x-1;④x*0=0;⑤(x+1)*(x+1)=x*x+2*x+1.其中正确结论的序号是() A.①③ B.③⑤ C.①②④ D.②⑤二、填空题(本大题共4小题,每小题3分,共12分)13.计算:2 0190+(13)-1=.14.若27x=9x+2,则x=.15.已知(x-1)(x+2)=ax2+bx+c,则代数式4a-2b+c的值为.16.设a1,a2,a3,…是一列正整数,其中a1表示第一个数,a2表示第二个数……a n表示第n个数(n是正整数).已知a1=1,4a n=(a n+1-1)2-(a n-1)2,则a2 018=.三、解答题(本大题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)计算:(1)5·(-5)2m+(-5)2m+1; (2)99.82;(3)3(2x-1)(x+6)-5(x-3)(x+6)+(2x-1)2; (4)-82 019×(-0.125)2 018+(-0.25)3×26.18.(本小题满分6分)化简并求值:(1)(3x+1)(2x-3)-(6x-5)(x-4),其中x=-2;(2)(2a+1)(2a-1)+(a-2)2-4(a+1)(a-2),其中a=-2.若(x m÷x2n)3÷x m-n与4x2为同类项,且m+5n=7,求m2-25n2的值.20.(本小题满分8分)“囧”是一个网络流行词.如图,将一张长为x+y,宽为3x的长方形的纸片,剪去两个一样的小直角三角形和一个小长方形得到一个“囧”字图案(阴影部分).(1)用含有x,y的式子表示图中“囧”字图案的面积;(2)当x=2,y=6时,求“囧”字图案的面积.21.(本小题满分10分)规定三角“”表示abc,方框“”表示x m+y n.例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题.(1)计算:=.(2)解方程:=6x2+7.研究下列算式:0×1×2-13=-1,1×2×3-23=-2,2×3×4-33=-3,3×4×5-43=-4,…(1)你发现了什么规律?请将你发现的规律用公式表示出来,并用你学过的知识推导出这个公式.(2)用得到的公式计算:999×1 000×1 001.第八章综合能力检测卷答案题号1 2 3 4 5 6 7 8 9 10 11 12答案C B D A B B B A B C B A13.414.415.016.40351.C【解析】a·a2=a3,故A选项错误;(x3)2=x6,故B选项错误;(2a)2=4a2,故C选项正确;(x+1)2=x2+2x+1,故D选项错误.故选C.2.B【解析】由a2·a3=a5,(a3)2=a6,(ab)3=a3b3,a5÷a5=1.可知小明的成绩为25×2=50(分).3.D【解析】由题意知,V长方体=(3a-4)·2a·a=6a3-8a2.故选D.4.A【解析】(2a-b)(-b+2a)=(2a-b)2=4a2-4ab+b2.故选A.5.B【解析】∵(x2-mx+1)(x-1)=x3-x2-mx2+mx+x-1=x3-(1+m)x2+(1+m)x-1,且(x2-mx+1)(x-1)中x2项的系数为零,∴1+m=0,解得m=-1.故选B.6.B【解析】-ab(a2b5-ab3-b)=-a3b6+a2b4+ab2=-(ab2)3+(ab2)2+ab2,∵ab2=-6,∴原式=-(-6)3+(-6)2-6=216+36-6=246,故选B.7.B【解析】5(6+1)(62+1)(64+1)+1=(6-1)(6+1)(62+1)(64+1)+1=(62-1)(62+1)(64+1)+1=(64-1)(64+1)+1=68-1+1= 68.故选B.8.A【解析】根据题意,得x-1≠0,|x|-1=0或x=2.由|x|-1=0,得x=±1,由x-1≠0,得x≠1.综上可知,x 的值是-1或2.故选A.9.B【解析】从边长为a的正方形内剪掉一个边长为b的小正方形,剩余部分的面积是a2-b2,剩余部分剪拼成的长方形的面积是(a+b)(a-b),根据剩余部分的面积相等,得a2-b2=(a+b)(a-b).故选B.10.C【解析】(-a3m b n)2(a m b2n)3=(a m)6(b n)2(a m)3(b n)6=(a m)9(b n)8=79×(17)8=78×(17)8×7=(7×17)8×7=7.故选C.11.B【解析】∵(m+n)2=11,(m-n)2=3,∴m2+2mn+n2=11,m2-2mn+n2=3.两式相减,可得4mn=8,∴mn=2,∴(mn)-2=2-2=14.故选B.12.A【解析】x*y=y*x=xy+x+y,所以①正确;x*(y+2)=(x+1)(y+3)-1=xy+3x+y+2,x*y+x*2=(x+1)(y+1)-1+(x+1)(2+1)-1=xy+x+y+3x+3-1=xy +4x+y+2,所以②错误;(x+1)*(x-1)=(x+2)x-1=x2+2x-1,x*x-1=(x+1)(x+1)-1-1=x2+2x-1,所以③正确;x*0=x,所以④错误;(x+1)*(x+1)=(x+2)(x+2)-1=x2+4x+3,x*x+2*x+1=(x+1)(x+1)-1+3(x+1)-1+1=x2+5x+3,所以⑤错误.故选A.13.4【解析】 2 0190+(13)-1=1+3=4.14.4【解析】∵27x=9x+2,∴(33)x=(32)x+2,33x=32x+4,∴3x=2x+4,x=4.15.0【解析】(x-1)(x+2)=x2-x+2x-2=x2+x-2=ax2+bx+c,则a=1,b=1,c=-2.故4a-2b+c=4-2-2=0.16.4 035【解析】∵4a n=(a n+1-1)2-(a n-1)2,∴(a n+1-1)2=(a n-1)2+4a n=(a n+1)2.又∵a1,a2,a3,…是一列正整数,∴a n+1-1=a n+1,∴a n+1=a n+2,∵a1=1,∴a2=3,a3=5,a4=7,a5=9,…,∴a n=2n-1,∴a2 018=4 035.17.【解析】(1)5·(-5)2m+(-5)2m+1=-(-5)·(-5)2m+(-5)2m+1=-(-5)2m+1+(-5)2m+1=0.(2)99.82=(100-0.2)2=10 000-40+0.04=9 960.04.(3)3(2x-1)(x+6)-5(x-3)(x+6)+(2x-1)2=3(2x2+12x-x-6)-5(x2+6x-3x-18)+4x2-4x+1=6x2+36x-3x-18-5x2-30x+15x+90+4x2-4x+1=5x2+14x+73.(4)-82 019×(-0.125)2 018+(-0.25)3×26=-8×82 018×0.1252 018+(-0.25)3×43=-8×(8×0.125)2 018+(-0.25×4)3=-8×12 018+(-1)3=-8-1=-9.18.【解析】(1)(3x+1)(2x-3)-(6x-5)(x-4)=6x2-9x+2x-3-6x2+24x+5x-20=22x-23,当x=-2时,原式=22×(-2)-23=-67.(2)(2a+1)(2a-1)+(a-2)2-4(a+1)(a-2)=4a2-1+a2-4a+4-4a2+4a+8=a2+11,当a=-2时,原式=15.19.【解析】(x m÷x2n)3÷x m-n=(x m-2n)3÷x m-n=x3m-6n÷x m-n= x2m-5n,因为(x m÷x2n)3÷x m-n与4x2为同类项,所以2m-5n=2.又因为m+5n=7,所以m=3,n=45,所以m2-25n2=9-16=-7.20.【解析】(1)“囧”字图案的面积S=3x(x+y)-12·x+y2·x·2-x+y2·x=2x2+2xy.(2)当x=2,y=6时,“囧”字图案的面积S=8+2×2×6=32.21.【解析】(1)-32.=[2×(-3)×1]÷[(-1)4+31]=-6÷4=-32(2)∵=6x2+7, ∴(3x-2)(3x+2)-[(x+2)(3x-2)+32]=6x2+7,∴9x2-4-(3x2+4x-4+9)=6x2+7,∴9x2-4-3x2-4x-5=6x2+7,解得x=-4.22.【解析】(1)公式:(n-1)n(n+1)-n3=-n(n为正整数).推导:(n-1)n(n+1)-n3=n(n2-1)-n3=n3-n-n3=-n(n为正整数).(2)由(1)知,999×1 000×1 001-1 0003=-1 000,所以999×1 000×1 001=-1 000+1 0003=999 999 000.。
整式的除法练习题(含答案).doc 整式的除法》题一、选择题1.正确答案是B。
改写为:a+a4=a5是错误的,应为a+a4=a4+a,所以选项B正确。
2.正确答案是D。
改写为:(-3b3)2÷b2=9b6÷b2=9b4,所以选项D正确。
3.正确答案是A。
改写为:(ab)2=a2b2,所以选项A正确。
4.正确答案是C。
改写为:(x3y2)•(xy2)=x4y4,所以选项C正确。
5.正确答案是B。
改写为:(a3b6)÷(a2b2)=a(b4),所以a2b8=a(b4)•a2b2=ab6•a2b2=9a2b8,所以选项B正确。
6.正确答案是D。
改写为:(a3+a2)÷a=a2+a,所以选项D正确。
7.正确答案是D。
改写为:x+2x-12=(x-2)(x+6),所以选项D正确。
8.正确答案是C。
改写为:(-4-5n)(4-5n)=-16+20n+20n-25n2=25n+16,所以选项C正确。
二、填空题9.计算:(a2b3-a2b2)÷(ab)2=ab-a,所以答案为ab-a。
10.另一边长为2a-3b,所以答案为2a-3b。
11.除式为x2+4x-1,所以答案为x2+4x-1.12.计算:(6x5y-3x2)÷(-3x2)=-2y,所以答案为-2y。
13.计算:5=1·5=18·xy,所以xy=1/18.14.计算:-2x2y·(-x)·(-y)=2x3y3,所以答案为2x3y3/8x2=-y/4.15.计算:x=(x+y)+(x-y)=1004+2=1006,所以x-y=1006-2=1004.16.计算:2x-4=5,所以x=3.5.代入4x2-16x+16得到答案为16.25.17.计算:m=3,n=6,所以2a3b9+3=8a9b15,解得a=2/3,b=3/2.所以答案为2a3b6+3.18.加上的单项式为4x,因为16x2+4x=(4x)2,所以答案为4x。
1.3 整式的除法◆赛点归纳整式的除法包括单项式除以单项式,多项式除以单项式,多项式除以多项式.多项式恒等定理:(1)多项式f(x)=g(x),•需且只需这两个多项式的同类项的系数相等;(2)若f(x)=g(x),则对于任意一个值a,都有f(a)=g(a).余数定理:多项式f(x)除以x-a所得的余数等于f(a).特别地,当f(x)•能被x-a整除时,有f(a)=0.◆解题指导例1设a、b为整数,观察下列命题:①若3a+5b为偶数,则7a-9b也为偶数;②若a2+b2能被3整除,则a和b也能被3整除;③若a+b是质数,则a-b不是质数;④若a3-b3是4的倍数,则a-b也是4的倍数.其中正确的命题有().A.0个B.1个C.2个D.3个以上【思路探究】对于①看7a-9b与3a+5b的和或差是不是偶数.对于②根据整数n的平方数的特征去判断.对于③、④若不能直接推导是否成立,也可举出反例证明不成立.例2 若2x3-kx2+3被2x+1除后余2,则k的值为().A.k=5 B.k=-5 C.k=3 D.k=-3【思路探究】要求k的值,须找到关于k的方程.由2x3-kx2+3被2x+1除后余2,可知2x3-kx2+1能被2x+1整除,由此就可得关于k的一次方程.例3计算:(3x6-2x5-5x4+7x3-19x2+12x)÷(x4-2x2+x-5).【思路探究】被除式是一个6次六项式,除式是一个4次四项式,直接计算比较复杂,应列竖式计算.例4若多项式x4-x3+ax2+bx+c能被(x-1)3整除,求a、b、c的值.【思路探究】由条件知x4-x3+ax2+bx+c能被x3-3x2+3x-1整除,列竖式可知x4-x3+ax2+bx+c的商式和余式.根据一个多项式被另一个多项式整除,余式恒为零可求a、•b、c的值.【拓展题】设x1,x2,…,x7都是整数,并且x1+4x2+9x3+16x4+25x5+36x6+49x7=1,①4x1+9x2+16x3+25x4+35x5+49x6+64x7=12,②9x1+16x2+25x3+36x4+49x5+64x6+81x7=123,③求16x1+25x2+36x3+49x4+64x5+81x6+100x7的值.◆探索研讨整式除法的综合运用大多与多项式除以多项式相关.多项式除法运算实际上是它们的系数运算.在进行多项式乘除法恒等变形时,它们对应项系数是相等的,由此列方程可求解待定系数.请结合本节的例题,总结自己的发现.◆能力训练1.下列四个数中,对于任一个正整数k,哪个数一定不是完全平方数().A.16k B.16k+8 C.4k+1 D.32k+42.要使3x3+mx2+nx+42能被x2-5x+6整除,则m、n应取的值是().A.m=8,n=17 B.m=-8,n=17C.m=8,n=-17 D.m=-8,n=-173.(2001,武汉市竞赛)如果x3+ax2+bx+8有两个因式x+1和x+2,则a+b=().A.7 B.8 C.15 D.214.对任意有理数x,若x3+ax2+bx+c都能被x2-bx+x整除,则a-b+c的值是().A.1 B.0 C.-1 D.-25.满足方程x3+6x2+5x=27y3+9y2+9y+1的正整数对(x,y)有().A.0对B.1对C.3对D.无穷多对6.(2003,四川省竞赛)若(3x+1)4=ax4+bx3+cx2+dx+e,则a-b+c-d+e=________.7.(2004,北京市竞赛)用正整数a去除63,91,129所得的3个余数的和是25,则a 的值为________.8.已知多项式3x3+ax2+bx+1能被x2+1整除,且商式是3x+1,那么(-a)b的值是_____.9.若多项式x4+mx3+nx-16含有因式(x-1)和(x-2),则mn=________.10.多项式x135+x125-x115+x5+1除以多项式x3-x所得的余式是_______.11.计算:(1)(6x5-7x4y+x3y2+20x2y3-22xy4+8y5)÷(2x2-3xy+y2);(2)(41m-m3+15m4-70-m2)÷(3m2-2m+7).12.已知a、b、c为有理数,且多项式x3+ax2+bx+c能够被x2+3x-4整除.(1)求4a+c的值;(2)求2a-2b-c的值;(3)若a、b、c为整数,且c≥a>1,试确定a、b、c的大小.13.(2000,“五羊杯”,初二)已知x6+4x5+2x4-6x3-3x2+2x+1=[f(x)] 2,其中f(x)是x的多项式,求这个多项式.14.已知一个矩形的长、宽分别为正整数a、b,其面积的数值等于它的周长数值的2倍,求a+b的值.15.(2004,北京市竞赛)能将任意8个连续的正整数分为两组,使得每组4•个数的平方和相等吗?如果能,请给出一种分组法,并加以验证;如果不能,请说明理由.答案:解题指导例1 C [提示:命题①成立.因为(7a-9b)-(3a+5b)=2(2a-7b)是偶数;命题②也成立.因为整数n的平方被3除余数只能为0或1,3整除a2+b2,表明a2、b2被3除的余数都是0,所以a和b都能被3整除;命题③不成立.如5+2=7和5-2=3都是质数;命题④也不成立.例如a=2,b=0.]例2 C [提示:∵2x3-kx2+3被2x+1除后余2,∴2x3-kx2+1能被2x+1整除.令2x+1=0,得x=-12.代入2x3-kx2+1=0,得2×(-12)3-k(-12)2+1=0,即-14-14k+1=0,解得k=3.]例3(3x6-2x5-5x4+7x3-19x2+12x)÷(x4-2x2+x-5)=3x2-2x+1……x+5.例4 x4-x3+ax2+bx+c=(x3-3x2+3x-1)(x+2)+(a+3)x2+(b-5)x+(c+2).由余式恒等于0,得a+3=0,b-5=0,c+2=0.∴a=-3,b=5,c=-2.【拓展题】设四个连续自然数的平方为:n2、(n+1)2、(n+2)2、(n+3)2,则(n+3)2=a(n+2)2+b(n+1)2+cn2.整理得n2+6n+9=(a+b+c)n2+(4a+2b)n+4a+b.∴a+b+c=1,4a+2b=6,4a+b=9.解得a=3,b=-3,c=1,∴16x1+25x2+36x3+49x4+64x5+81x6+100x7=③×3-②×3+①=123×3-12×3+1=334.能力训练1.B [提示:16k+8=8(2k+1).因2k+1是奇数,8•乘以一个奇数一定不是完全平方数.] 2.D [提示:∵3x3+mx2+nx+42=(x2-5x+6)(3x+7)+(m+8)x2+(n+17)x.∴80,8,170,17.m mn n+==-⎧⎧⎨⎨+==-⎩⎩解得.]3.D [提示:∵(x+1)(x+2)=x2+3x+2,∴x3+ax2+bx+8=(x2+3x+2)(x+4)+(a-7)x2+(b-14)x.∴70,7,140,14.a ab b-==⎧⎧∴⎨⎨-==⎩⎩∴a+b=21.]4.A [提示:∵x3+ax2+bx+c=(x2-bx+c)(x+1)+(a+b-1)x2+(2b-c)x,∴10,(1)20.(2)a bb c+-=⎧⎨-=⎩(1)-(2),得a-b+c=1.]5.A [提示:原方程可变形为x(x+1)(x+5)=3(9y3+3y2+3y)+1.①如果有正整数x、y使①成立,那么由于x,x+1,x+5=(x+2)+3这3个数除以3所得余数互不相同,所以其中必有一个被3整除,即①的左边被3整除,而①的右边不被3整除,这就产生矛盾.所以原方程没有正整数解.]6.16 [提示:令x=-1,得a-b+c-d+e=16.]7.43 [提示:由题意,有63=a×k1+r1,91=a×k2+r2,129=a×k3+r3.(0≤r1、r2、r3<a)相加得63+91+129=a(k1+k2+k3)+(r1+r2+r3)=a(k1+k2+k3)+25.故258被a整除.由于258=2×3×43,a大于余数,且3个余数的得25,所以a>8.•又a不超过63、91、129中的最小者63,故258的因数中符合要求的只有a=43.]8.-1 [提示:∵(x2+1)(3x+1)=3x3+x2+3x+1,∴3x3+ax2+bx+1=3x3+x2+3x+1.∴a=1,b=3,即(-a)b=(-1)3=-1.]9.-100 [提示:∵(x-1)(x-2)=x2-3x+2,x4+mx3+nx-16=(x2-3x+2)[x2+(m+3)x-8]+(3m+15)x2+(n-2m-30)x,∴3150,5,2300,20.m mn m n+==-⎧⎧⎨⎨--==⎩⎩解得∴mn=-100.]10.2x+1 [提示:设x135+x125-x115+x5+1=(x3-x)f(x)+ax2+bx+c,其中f(x)为商式.取x=0,得c=1;取x=1,得a+b+c=3.取x=-1,得a-b+c=-1.解得a=0,b=2,c=1.故所求余式为2x+1.]11.(1)商式为3x3+x2y+12xy2+34133,44y余式为xy4-94y5.(2)商式为5m2+3m-10,余式为0.12.(1)∵(x-1)(x+4)=x2+3x-4,令x-1=0,得x=1;令x+4=0,得x=-4.当x=1时,得1+a+b+c=0;①当x=-4时,得-64+16a-4b+c=0.②②-①,得15a-5b=65,即3a-b=13.③①+③,得4a+c=12.(2)③-①,得2a-2b-c=14.(3)∵c≥a>1,4a+c=12,a、b、c为整数,∴a≥2,c≥2,则a=2,c=4,又a+b+c=-1,∴b=-7.13.设f(x)=±(x3+Ax2+Bx+1)或±(x3+Ax2+Bx-1).先设f(x)=x3+Ax2+Bx+1,则[f(x)] 2=x6+2Ax5+(A2+2B)x4+(2AB+2)x3+(2A+B2)x2+2Bx+1,故2A=4,A2+2B=2,2AB+2=-6,2A+B2=-3,2B=2,无解.再设f(x)=x3+Ax2+Bx-1,则[f(x)] 2=x6+2Ax5+(A2+2B)x4+(2AB-2)x3+(B2-2A)x2-2Bx+1,故2A=4,A2+2B=2,2AB-2=-6,B2-2A=-3,-2B=2.解得A=2,B=-1.故所求的多项式为±(x3+2x2-x-1).14.由题意得ab=2(2a+2b).∴ab-4a=4b,∴a=416444bb b=+--.∵a、b均为正整数,且a>b.∴(b-4)一定是16的正约数.当(b-4)分别取1、2、4、8、16时,代入上式,得b-4=1时,b=5,a=20;b-4=2时,b=6,a=12;b-4=4时,b=8,a=8(舍去);b-4=8时,b=12,a=6(舍去);b-4=16时,b=20,a=5(舍去).∴只有a=20,b=5或a=12,b=6符合题意,把a+b=25或18.15.能设任意8个连续的正整数为a,a+1,a+2,a+3,a+4,a+5,a+6,a+7.将其分为如下两组:{a+1,a+2,a+4,a+7},{a,a+3,a+5,a+6}即满足要求.验证如下:先将任意8个连续的正整数按如下分为等和的两组,满足a+(a+1)+(a+6)+(a+7)=(a+2)+(a+3)+(a+4)+(a+5)则[(a)+(a+1)]·[(a+6)+(a+7)]·1=[(a+2)+(a+3)]·1+[(a+4)+(a+5)]·1 即[(a)+(a+1)][(a+1)-(a)]+[(a+6)+(a+7)][(a+7)-(a+6)]=[(a+2)+(a+3)][(a+3)-(a+2)]+[(a+4)+(a+5)]·[(a+5)-(a+4)].故(a+1)2-a2+(a+7)2-(a+6)2=(a+3)2-(a+2)2+(a+5)2-(a+4)2.也就是(a+1)2+(a+2)2+(a+4)2+(a+7)2=a2+(a+3)2+(a+5)2+(a+6)2.于是,分任意8个连续的正整数为如下两组:{a+1,a+2,a+4,a+7},{a,a+3,a+5,a+6}.则满足(a+1)2+(a+2)2+(a+4)2+(a+7)2=a2+(a+3)2+(a+5)2+(a+6)2.。
章节测试题1.【答题】计算a3÷a2的结果是()A. a5B. a-1C. aD. a2【答案】C【分析】根据同底数幂相除,底数不变,指数相减计算后直接选取答案.【解答】解:a3÷a2=a3-2=a.选C.2.【答题】计算:(-a)2÷a=()A. a3B. a-1C. aD. a2【答案】C【分析】先算出乘方,再根据同底数幂相除,底数不变指数相减计算.【解答】解:(-a)2÷a=a2÷a=a.选C.3.【题文】计算:(1)213÷27.(2)(-)6÷(-)2.(3)62m+1÷6m.【答案】(1)64.(2).(3)6m+1【分析】本题考查了同底数幂的除法.【解答】(1)213÷27=213-7=26=64.(2)(-)6÷(-)2=(-)6-2=(-)4=.(3)62m+1÷6m=62m+1-m=6m+1.4.【题文】计算:(1)a n+1·a4.(2)a2m-6÷a2.【答案】(1)a n+5(2)a2m-8【分析】本题考查了同底数幂的乘法和除法.【解答】(1)a n+1·a4=a n+1+4=a n+5.(2)a2m-6÷a2=a2m-6-2=a2m-8.5.【题文】计算:(-x)6÷(-x)3.【答案】-x3【分析】本题考查了同底数幂的除法.【解答】(-x)6÷(-x)3=(-x)6-3=(-x)3=-x3.6.【题文】计算:(1)a7÷a4.(2)(-x)6÷(-x)3.【答案】(1)a3.(2)-x3【分析】本题考查了同底数幂的除法.【解答】(1)a7÷a4=a7-4=a3.(2)(-x)6÷(-x)3=(-x)6-3=(-x3)=-x3.7.【题文】计:(-x)7÷(-x3)÷(-x)2.【答案】x2【分析】本题考查了同底数幂的除法.【解答】原式=(-x)7÷(-x)3÷(-x)2=(-x)7-3-2=(-x)2=x2.8.【题文】计算:(-2bc)7÷(-2bc)5.【答案】4b2c2【分析】本题考查了同底数幂的除法.【解答】原式=(-2bc)7-5=(-2bc)2=4b2c2.9.【题文】计算:(-a)6÷(-a)3.【答案】-a3【分析】本题考查了同底数幂的除法.【解答】原式=(-a)6-3=(-a)3=-a3.10.【题文】计算:a8÷a7.【答案】a【分析】本题考查了同底数幂的除法.【解答】a8÷a7=a8-7=a.11.【题文】计算:a2a4-a8÷a2+(3a3)2.【答案】9a6【分析】本题考查了幂的混合运算.【解答】原式=a6-a6+9a6=9a6.12.【题文】计算:a7÷a4.【答案】a3【分析】本题考查了同底数幂的除法.【解答】a7÷a4=a7-4=a3.13.【题文】计算:m22÷m2.【答案】m20【分析】本题考查了同底数幂的除法.【解答】m22÷m2=m20.14.【题文】计算:x8÷x2.【答案】x6【分析】本题考查了同底数幂的除法.【解答】x8÷x2=x8-2=x6.15.【题文】已知x m=8,x n=4,求x m-n的值.【答案】2【分析】本题考查了同底数幂的除法.逆用同底数幂的除法法则把算式化成只含有已知幂的形式.【解答】x m-n=x m÷x n=8÷4=2.16.【题文】计算:x15÷x.【答案】x14【分析】本题考查了同底数幂的除法.【解答】x15÷x=x15-1=x14.17.【题文】计算:(a3)4÷a5.【答案】a7【分析】本题考查了同底数幂的除法.【解答】(a3)4÷a5=a12÷a5=a7.18.【题文】已知3×9m×27m=321,求(-m2)3÷(m3·m2)的值.【答案】-4【分析】本题考查了幂的混合运算.【解答】∵3×9m×27m=3×32m×33m=31+2m+3m=321,∴1+2m+3m=21,解得m=4.∴(-m2)3÷(m3·m2)=-m6÷m5=-m=-4.19.【题文】计算:(1)(-x)3·(-x)2.(2)(-a3)2·(-a2)3.(3)(4x2y)2÷8y2.【答案】(1)-x5.(2)-a12.(3)2x4【分析】本题考查了同底数幂的乘法和除法.【解答】(1)解法一:(-x)3·(-x)2=-x3·x2=-x5;解法二:(-x)3·(-x)2=(-x)5=-x5.(2)(-a3)2·(-a2)3=a6·(-a6)=-a12.(3)原式=16x4y2÷8y2=2x4.20.【题文】计算:a·a2·a3+(-2a3)2-a8÷a2.【答案】4a6【分析】本题考查了幂的混合运算.【解答】a·a2·a3+(-2a3)2-a8÷a2=a6+4a6-a6=4a6.。