2013届莆田市高三3月毕业班教学质量检查数学(理)试题Word版含答案[1]
- 格式:doc
- 大小:1.55 MB
- 文档页数:11
福建省莆田市2017届高三数学3月教学质量检查试题理(扫描版)编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(福建省莆田市2017届高三数学3月教学质量检查试题理(扫描版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为福建省莆田市2017届高三数学3月教学质量检查试题理(扫描版)的全部内容。
2013年福建普通高中毕业班质量检查理科数学本试卷分第I 卷(选择题)和第II卷(非选择题),第II 卷第21题为选考题,其他题为必考题.本试卷共5页.满分150分.考试时间120分钟.注意事项:1. 答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照題号在各题的答题区域(黑色线框)内作答, 超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选 择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4. 做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号 涂黑.5. 保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回 参考公式:样本数据n x x x ,21,的标准差 锥体体积公式])()()[(122221x x x x x x ns n -++-+-=Sh V 31=,其中x 为样本的平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积、体积公式V Sh = 24R S π=,334R V π=其中S 为底面面积,h 为高 其中R 表示球的半径第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是 符合题目要求的.1. 已知复数z=1+i,A. z =-1-iB. | =2 D.2.已知向量a= (m 2,4),b=(1,1)则“m= -2”是“a//b”的 A. 充分而不必要条件 B.必要而不充分条件 C. 充要条件D.既不充分也不必要条件3. 函数)22(cos log )(21ππ<<-=x x x f 的图象大致是4. 执行如图所示的程序框图,若输入的x 值为2,则输出的x 值为A. 3B. 126C. 127D. 1285. 设M ,N 是两条不同的直线,A ,β是两个不同的平面.下列命题正确的是 A. 若m//n, m 丄β,则n 丄β B. 若m//n ,m //β,则 n //βC. 若m //a ,m//β,则 a //βD. 若n 丄a, n 丄β,则a 丄β6. 已知函数1cos sin 32sin 2)(2-+=x x x x f 的图象关于点(ϕ,0)对称,则ϕ的值可以是A. -6πC.12π 7. 设抛物线y 2=6x 的焦点为F ,准线为L ,P 为抛物线上一点,PA 丄l,垂足为A,如果ΔAPF 为 正三角形,那么|P F |等于A , 34B . 36C 6D . 128. 在矩形ABCD 中,AB = 1 ,AD),(R ∈+=μλμλ,则μλ3+的最大值为A.4236+ 9. 若函数⎪⎩⎪⎨⎧>≤--=0,ln 0,1)(2x x x kx x xx f 有且只有2个不同的零点,则实数k 的取值范围是A. (-4,0)B, ( -∞ ,0]C. ( -4,0]D, ( - ∞ ,0)10. 设数集S={a,b,c,d}满足下列两个条件: (1)S xy S y x ∈∈∀,,; (2) yz xz y x S z y x ≠≠∈∀则或,,,现给出如下论断:①A ,B ,C ,D 中必有一个为0; ②A 、b,c ,d 中必有一个为1;③若x∈S且xy =1.,则y ∈S; ④存在互不相等的x,y,z∈S,使得x 2=y,y 2=z.其中正确论断的个数是A 1 B.2 C. 3 D.4第II 卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡相应位置. 11.(x+2)4展开式中含x 2项的系数等于________.12.若变量x,y 满足约束条件⎪⎩⎪⎨⎧≥≤-+≥--20113013y y x y x ,则z =2x +y 的最大值为_____.点A,则ΔMOA的面积等于______.14.如图.A1,A2,…A m-1(m≥2)将区间[0,l] m等分,直线x=0,x=1, y=0和曲线y=e x所围成的区域为Ω1图中m个矩形构成的阴影区域为Ω2.在Ω1中任取一点,则该点取自Ω2的概率等于______.15.定义两个实数间的一种新运算“*”:x*y=lg(10x+10y),x,y∈R 当.x①(a*b) * c=a* (b* c); ②(a * b)+c=(a+c) * (b+c);其e正确的结论是_____.(写出所有正确结论的序号)三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16. (本小题满分13分)某几何体ABC-A1B1C1的三视图和直观图如图所示.(I)求证:A1C丄平面AB1C1(II)求二面角C1-AB1 -C的余弦值.17 (本小题满分13分)国IV标准规定:轻型汽车的氮氧化物排放量不得超过80mg/km.根据这个标准,检测单位 从某出租车公司运营的A,B 两种型号的出租车中分别抽取5辆,对其氮氧化物的排放量 进行检测,检测结果记录如下(单位:mg/km)由于表格被污损,数据x ,y 看不清,统计员只记得A 、B 两种出租车的氮氧化物排放量的平均值相等,方差也相等.(I)求表格中x 与y 的值;(II )从被检测的5辆B 种型号的出租车中任取2辆,记“氮氧化物排放量超过80mg/km” 的车辆数为ξ求ξ的分布列和数学期望.18. (本小题满分13分)如图,我海监船在D 岛海域例行维权巡航,某时刻航行 至A 处,此时测得其东北方向与它相距16海里的B 处有一外国船只,且D 岛位于海监船正东(I)求此时该外国船只与D 岛的距离;(II)观测中发现,此外国船只正以每小时4海里的速度 沿正南方向航行.为了将该船拦截在离D 岛12海 里处,不让其进入D 岛12海里内的海域,试确定海 监船的航向,并求其速度的最小值.(参考数据:)19. (本小题满分13分))0(122>>=+b a by 的左、右焦点分别为F 1 F 2 ,(I)求椭圆E 的方程;(II)给出命题:“已知P 是椭圆E 上异于A 1,A 2的一点,直线 A 1P,A 2P 分别交直线l:x=t(t为常数)于不同两点M ,N, 点Q 在直线L 上.若直线PQ 与椭圆E 有且只有一个公共 点P,则Q 为线段MN 的中点”,写出此命题的逆命题,判 断你所写出的命题的真假,并加以证明;(III)试研究(II)的结论,根据你的研究心得,在图2中作出与该双 曲线有且只有一个公共点S 的直线m ,并写出作图步骤. 注意:所作的直线不能与双曲线的渐近线平行.20. (本小题满分14分)已知函数x f =)((I )求a,b 的值及f(x)的单调区间;x 且与曲线y=f(x)没有公共点的直线?证明你的结论; (III )设数列{a n }满足a 1=λ(λ≠l),a n + 1 =f(a n ),若{a n }是单调数列,求实数λ的取值 范围.21. 本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做, 则按所做的前两题记分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑.并 将所选题号填人括号中.(1) (本小题满分7分)选修4-2:矩阵与变换已知矩阵⎪⎪⎭⎫ ⎝⎛--=1234 M ,向量,a=⎪⎪⎭⎫ ⎝⎛= 57a (I)求矩阵M 的特征值及属于每个特征值的一个特征向量;(II)求M 3a(2) (本小题满分7分)选修4-4:极坐标与参数方程 如图,在极坐标系中,圆C 的圆心坐标为(1,0),半径为1. (I )求圆C 的极坐标方程;(II)若以极点0为原点,极轴所在直线为x 轴建立平面直角坐标系.已知直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=+-=6sin 1πt y t x(3)(本小题满分7分)选修4一5 :不等式选讲 已知函数x x x f -+=52)((I)求证:5)(≤x f ,并说明等号成立的条件;(II)若关于x 的不等式. |2|)(-≤m x f 恒成立,求实数m 的取值范围,。
2017年莆田高中毕业班教学质量检查试卷数学(理科)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合22{|650},{|log (2)}A x x x B x y x =-+≤==-,则A B =A .(1,2)B .[1,2)C .(2,5]D .[2,5] 2、设复数z 满足(1)3i z i -=+,则z =A .12i +B .22i +C .2i -D .1i +3、设a 为实数,直线12:1,:2l ax y l x ay a +=+=,则“1a =-”是“12//l l ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也必要条件4、已知()f x 是定义在R 上的奇函数,当0x >时,()2xf x = ,则(2)f -= A .4 B .14 C .14- D .4- 5、我国古代数学著作《孙子算经》中有如下的问题:“今有 方物一束,外周有三十二枚,问积几何?”设每层外周枚数 为a ,如图是解决该问题的程序框图,则输出的结果为A .49B .74C .81D .1216、抛掷一枚均匀的硬币4次,正面不连续出现的概率是 A .34 B .12 C . 13 D .14 7、已知某几何体的三视图如图所示,则该几何体的体积为 A .23 B .43 C .2 D .838、已知函数())(0,)22f x wx w ππϕϕ=+>-<<,1(,0)3A 为图象()f x 的对称中心,,BC 是该图象上相邻的最高点和最低点,若4BC =,则()f x 的单调递增区间是A .24(2,2),33k k k Z -+∈ B .24(2,2),33k k k Z ππππ-+∈ C .24(,),33k k k Z -+∈ D .24(4,4),33k k k Z ππππ-+∈9、已知双曲线E 2222:1(0,0)x y a b a b-=>> 点为的左焦点,点F 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足3PF FQ =,若OP b =,则E 的离心率为A.2 D10、在直角梯形ABCD 中,090,//,2,A AD BC BC AD ABD ∠==∆的面积为2, 若1,2DE EC BE DC =⊥,则DA DC ⋅的值为 A .2- B.- C .2 D.11、设F 为抛物线2:4C y x =的焦点,过F 的直线l 与C 相交于,A B 两点,线段AB 的垂直平分线交x 轴于点M ,若6AB =,则FM 的长为 A.2 D .312、定义在R 上的函数()f x 的导函数为()f x ',()00f =若对任意x R ∈,都有()()1f x f x '>+,则使得()1xf x e +<成立的x 的取值范围为A .(0,)+∞B .(,0)-∞C .(1,)-+∞D .(,1)-∞第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13、5(21)()x x y -+的展开式中33x y 的系数为 (用数字填写答案)14、若,x y 满足约束条件102020x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩,则2z x y =-的最大值为15、ABC ∆的内角,,A B C 的对边分别为,,a b c ,若a b c b c a b c -+=+-,则b ca+的取值范围是 16、如图,在菱形ABCD 中,M 为AC 与BD 的交点,3BAD π∠=,3AB =,将CBD ∆沿BD 折起到1C BD ∆的位置,若点都在球O 的球面上,且球O 的表面积为,则直线1C M 与平面ABD 所成角的正 弦值为三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤 17、(本小题满分12分)已知数列{}n a 的前n 项和2n S n kn =+,其中k 为常数,1413,,a a a 成等比数列. (1)求k 的值及数列{}n a 的通项公式; (2)设14(1)(3)n n n b a a +=++,数列{}n b 的前n 项和为n T ,证明:512n T <.18、(本小题满分12分)某企业有甲乙两个分厂生产某种产品,按规定该产品的某项质量指标值落在[)45,75的为优质品,从两个分厂生产的产品中个随机抽取500件,测量这些产品的该项质量指标值,结果如下表:(1)根据以上统计数据完成下面22⨯ 列联表,并回答是否有99%的把握认为:“两个分厂生产的产品的质量有差异”?(2)求优质品率较高的分厂的500件产品质量指标值的样本平均数x (同一组数据用该区间的中点值作代表)(3)经计算,甲分厂的500件产品质量指标值的样本方差2142s =,乙分厂的500件差评质量指标值的样本方差2162s =,可认为优质品率较高的分厂的产品质量指标值X 服从正态分布2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s ,由优质品率较高的厂的抽样数据,能够认为该分厂生产的产品的产品中,质量指标值不低于71.92的产品至少占全部产品的18%?19、(本小题满分12分)如图,在圆柱1OO 中,矩形11ABB A 是过1OO 的截面1CC是圆柱1OO 的母线,12,3,3AB AA CAB π==∠=.(1)证明:1//AC 平面1COB ;(2)在圆O 所在的平面上,点C 关于直线AB 的对称点为D , 求二面角1D B C B --的余弦值.20、(本小题满分12分)已知曲线222:1(,1)x E y a b a a+=>≠上两点1122(,),(,)A x y B x y 12()x x ≠.(1)若点,A B 均在直线21y x =+上,且线段AB 中点的横坐标为13-,求a 的值; (2)记1212(,),(,)x xm y n y a a==,若m n ⊥为坐标原点,试探求OAB ∆的面积是否为定值? 若是,求出定值;若不是,请说明理由.21、(本小题满分12分)已知函数()()32231,1ln f x x x g x kx x =-+=+-.(1)若过点(,4)P a -恰有两条直线与曲线()y f x =相切,求a 的值;(2)用min{,}p q 表示,p q 中的最小值,设函数()()()min{,}(0)h x f x g x x =>,若()h x 恰 有三个零点,求实数k 的取值范围.请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.22、(本小题满分10分)选修4-4 坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为22(1)(1)2x y -+-=,在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为sin()4πρθ+=(1)写出圆C 的参数方程和直线l 的普通方程;(2)设点P 为圆C 上的任一点,求点P 到直线l 距离的取值范围.24、(本小题满分10分)选修4-5 不等式选讲 已知函数()42f x x x =-+-. (1)求不等式()2f x >的解集;(2)设()f x 的最小值为M ,若2xa M +≥的解集包含[]0,1,求a 的取值范围.。
12013年莆田市高中毕业班教学质量检查试卷数学(理科)一、选择题:本大题共10小题,每小题5分,共50分.1.设全集{}{}{}1,2,3,4,5,6,2,4,6,2,3,5U A B ===,则()AU B ⋂ð等于( )A .{}3,5B .{}4,6C .{}1,2,3,5D .{}1,2,4,62.已知平面向量()(),1,2,1a x b =-=-,若//a b ,则实数x 的值等于( )A .2B .-2C .12 D .12- 3.“1x >”是“ln 0x >”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要 4.阅读如图所示的程序框图,运行相应的程序。
若输入x i =(i 为虚数单位),则输出的结果是( )A .1B .iC .-1D .i -5.若某几何体的正视图、侧视图、俯视图完全相同,则该几何体的正视图不可..能.的是( )6.任意画一个正方形,再将这个正方体各边的中点相连得到第二个正方形,依此类推,这样一共画了4个正方形,如图所示。
若向图形中随机投一点,则所投点落在第四个正方形的概率是( )A.4B .14C .18D .1167.抛物线24y x =与过其焦点且垂直于x 轴的直线的直线相交于A 、B 两点,其准线与x 轴的交点为M ,则过,,M A B 三点的圆的标准方程是( )A .225x y += B .()2211x y -+= C .()2212x y -+= D .()2214x y -+=8.在ABC 中,角,,A B C 所对的边分别为,,a b c 。
若1,2a b ==,且1CAC B ⋅=-,则s i n A的值是( )A .12 B .4 C.4 D.142 9.若不等式组)()1,31,0y x y k x y ⎧≤--⎪⎪⎪≤+⎨⎪≥⎪⎪⎩表示的平面区域是一个等腰三角形区域,则直线()1y k x =+的倾斜角α的大小是( )A .030 B . 0030,75 C .0030,120 D .0075,12010.对于函数()f x ,x D ∈,若满足对任意正数ε,总存在正数δ,使得对任意12,x x D ∈,12x x ≠,只要12x x δ-<,就有()()12f x f x ε-<,则称函数()f x 在定义域D 内具有性质P 。
福建省莆田高中高三教学质量检查理科数学试卷&参考答案第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合22{|650},{|log (2)}A x x x B x y x =-+≤==-,则A B =A .(1,2)B .[1,2)C .(2,5]D .[2,5]2、设复数z 满足(1)3i z i -=+,则z =A .12i +B .22i +C .2i -D .1i +3、设a 为实数,直线12:1,:2l ax y l x ay a +=+=,则“1a =-”是“12//l l ”的A .充分不必要条件B .必要不充分条件C .充要条件 D .既不充分也必要条件4、已知()f x 是定义在R 上的奇函数,当0x >时,()2x f x = ,则(2)f -=A .4B .14C .14- D .4- 5、我国古代数学著作《孙子算经》中有如下的问题:“今有方物一束,外周有三十二枚,问积几何?”设每层外周枚数为a ,如图是解决该问题的程序框图,则输出的结果为A .49B .74C .81D .121 6、抛掷一枚均匀的硬币4次,正面不连续出现的概率是 A .34 B .12 C . 13 D .147、已知某几何体的三视图如图所示,则该几何体的体积为A .23B .43C .2D .838、已知函数()3sin()(0,)22f x wx w ππϕϕ=+>-<<,1(,0)3A 为图象()f x 的对称中心,,BC 是该图象上相邻的最高点和最低点,若4BC =,则()f x 的单调递增区间是A .24(2,2),33k k k Z -+∈B .24(2,2),33k k k Z ππππ-+∈ C .24(,),33k k k Z -+∈ D .24(4,4),33k k k Z ππππ-+∈ 9、已知双曲线E 2222:1(0,0)x y a b a b-=>> 点为的左焦点,点F 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足3PF FQ =,若OP b =,则E 的离心率为A .2B .3C .2D .510、在直角梯形ABCD 中,090,//,2,A AD BC BC AD ABD ∠==∆的面积为2,若1,2DE EC BE DC =⊥,则DA DC ⋅的值为 A .2- B .22- C .2 D .2211、设F 为抛物线2:4C y x =的焦点,过F 的直线l 与C 相交于,A B两点,线段AB 的垂直平分线交x 轴于点M ,若6AB =,则FM 的长为A .2B .3C .2D .312、定义在R 上的函数()f x 的导函数为()f x ',()00f =若对任意x R ∈,都有()()1f x f x '>+,则使得()1x f x e +<成立的x 的取值范围为A .(0,)+∞B .(,0)-∞C .(1,)-+∞D .(,1)-∞第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13、5(21)()x x y -+的展开式中33x y 的系数为 (用数字填写答案)14、若,x y 满足约束条件102020x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩,则2z x y =-的最大值为15、ABC ∆的内角,,A B C 的对边分别为,,a b c ,若a b c b c a b c -+=+-,则b c a +的取值范围是16、如图,在菱形ABCD 中,M 为AC 与BD 的交点,3BAD π∠=,3AB =,将CBD ∆沿BD 折起到1C BD ∆的位置,若点都在球O 的球面上,且球O 的表面积为,则直线1C M 与平面ABD 所成角的正弦值为三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17、(本小题满分12分)已知数列{}n a 的前n 项和2n S n kn =+,其中k 为常数,1413,,a a a 成等比数列.(1)求k 的值及数列{}n a 的通项公式;(2)设14(1)(3)n n n b a a +=++,数列{}n b 的前n 项和为n T ,证明:512n T <.18、(本小题满分12分)某企业有甲乙两个分厂生产某种产品,按规定该产品的某项质量指标值落在[)45,75的为优质品,从两个分厂生产的产品中个随机抽取500件,测量这些产品的该项质量指标值,结果如下表:(1)根据以上统计数据完成下面22⨯ 列联表,并回答是否有99%的把握认为:“两个分厂生产的产品的质量有差异”?(2)求优质品率较高的分厂的500件产品质量指标值的样本平均数x (同一组数据用该区间的中点值作代表)(3)经计算,甲分厂的500件产品质量指标值的样本方差2142s =,乙分厂的500件差评质量指标值的样本方差2162s =,可认为优质品率较高的分厂的产品质量指标值X 服从正态分布2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s ,由优质品率较高的厂的抽样数据,能够认为该分厂生产的产品的产品中,质量指标值不低于71.92的产品至少占全部产品的18%?19、(本小题满分12分)如图,在圆柱1OO 中,矩形11ABB A 是过1OO 的截面1CC是圆柱1OO 的母线,12,3,3AB AA CAB π==∠=.(1)证明:1//AC 平面1COB ;(2)在圆O 所在的平面上,点C 关于直线AB 的对称点为D ,求二面角1D B C B --的余弦值.20、(本小题满分12分)已知曲线222:1(,1)x E y a b a a+=>≠上两点1122(,),(,)A x y B x y 12()x x ≠. (1)若点,A B 均在直线21y x =+上,且线段AB 中点的横坐标为13-,求a 的值; (2)记1212(,),(,)x x m y n y a a==,若m n ⊥为坐标原点,试探求OAB ∆的面积是否为定值?若是,求出定值;若不是,请说明理由.21、(本小题满分12分)已知函数()()32231,1ln f x x x g x kx x =-+=+-.(1)若过点(,4)P a -恰有两条直线与曲线()y f x =相切,求a 的值;(2)用min{,}p q 表示,p q 中的最小值,设函数()()()min{,}(0)h x f x g x x =>,若()h x 恰有三个零点,求实数k 的取值范围.请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.22、(本小题满分10分)选修4-4 坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为22(1)(1)2x y -+-=,在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为sin()4πρθ+=. (1)写出圆C 的参数方程和直线l 的普通方程;(2)设点P 为圆C 上的任一点,求点P 到直线l 距离的取值范围.24、(本小题满分10分)选修4-5 不等式选讲已知函数()42f x x x =-+-.f x>的解集;(1)求不等式()2(2)设()f x的最小值为M,若2x a M0,1,求a的取值范围.+≥的解集包含[]。
厦门市2013届高三质量检查数学(理科)试卷注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答,答题前,请在答题卷内填写学校、班级、学号、姓名;2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟.第Ⅰ卷 (选择题 共50分)一. 选择题:本大题共10小题,每小题5分,共50分. 在每小题所给的四个答案中有且只有一个答案是正确的.1.已知全集U R =,集合{}3A x x =<,{}20B x x =-≥,则U AC B 等于( )A .(,3]-∞B .(,3)-∞C .[2,3)D .(3,2]-2. 双曲线2214x y -=的渐近线方程为( ) A .2y x =± B .4y x =± C .12y x =±D .14y x =±3. 某雷达测速区规定:凡车速大于或等于80 km/h 的汽车视为“超速”,并将受到处罚.如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率分布直方图,则从图中可以看出被处罚的汽车大约有( )A .20辆B .40辆C .60辆D .80辆 4. “abe e >”是22log log a b >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.函数()sin ()f x x x x =+∈R ( )A.是偶函数且为减函数B. 是偶函数且为增函数C.是奇函数且为减函数D. 是奇函数且为增函数俯视图侧视图6. 若不等式组,0,1y x y x ≤⎧⎪≥⎨⎪≤⎩表示的平面区域为M ,不等式2y x ≥表示的平面区域为N 现随机向区域M 内投掷一粒豆子,则豆子落在区域N 内的概率为( )A .16B .13C .12 D. 237.甲、乙两人进行乒乓球比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3∶1的比分获胜的概率为( )A.827 B. 6481 C. 49 D. 898. 在右侧程序框图中,输入5n =,按程序运行后输出的结果是( )A .3B .4C .5 D.69.若函数3()3f x x x =-在2(,6)a a -上有最小值,则实数a 的取值范围是(A .(B.[C .[)2,1-D .(2,1)-10. ABC∆中,2,45BCA ==,B 为锐角,点O 是ABC ∆外接圆的圆心,则OA BC ⋅的取值范围是( )A. (-B. (-C. [-D. (2,2)-第Ⅱ卷 (非选择题 共100分)二.填空题:本大题共5小题,每小题4分,满分20分。
2013届莆田第二十四中学高高三上学期期末考试理科数学〔总分为:150分, 时间:120分钟〕须知事项:1.答题前填写好自己的姓名、班级、座号等信息 2.请将答案正确填写在答题卡上第I 卷〔选择题共50分〕一、选择题:本大题共10小题,每一小题5分,共50分,在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的. 1.0α<<π,且3tan 4α=,如此cos α等于〔〕 A .35-B .35C .45-D .452.假设等差数列{}n a 的前5项和525S =,如此3a 等于〔〕 A .3B .4C .5D .63.)(0360sin 2log 的值是〔〕 A .21B .23C .21-D .23-4.随机变量X 服从正态分布N (3,41),且P 〔X >27〕=0.1587,如此P (25≤X ≤27)=〔〕A .0.6588B .0.6883C .0.6826D .0.65865.右图给出一个算法的程序框图,该程序框图的功能是〔〕A .找出a 、b 、c 三个数中最大的数B .找出a 、b 、c 三个数中最小的数C .找出a 、b 、c 三个数中第二大的数D .把c 的值赋给a6.命题p :“x >0,如此a =1是x +ax≥2的充分必要条件〞,命题q :“∃x 0∈R,02020>-+x x 〞,如此如下命题正确的答案是( )A .命题“p ∧q 〞是真命题B .命题 “p ∧(⌝q )〞是真命题C .命题“(⌝p )∧q 〞是真命题D .命题“(⌝p )∧(⌝q )〞是真命题8.假设函数f (x )=sin2x +a cos2x 图象的一条对称轴方程为6x π=-,如此实数a 的值为( )A .BC .7.假设l m n 、、是空间中互不一样的直线,αβ、是不重合的两平面,如此如下命题中为真命题的是( )A .假设//,,l n αβαβ⊂⊂,如此//l nB .假设,l αβα⊥⊂,如此l β⊥C .假设,l n m n ⊥⊥,如此//l mD .假设,//l l αβ⊥,如此αβ⊥9.函数 f 〔x 〕的定义域为R ,其导函数f '〔x 〕的图象如图所 示,如此对于任意x 1,x 2∈R ( x 1≠x 2),如下结论正确的答案是〔〕 ①f 〔x 〕< 0恒成立;②(x 1-x 2)[ f 〔x 1〕-f 〔x 2〕] < 0; ③(x 1-x 2) [ f 〔x 1〕-f 〔x 2〕] > 0;④⎪⎭⎫⎝⎛+221x x f >12()()2f x f x ; ⑤⎪⎭⎫⎝⎛+221x x f <12()()2f x f x . A .①③ B .①③④ C .②④ D .②⑤ 10.椭圆)0(12222>>=+b a b y a x 的焦点为1F 和2F ,过点1F 的直线l 交椭圆于Q P ,两点,22,0PQ PF PQ PF =⋅=且,如此椭圆的离心率为〔〕A .12-B .36-C .236-D .263- 第2卷〔非选择题共100分〕二、填空题:本大题共5小题,每一小题4分,共20分,把答案填在答题卡相应位置. 11.复数122i ,43i z z =+=-在复平面内的对应点分别为点A 、B ,如此A 、B 的中点所对应的复数是.12.向量a = (1,2),b = (x ,1),c = a + b ,d = a - b ,假设c //d ,如此实数x 的值等于13.在531⎪⎪⎭⎫⎝⎛+x x 的展开式中的常数项为p ,如此=+⎰dx p x )3(10214.假设函数x x a x x f ln )(+-=〔a 为常数〕在定义域上是增函数,如此实数a 的取值范围是15.假设自然数n 使得作加法(1)(2)n n n ++++运算均不产生进位现象,如此称n 为“给力数〞,例如:32是“给力数〞,因323334++不产生进位现象;23不是 “给力数〞,因232425++产生进位现象.设小于1000的所有“给力数〞的各个数位上的数字组成集合A ,如此用集合A 中的数字可组成无重复数字的三位偶数的个数为_______________三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 16.〔本小题总分为13分〕某工厂共有工人40人,在一次产品大检查中每人 的产品合格率〔百分比〕绘制成频率分布直方图, 如下列图.(Ⅰ) 求合格率在[50,60〕内的工人人数; (Ⅱ)为了了解工人在本次大检查中产品不合格的情况,从合格率在[50,70〕内的工人中随机选取3人的合格率进展分析,用X 表示所选工人合格率在[ 60,70〕内的人数,求X 的分布列和数学期望.17.〔本小题总分为13分〕设函数)(cos sin 32sin cos )(22R x x x x x x f ∈+-=的最大值为M ,最小正周期为T . 〔1〕求M 、T ;〔2〕假设有10个互不相等的正数i x 满足),10,,2,1(10,)( =<=i x M x f i i π且求1210x x x +++的值.18.〔此题总分为13分〕在如图的多面体中,EF ⊥平面AEB ,AE EB ⊥,//AD EF ,//EF BC ,24BC AD ==,3EF =,2AE BE ==,G 是BC 的中点.(Ⅰ) 求证://AB平面DEG;(Ⅱ) 求二面角C DF E--的余弦值.19.(本小题总分为13分)如图,某旅游区拟在公路l〔南北向〕旁开发一个抛物线形的人工湖,湖沿岸上每一点到公路l的距离与到A处的距离相等,并在湖中建造一个三角形的游乐区MNC,三个顶点CNM,,都在湖沿岸上,直线通道MN经过A处。
年莆田市高中毕业班教学质量检查试卷数学〔理科〕一、选择题:本大题共10小题,每题5分,共50分.1.设全集{}{}{}1,2,3,4,5,6,2,4,6,2,3,5U A B ===,那么()AUB ⋂等于〔 〕 A .{}3,5 B .{}4,6C .{}1,2,3,5D .{}1,2,4,62.平面向量()(),1,2,1a x b =-=-,假设//a b ,那么实数x 的值等于〔 〕A .2B .-2C .12D .12- 3.“1x >〞是“ln 0x >〞的〔 〕 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要4.阅读如以以下图的程序框图,运行相应的程序。
假设输入x i =〔i 为虚数单位〕,那么输出的结果是〔 〕A .1B .iC .-1D .i -5.假设某几何体的正视图、侧视图、俯视图完全相同,那么该几何体的正视图不可能...的是〔 〕6.任意画一个正方形,再将这个正方体各边的中点相连得到第二个正方形,依此类推,这样一共画了4个正方形,如以以下图。
假设向图形中随机投一点,那么所投点落在第四个正方形的概率是〔 〕A .24B .14C .18D .116 7.抛物线24y x =与过其焦点且垂直于x 轴的直线的直线相交于A 、B 两点,其准线与x 轴的交点为M ,那么过,,M A B 三点的圆的标准方程是〔 〕A .225x y +=B .()2211x y -+=C .()2212x y -+=D .()2214x y -+= 8.在ABC 中,角,,A B C 所对的边分别为,,a b c 。
假设1,2a b ==,且1CA CB ⋅=-,那么sin A 的值是〔 〕A .12B . 24C .34D .21149.假设不等式组()()1,31,0y x y k x y ⎧≤--⎪⎪⎪≤+⎨⎪≥⎪⎪⎩表示的平面区域是一个等腰三角形区域,那么直线()1y k x =+的倾斜角α的大小是〔 〕A .030 B . 0030,75 C .0030,120 D .0075,120 10.对于函数()f x ,x D ∈,假设满足对任意正数ε,总存在正数δ,使得对任意12,x x D ∈,12x x ≠,只要12x x δ-<,就有()()12f x f x ε-<,那么称函数()f x 在定义域D 内具有性质P 。
2013年福建省普通高中毕业班质量检查文 科 数 学本试卷分第1卷(选择题)和第Ⅱ卷(非选择题).本试卷共5页.满分150分.考试时间120分钟.注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回.参考公式:样本数据x 1,x 2, …,x n 的标准差 锥体体积公式V =31Sh 其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式球的表面积、体积公式 V =Sh24S R =π,343V R =π其中S 为底面面积,h 为高其中R 为球的半径第Ⅰ卷(选择题 共60分)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数1i z =-,z 为z 的共轭复数,则下列结论正确的是A .1i z =--B .1+i z =-C .2z =D .z =2.已知,0a b c >≠,则下列不等式一定成立的是 A .22a b >B .ac bc >C .a c b c +>+D .a b c c> 3.执行如图所示的程序框图,若输入的x 值为2,则输出的x 值为A .3B .8C .9D .63 4.“1x =”是“210x -=”的A.充分而不必要条件 B.必要而充分不条件 C.充要条件 D.既不充分也不必要条件5.函数2cos 22y x x x ππ⎛⎫=-≤≤ ⎪⎝⎭的图象是6.已知集合{}|28M x x =-≤≤,{}2|320N x x x =-+≤,在集合M 中任取一个元素x ,则 “x MN ∈”的概率是A .110B .16C .310D .127.已知1F ,2F 是椭圆C 的两个焦点,焦距为4.若P 为椭圆C 上一点,且12PF F ∆的周长为14,则椭圆C 的离心率e 为 A .15 B .25 C .45DA BCD8.若变量,x y 满足约束条件310,3110,2,x y x y y --≥⎧⎪+-≤⎨⎪≥⎩则2z x y =-的最小值为A .4B .1C .0D .1- 9.设,m n 为两条不同的直线,βα,是两个不同的平面,下列命题正确的是 A .若β//,//m n m ,则β//n B .若αα//,//n m ,则n m // C .若β⊥m n m ,//,则β⊥n D .若n m n m //,,βα⊂⊂,则βα// 10.已知点()0,0O ,()1,2A ,()3,2B ,以线段AB 为直径作圆C ,则直线:30l x y +-=与圆C 的位置关系是A .相交且过圆心B .相交但不过圆心C .相切D .相离 11.已知点()()()0000167n O ,,A ,,A ,,点()1212n A ,A ,,A n ,n -∈≥N 是线段0n A A 的n 等分点,则011+n n OA OA OA OA -+++等于A .5nB .10nC .()51n +D .()101n +12.定义两个实数间的一种新运算“*”:()lg 1010,x y x y *=+,x y ∈R .对任意实数,,a b c ,给出如下结论:①()()c b a c b a ****=; ②a b b a **=; ③()()()**a b c a c b c +=++; 其中正确的个数是A . 0B .1C .2D .3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡相应位置. 13.一支田径队有男运动员28人,女运动员21人,现按性别用分层抽样的方法,从中抽取14位运动员进行健康检查,则男运动员应抽取________人.14.在ABC ∆中,角,,A B C 所对的边分别为,,a b c .已知3a =,8b =,C=3π,则c = .15.若函数2,0,()ln ,0x a x f x x x ⎧-≤=⎨>⎩有两个不同的零点,则实数a 的取值范围是 . 16.观察下列等式:12133+=; 781011123333+++=; 16171920222339333333+++++=; …则当m n <且,m n ∈N 表示最后结果.313232313333n n m m ++--++++= (最后结果用,m n 表示最后结果). 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)某工厂生产,A B 两种元件,其质量按测试指标划分为:大于或等于7.5为正品,小于7.5为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:由于表格被污损,数据y x ,看不清,统计员只记得x y <,且,A B 两种元件的检测数据的平均值相等,方差也相等. (Ⅰ)求表格中x 与y 的值;(Ⅱ)若从被检测的5件B 种元件中任取2件,求2件都为正品的概率. 18.(本小题满分12分)已知函数()sin cos f x x x =+,x ∈R . (Ⅰ)求12f π⎛⎫⎪⎝⎭的值; (Ⅱ)试写出一个函数()g x ,使得()()cos 2g x f x x =,并求()g x 的单调区间. 19.(本小题满分12分)某几何体111C B A ABC -的三视图和直观图如图所示. (Ⅰ)求证:平面11AB C ⊥平面11AAC C ; (Ⅱ)若E 是线段1AB 上的一点,且满足1111191C B A ABC C AA E V V --=,求AE 的长.20.(本小题满分12分)某工业城市按照“十二五”(2011年至2015年)期间本地区主要污染物排放总量控制要求,进行减排治污.现以降低SO 2的年排放量为例,原计划“十二五”期间每年的排放量都比上一年减少0.3万吨,已知该城市2011年SO 2的年排放量约为9.3万吨, (Ⅰ)按原计划,“十二五”期间该城市共排放SO 2约多少万吨?(Ⅱ)该城市为响应“十八大”提出的建设“美丽中国”的号召,决定加大减排力度.在2012年刚好按原计划完成减排任务的条件下,自2013年起,SO 2的年排放量每年比上一年减少的百分率为p ,为使2020年这一年的SO 2年排放量控制在6万吨以内,求p 的取值范围.(参考数据9505.0328≈,9559.0329≈). 21.(本小题满分12分)已知函数()2e xf x ax bx =++.(Ⅰ)当0,1a b ==-时,求()f x 的单调区间; (Ⅱ)设函数()f x 在点()(),P t f t ()01t <<处的切线为l ,直线l 与y 轴相交于点Q .若点Q 的纵坐标恒小于1,求实数a 的取值范围. 22.(本小题满分14分)某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线2:2E y px =,在抛物线上任意画一个点S ,度量点S的坐标俯视图侧(左)视图正(主)视图1A(),S S x y ,如图.(Ⅰ)拖动点S ,发现当4S x =时,4S y =,试求抛物线E 的方程;(Ⅱ)设抛物线E 的顶点为A ,焦点为F ,构造直线SF 交抛物线E 于不同两点S 、T ,构造直线AS 、AT 分别交准线于M 、N 两点,构造直线MT 、NS .经观察得:沿着抛物线E ,无论怎样拖动点S ,恒有MT //NS .请你证明这一结论.(Ⅲ)为进一步研究该抛物线E 的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点F ”改变为其它“定点(),0G g ()0g ≠”,其余条件不变,发现“MT 与NS 不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“MT //NS ”成立?如果可以,请写出相应的正确命题;否则,说明理由.2013年福建省普通高中毕业班质量检查 文科数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分. 1.D 2.C 3.B 4.A 5.B 6.A 7.B 8.A 9.C 10.B 11.C 12.D二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分. 13.8; 14.7; 15.01a <≤; 16.22n m -.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.本小题主要考查古典概型、统计等基础知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等.满分12分.解:(Ⅰ)因为11=+7+75+9+95=8=858555x x x y ⋅⋅+⋅+⋅+A B (7),(6+), 由=x x A B,得17x y +=. ① ………………………………………2分因为222211=1+1+0.25+1+2.25=1.1=4+8+0.25+0.25+855x y ⎡⎤--⎣⎦A B ,s ()s ()(), 由22=A Bs s ,得228+8=1x y --()(). ② …………………………………………4分由①②解得89x y =⎧⎨=⎩,,或98.x y =⎧⎨=⎩,因为x y <, 所以8,x y ==. ………………………………………6分(Ⅱ) 记被检测的5件B 种元件分别为12345,,,,B B B B B ,其中2345,,,B B B B 为正品, 从中任取2件,共有10个基本事件,列举如下:()12,B B ,()13,B B ,()14,B B ,()15,B B ,()23,B B , ()24,B B ,()25,B B ,()34,B B ,()35,B B ,()45,B B , ………………………………………8分记“2件都为正品”为事件C ,则事件C 包含以下6个基本事件:()23,B B ,()24,B B ,()25,B B ,()34,B B ,()35,B B ,()45,B B .……………………………10分所以63()105P C ==,即2件都为正品的概率为35. ………………………………………12分 18.本小题主要考查三角函数的图象与性质、两角和与差三角公式、二倍角公式、三角函数的恒等变换等基础知识,考查运算求解能力,考查化归与转化思想等.满分12分.解法一:(Ⅰ)因为())4f x x π=+,………………………………………3分所以121243f ππππ⎛⎫⎛⎫=+==⎪ ⎪⎝⎭⎝⎭……………………………6分 (Ⅱ)()cos sin g x x x =-. …………………………………………………………7分 下面给出证明:因为()()22(cos sin )(sin cos )cos sin cos 2,g x f x x x x x x x x =-+=-=所以()cos sin g x x x =-符合要求.……………………………………………………9分又因为()cos sin 4g x x x x π⎛⎫=-=+ ⎪⎝⎭,…………………………………………10分由222,4k x k πππππ+<+<+得3722,44k x k ππππ+<<+ 所以()g x 的单调递增区间为372244k k ππππ⎛⎫++ ⎪⎝⎭,k ∈Z .………………………………11分又由224k x k ππππ<+<+,得32244k x k ππππ-<<+, 所以()g x 的单调递减区间为32244k k ππππ⎛⎫-+⎪⎝⎭,,k ∈Z .………………………………12分 解法二:(Ⅰ)因为()21sin 2,f x x =+⎡⎤⎣⎦所以231sin 1262f ππ⎡⎤⎛⎫=+= ⎪⎢⎥⎝⎭⎣⎦,………………………………3分又因为0,12f π⎛⎫>⎪⎝⎭所以12f π⎛⎫=⎪⎝⎭.………………………………6分 (Ⅱ)同解法一. 解法三:(Ⅰ)sin cos sin cos 1212123434f πππππππ⎛⎫⎛⎫⎛⎫=+=-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭sincoscossincoscossinsin34343434ππππππππ=-++…………………3分=++=………………………………6分 (Ⅱ)同解法一.注:若通过()()cos 2xg x f x =得到()g x 或由()()(cos sin )(cos sin )g x f x x x x x =+-两边同时约去()f x 得到()g x 不扣分.19.本小题主要考查三视图、直线与直线、直线与平面、平面与平面的位置关系,几何体的体积等基础知识;考查空间想象能力、推理论证能力、运算求解能力;考查函数与方程思想、数形结合思想、化归与转化思想.满分12分.解法一:(Ⅰ)由三视图可知,几何体111C B A ABC -为三棱柱,侧棱1111C B A AA 底面⊥,1111C A C B ⊥,且41==AC AA ,2=BC .………………………………………2分 1111C B A AA 平面⊥ ,11111111,C B AA C B A C B ⊥∴⊂平面, …………………3分 11111111,A C A AA C A C B =⊥ ,1111ACC A C B 平面⊥∴.……………………5分又1111C AB C B 平面⊂ , C C AA C AB 1111平面平面⊥∴.………………………6分 (Ⅱ)过点E 作11//C B EF 交1AC 于F ,由(Ⅰ)知,11ACC A EF 平面⊥,即EF 为C AA E 1-三棱锥的高. ………7分1111191C B A ABC C AA E V V --= ,,9131111AA S EF S ABC C AA ⋅=⋅∴∆∆ ……………………8分1111442443292EF ⎛⎫⎛⎫∴⨯⨯⨯⨯=⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭,解得32=EF .……………………9分在Rt ABC ∆中,AB ===,在1Rt ABB ∆中,16AB ===,……………………10分由111C B EFAB AE =, ……………………11分 得22326C B EFAB AE 111=⨯=⋅=. ……………………12分解法二:(Ⅰ)同解法一.(Ⅱ)过点E 作11//C B EF 交1AC 于F ,由(Ⅰ)知,11ACC A EF 平面⊥,即EF 为C AA E 1-三棱锥的高. ………7分11111111133C AA B C B A A C B A ABC V V V ---== ,111111113191C AA B C B A ABC C AA E V V V ---==∴ ………8分,313131111111C B S EF S C AA C AA ⋅⨯=⋅∴∆∆,3111C B EF =∴ ………9分 在ABC Rt ∆中,5224AB 2222=+=+=BC AC ,在1ABB Rt ∆中,()6452AB 222121=+=+=BB AB ,……………………10分由111C B EFAB AE =, ……………………11分 得2AB 31AE 1==. ……………………12分 20.本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力和应用意识,考查函数与方程思想.满分12分.解:(Ⅰ)设“十二五”期间,该城市共排放SO 2约y 万吨,依题意,2011年至2015年SO 2的年排放量构成首项为9.3,公差为0.3-的等差数列,……………3分 所以()55159.3(0.3)=43.52y ⨯-=⨯+⨯-(万吨). 所以按计划“十二五”期间该城市共排放SO 2约43.5万吨.……………………6分 (2)由已知得, 2012年的SO 2年排放量9.60.32=9-⨯(万吨),……………………7分所以2012年至2020年SO 2的年排放量构成首项为9,公比为1p -的等比数列,…………………9分由题意得891p ⨯-()<6,即1p -<832, 所以10.9505p -<,解得 4.95%p >.所以SO 2的年排放量每年减少的百分率p 的取值范围4.95%1p <<<……………………12分21.本小题主要考查函数、导数等基础知识,考查推理论证能力、运算求解能力,考查分类与整合思想、数形结合思想、化归与转化思想.满分12分.解:(Ⅰ)当0,1a b ==-时,()e x f x x =-,()e 1xf x '=-,……………………1分所以,当(,0)x ∈-∞时,()0f x '<;当(0,)x ∈+∞时,()0f x '>;……………………3分所以函数()f x 的单调递减区间为(),0-∞,单调递增区间为(0,)+∞.……………………4分(Ⅱ)因为()2xf x e ax b '=++,所以()(),P t f t 处切线的斜率()2tk f t e at b '==++,所以切线l 的方程为()()()22t t y e at bt e at bx t -++=++-,令0x =,得()21ty t e at =-- ()01t <<.………………………………………………5分当01t <<时,要使得点Q 的纵坐标恒小于1,只需()211tt e at --<,即()2110tt e at -++>()01t <<.……………… 6分令()()211tg t t e at =-++,则()()2t g t t e a '=+,………………………………………………………… 7分 因为01t <<,所以1t e e <<, ①若21a ≥-即12a ≥-时,20t e a +>, 所以,当()0,1t ∈时,()0g t '>,即()g t 在()0,1上单调递增, 所以()(0)0g t g >=恒成立,所以12a ≥-满足题意.………………………………8分 ②若2a e ≤-即2ea ≤-时,20t e a +<,所以,当()0,1t ∈时,()0g t '<,即()g t 在()0,1上单调递减,所以()(0)0g t g <=,所以2ea ≤-不满足题意.………………………………………9分 ③若21e a -<<-即122e a -<<-时,0ln(2)1a <-<.则t 、()g t '、()g t 的关系如下表:所以()()ln(2)00g a g -<=,所以22a -<<-不满足题意.………………………………11分 综合①②③,可得,当12a ≥-时,()0g t >()01t <<时,此时点Q 的纵坐标恒小于1.…………12分22.本小题主要考查抛物线的标准方程、直线与圆锥曲线的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、分类与整合思想、数形结合思想等.满分14分.解法一:(Ⅰ)把4S x =,4S y =代入22y px =,得248p =,……………………2分所以2p =,………………………………………………………………………3分 因此,抛物线E 的方程24y x =.…………………………………………………4分 (Ⅱ)因为抛物线E 的焦点为()1,0F ,设()()1122,,,S x y T x y , 依题意可设直线:1l my x =-,由241y x my x ⎧=⎨=-⎩,得2440y my --=,则121244.y y m y y +=⎧⎨⋅=-⎩, ①……………………6分又因为11:AS y l y x x =,22:AT yl y x x =,所以111,y M x ⎛⎫-- ⎪⎝⎭,221,y N x ⎛⎫-- ⎪⎝⎭,所以12211,y MT x y x ⎛⎫=++⎪⎝⎭,21121,y NS x y x ⎛⎫=++ ⎪⎝⎭, ……………………7分 又因为()()1221121211y y y x y x x x ⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭……………………………………8分 2221121241411144y y y y y y ⎛⎫⎛⎫⎛⎫⎛⎫=++-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22122112*********4y y y y y y y y y y ⎛⎫⎛⎫=+++-+++ ⎪ ⎪⎝⎭⎝⎭()21121212144y y y y y y y y -=-+()22121212164y y y y y y ⎛⎫-=- ⎪⎝⎭, ②把①代入②,得()221212121604y y y y y y ⎛⎫--= ⎪⎝⎭, (10)分即()()12211212110y y y x y x x x ⎛⎫⎛⎫++-++= ⎪ ⎪⎝⎭⎝⎭,所以//MT NS ,又因为M 、T 、N 、S 四点不共线,所以MT //NS .……………………………………………11分(Ⅲ)设抛物线2:4E y x =的顶点为A ,定点()(),00G g g ≠,过点G 的直线l 与抛物线E 相交于S 、T 两点,直线AS 、AT 分别交直线x g =-于M 、N 两点,则MT //NS .……………………14分解法二:(Ⅰ)同解法一.(Ⅱ)因为抛物线E 的焦点为()1,0F ,设()()221122,2,,2S t t T t t ,……………………5分依题意,可设直线:1ST l my x =-,由241y x my x ⎧=⎨=-⎩得2440y my --=, 则1212224,224,t t m t t +=⎧⎨⋅=-⎩所以12124,1.t t m t t +=⎧⎨⋅=-⎩ (7)分又因为2:2AS l y t x =-,1:2AT l y t x =-, 所以()21,2M t -,()11,2N t -,………………………………………………………………………10分所以MT k =,0NS k =,………………………………………………………………………………10分又因为M 、T 、N、S四点不共线,所以MT //NS .…………………………………………………11分(Ⅲ)同解法一. 解法三:(Ⅰ)同解法一.(Ⅱ)因为抛物线E 的焦点为()1,0F ,设()()1122,,,S x y T x y , 依题意,设直线:1l my x =-,由241y xmy x ⎧=⎨=-⎩得2440y my --=,则121244y y my y +=⎧⎨⋅=-⎩,…………………………………………6分 又因为11:AS y l y x x =,22:AT yl y x x =,所以111,y M x ⎛⎫-- ⎪⎝⎭,221,y N x ⎛⎫-- ⎪⎝⎭,又因为212y y x ⎛⎫-- ⎪⎝⎭2212111222224404yy y y y y y y x y y +=+=+=+==,……………………………………9分 所以212y y x =-,所以NS 平行于x 轴; 同理可证MT 平行于x 轴;又因为M、T、N、S四点不共线,所以MT//NS.…………………………………………………11分(Ⅲ)同解法一.…………………………………………………14分。
莆田一中2013–2014学年度上学期第一学段考试试卷高三 理科数学试卷满分 150分 考试时间 120分钟第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,把答案填在答题卡的相应位置. 1.已知集合}2|{≤=x x A ,}0)3(|{<-=x x x B ,则B A I =( ) A .}20|{≤<x x B .}0|{<x x C .2|{≤x x ,或}3>x D .0|{<x x ,或}2≥x2.已知a 为常数,则使得e 11d a x x>⎰成立的一个充分而不必要条件是 ( ) A .0>a B .0<a C .e >a D .e <a3.已知抛物线23x =的准线过双曲线2221x y m-=-的一个焦点,则双曲线的离心率为( )A.324B.623 D.334.ABC ∆的三个内角,,A B C 对应的边分别,,a b c ,且cos ,cos ,cos a C b B c A 成等差数列,则角B 等于( ) A .030B. 060C. 090D.01205.函数()()sin f x A x ωϕ=+(其中A >0,2πϕ<)的图象如图所示,为了得到()sin 2g x x=的图象,则只需将()f x 的图象( )A.向右平移6π个长度单位 B.向右平移3π个长度单位 C.向左平移6π个长度单位D.向左平移3π个长度单位6.已知O 为坐标原点,直线y x a =+与圆224x y +=分别交于,A B 两点.若2-=⋅OB OA ,则实数a 的值为( )A .1B .2C .1±D .2±7.过抛物线24y x =的焦点F 的直线交抛物线于A B 、两点,点O 是坐标原点,若||5AF =,则△AOB 的面积为( ) A .5 B .52C .32D .1788.三个学校分别有1名、2名、3名学生获奖,这6名学生要排成一排合影,则同校学生排在一起的概率是( ) A .130B .115C .110 D .15【答案】C . 【解析】试题分析:由已知把第二个及第三个学校的学生看做整体得同校学生排在一起共323323A A A 种方法,而三个学校的学生随便排有66A 种方法,有古典概型的概率计算公式得所求概率32332366110A A A P A ==,故选C . 考点:古典概型的概率计算.9.设向量12(,)a a a =r ,12(,)b b b =r ,定义一运算:12121122(,)(,)(,)a b a a b b a b a b ⊗=⊗=r r,已知1(,2)2m =u r ,11(,sin )n x x =r .点Q 在()y f x =的图像上运动,且满足OQ m n =⊗u u u r u r r (其中O 为坐标原点),则()y f x =的最大值及最小正周期分别是( ) A .1,2π B .2,π C .1,42π D .2,4π10.对于函数()f x 与()g x 和区间D ,如果存在0x D ∈,使00()()1f x g x -≤,则称0x 是函数()f x 与()g x 在区间D 上的“友好点”.现给出两个函数:①2()f x x =,22)(-=x x g ;②()f x x =,()2g x x =+;③xx f -=e )(,1()g x x=-;④()f x ln x =,x x g =)(,则在区间()0,+∞上的存在唯一“友好点”的是( ) A .①② B .③④ C . ②③ D .①④第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上)11.732x x ⎛+ ⎪⎝⎭的展开式中常数项为 .12.已知随机变量2(0,)N ξσ:,若(2)0.8P ξ<=,则(2)P ξ<-= . 【答案】0.2. 【解析】试题分析:由正态分布曲线及其性质可得(2)(2)1(2)0.2P P P ξξξ<-=>=-<=. 考点:正态分布曲线及其性质.13.已知变量,x y 满足20230,0x y x y x -≤⎧⎪-+≥⎨⎪≥⎩则2log (1)z x y =++的最大值是.试题分析:如图作出不等式组表示的可行域可知,当1,2x y ==时,z 取最大值,max 2log (121)2z =++=.考点:线性目标函数的最值问题.14.已知()41xf x =+,()4xg x -=,若偶函数()h x 满足()()()h x mf x ng x =+(其中m ,n 为常数),且最小值为1,则m n += .【答案】23.【解析】试题分析:()h x Q 是偶函数,()()h x h x ∴-=,即()()414414x x x x m n m n --++⋅=++⋅,()()()()440,,441x x x x m n m n h x m --∴--=∴=∴=++.又()h x 的最小值为1,()()()112441244131,,,333x x x x h x m m m m n m m n --∴=++≥⋅==∴=∴==∴+=.考点:1.函数的奇偶性;2.函数的最值;3.均值不等式.15.对于定义域为[]0,1的函数()f x ,如果同时满足以下三个条件:①对任意的[]0,1x ∈,总有()0f x ≥;②()11f =;③若12120,0,1,x x x x ≥≥+≤都有()()()1212f x x f x f x +≥+ 成立;则称函数()f x 为ϖ函数. 下面有三个命题:(1)若函数()f x 为ϖ函数,则()00f =;(2)函数()[]()210,1x f x x =-∈是ϖ函数; (3)若函数()f x 为ϖ函数,假定存在[]00,1x ∈,使得()[]00,1f x ∈,且()00f f x x =⎡⎤⎣⎦, 则()00f x x =; 其中真命题...是________.(填上所有真命题的序号)三、解答题 (本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.) 16.(本小题满分13分) 已知函数21()cos3cos (0)2f x x x x ωωωω=->的最小正周期为π.(I )求ω值及()f x 的单调递增区间;(II )在△ABC 中,a b c 、、分别是三个内角C B A 、、所对边,若1a =,2b =,322A f ⎛⎫=⎪⎝⎭,求B 的大小.(II )3,,.226A f a b A π⎛⎫=<∴=⎪⎝⎭Q 1,2,a b ==Q 由正弦定理sin 2sin b A B a == ,a b <∴Q 4B π=或34B π=. 考点:1.三角恒等变换(倍角公式);2.三角函数的周期和单调性;3.正弦定理.17.(本小题满分13分)已知函数()323f x x x ax b =-++在1x =-处的切线与x 轴平行.(1)求a 的值和函数()f x 的单调区间;(2)若函数()y f x =的图象与抛物线231532y x x =-+恰有三个不同交点,求b 的取值范围.18.(本小题满分13分)某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30 ,第6小组的频数是7 .(I) 求这次铅球测试成绩合格的人数;(II) 用此次测试结果估计全市毕业生的情况.若从今年的高中毕业生中随机抽取两名,记X 表示两人中成绩不合格...的人数,求X 的分布列及数学期望; (III) 经过多次测试后,甲成绩在8~10米之间,乙成绩在9.5~10.5米之间,现甲、乙各投掷一次,求甲比乙投掷远的概率.【答案】(I) 这次铅球测试成绩合格的人数为50; (II) X 的分布列为数学期望714()22525E X =⨯=; (III) 甲比乙投掷远的概率116.【解析】218324(0)()25625P X ===,12718252(1)()()2525625P X C ===,2749(2)()25625P X ===.从而得X的分布列,进而求得X 的数学期望值;(III) 设甲、乙各投掷一次的成绩分别为x 、y 米,列出基本事件满足的区域:8109.510.5x y ⎧⎨⎩≤≤≤≤,事件A “甲比乙投掷远的概率”满足的区域为x y >,画出图形,利用几何概型公式()A P A =构成事件的区域的面积实验的全部结果所构成的区域的面积来求甲比乙投掷远的概率.试题解析:(I)第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)=0.14, ∴此次测试总人数为7500.14=(人). …………(2分) ∴第4、5、6组成绩均合格,人数为(0.28+0.30+0.14)×50=36(人)………(4分) (II)X 的可能取值为0,1,2,此次测试中成绩不合格的概率为1475025=,∴X ~7(2,)25B .…………(5分218324(0)()25625P X ===,12718252(1)()()2525625P X C ===,2749(2)()25625P X ===. …………(7分) 所求的X 的分布列为X 0 12P32462525262549625714()22525E X =⨯=…………(9分)19.(本题满分13分)已知椭圆C :22221(0)x ya b a b+=>>的左、右焦点和短轴的两个端点构成边长为2的正方形.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点)0,1(Q 的直线l 与椭圆C 相交于A ,B 两点.点(4,3)P ,记直线,PA PB 的斜率分别为12,k k ,当12k k ⋅最大时,求直线l 的方程.【答案】(Ⅰ)椭圆C 的方程为22142x y +=;(Ⅱ)直线l 的方程为10x y --=.【解析】(Ⅱ)①当直线l 的斜率为0时,则12k k ⋅=33342424⨯=-+; …………………6分②当直线l 的斜率不为0时,设11(,)A x y ,22(,)B x y ,直线l 的方程为1x my =+,将1x m y =+代入22142x y +=,整理得22(2)230m y m y ++-=. 则12222m y y m -+=+,12232y y m -=+. …………………8分又111x m y =+,221x m y =+, 所以,112134y k k x -⋅=-2234y x -⋅-1212(3)(3)(3)(3)y y m y m y --=--12122121293()93()y y y y m y y m y y -++=-++= 2232546m m m ++=+23414812m m +=++……………10分.令41t m =+,则122324225t k k t t ⋅-+324()2t t=++-1≤所以当且仅当5=t ,即1=m 时,取等号. 由①②得,直线l 的方程为10x y --=.……………13分.考点:1.椭圆方程的求法;2.直线和椭圆位置关系中最值问题;3.均值不等式.20.(本小题满分14分)已知函数32()f x x x bx =-++,()ln g x a x x =+(0a ≠) (Ⅰ)若函数()f x 存在极值点,求实数b 的取值范围; (Ⅱ)求函数()g x 的单调区间;(Ⅲ)当0b =且0a >时,令(),1()(),1f x x F x g x x x <⎧=⎨-≥⎩,P (11,()x F x ),Q (22,()x F x )为曲线()y F x =上的两动点,O 为坐标原点,能否使得POQ ∆是以O 为直角顶点的直角三角形,且斜边中点在y 轴上?请说明理由.y 轴上.则0OP OQ ⋅=u u u r u u u r且120x x +=.不妨设10x t =>.故(,())P t F t ,则32(,)Q t t t -+.232()()0OP OQ t F t t t ⋅=-++=u u u r u u u r,(*)该方程有解.下面分01t <<,1t =,1t >讨论,得方程(*)总有解.最后下结论,对任意给定的正实数a ,曲线上总存在,P Q 两点,使得POQ V 是以O 为直角顶点的直角三角形,且斜边中点在y 轴上.试题解析:(Ⅰ)2()32f x x x b '=-++,若()f x 存在极值点,则2()320f x x x b '=-++=有两个不相等实数根.所以4120b =+>V , ……………2分解得13b >-……………3分21.(本小题满分14分)本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题做答.如果多做,则按所做的前两题记分.21.(1)(本小题满分7分)选修4—2:矩阵与变换曲线221:1C x y +=在矩阵0(0,0)0a M a b b ⎛⎫=>>⎪⎝⎭的变换作用下得到曲线222:14x C y +=.(Ⅰ)求矩阵M ;(Ⅱ)求矩阵M 的特征值及对应的一个特征向量. 【答案】(Ⅰ)矩阵2001M ⎛⎫=⎪⎝⎭;(Ⅱ)矩阵M 的特征值1λ=或2λ=.当1λ=时,对应的特征向量为101α⎛⎫= ⎪⎝⎭u u r;当2λ=时,对应的特征向量为210α⎛⎫= ⎪⎝⎭u u r .【解析】试题分析:(Ⅰ)首先设曲线221:1C x y +=上的任一点(),x y 在矩阵M 对应的变换作用下所得的点为(),x y '',则由0,0a x x b y y '⎛⎫⎛⎫⎛⎫=⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭可得,.x ax y by '=⎧⎨'=⎩再由点(),x y ''在曲线2C 上,21.(2)(本小题满分7分)选修4—4:坐标系与参数方程已知在直角坐标系xOy 中,曲线1C 的参数方程为2,(24x t y ⎧=⎪⎪⎨⎪=-+⎪⎩为参数).在极坐标系(与直角坐标取相同的长度单位,且以原点O 为极点,x 轴的非负半轴为极轴)中,曲线2C 的方程为θθρcos 4sin 2=. (Ⅰ)求曲线2C 直角坐标方程;(Ⅱ)若曲线1C 、2C 交于A 、B 两点,定点(0,4)P -,求PA PB +的值.21.(3)(本小题满分7分)选修4—5:不等式选讲. 若c b a ,,为正实数且满足236a b c ++=. (1)求abc 的最大值为43;(212131a b c +++的最大值.。
2013年莆田市高中毕业班教学质量检查试卷
数学(理科)
一、选择题:本大题共10小题,每小题5分,共50分.
1.设全集{}{}{}1,2,3,4,5,6,2,4,6,2,3,5U A B ===,则()
A U
B ⋂ð等于( ) A .{}3,5 B .{}4,6
C .{}1,2,3,5
D .{}1,2,4,6
2.已知平面向量()(),1,2,1a x b =-=- ,若//a b ,则实数x 的值等于( )
A .2
B .-2
C .
12 D .12
-
3.“1x >”是“ln 0x >”的( ) A .充分而不必要条件 B .必要而不充分条件
C .充要条件
D .既不充分也不必要
4.阅读如图所示的程序框图,运行相应的程序。
若输入x i =(i 为虚数单位),则输出的结果是( )
A .1
B .i
C .-1
D .i -
5.若某几何体的正视图、侧视图、俯视图完全相同,则该几何体的正视图不可..能.
的是( )
6.任意画一个正方形,再将这个正方体各边的中点相连得到第二个正方
形,依此类推,这样一共画了4个正方形,如图所示。
若向图形中随机投
一点,则所投点落在第四个正方形的概率是( )
A .4
B .14
C .18
D .116 7.抛物线24y x =与过其焦点且垂直于x 轴的直线的直线相交于A 、
B 两点,其准线与x 轴的交点为M ,则过,,M A B 三点的圆的标准方程是( )
A .225x y +=
B .()2211x y -+=
C .()2212x y -+=
D .()2
214x y -+= 8.在ABC 中,角,,A B C 所对的边分别为,,a b c 。
若1,2a b ==,且1C
AC B ⋅=- ,则s i n A 的值是( )
A .12
B . 4
C .4
D .14
9
.若不等式组)()1,31,0y x y k x y ⎧≤--⎪⎪⎪≤+⎨⎪≥⎪⎪⎩
表示的平面区域是一个等腰三角形区域,则直线
()1y k x =+
的倾斜角α的大小是( )
A .0
30 B . 0030,75 C .0030,120 D .0075,120 10.对于函数()f x ,x D ∈,若满足对任意正数ε,总存在正数δ,使得对任意12,x x D ∈,12x x ≠,只要12x x δ-<,就有()()12f x f x ε-<,则称函数()f x 在定义域D 内具有性质P 。
下列四个函数:①()()2,0,2f x x x =+∈; ②()()1,0,2f x x x =
∈; ③()[]2,0,2x f x x =∈; ④()24,0,,0 2.x f x x x =⎧=⎨<≤⎩
其中在定义域内具有性质P 的函数的序号是( )
A .①②
B .①③
C .②④
D .③④
二、填空题:本大题共5小题,每小题4分,共20分.把答案填写在答题卷的相应位置.
11.若()1cos ,0,2ααπ=
∈,则cos 2πα⎛⎫-= ⎪⎝⎭ 。
12.()()23a b b c ++的展开式中22ab c 的系数是 。
13.已知a 、b 为实数,0ab >,若函数1()sin 12
x x f x a b a b π=
+++-是奇函数,则()1f 的最小值是 。
14.一组数据如茎叶图所示。
若从中剔除2个数据,使得新数据组的平均数不变且方差最小,则剔除的2个数据的积等于 。
15.已知P 是双曲线22
221(0,0)x y a b a b
-=>>右支上异于顶点的一点,1F 、2F 分别是双曲线的左、右焦点,M 是12PF F 的内切圆的圆心。
若1
21212M P F M P F M F F
S S S -= ,则b a
= 。
三、解答题:本大题共6小题,共80分.
16.(本小题满分13分)
数列{}n a 的前n 项和为n S ,对*n N ∈,点(),n n a 恒在直线()2f x x k =-+上,点(),n n S
恒在抛物线2()g x ax x =+上,其中,k a 为常数。
(1)求数列{}n a 的通项公式;
(2)求直线()f x 与抛物线()g x 所围成的封闭图形的面积。
17.(本小题满分13分)
某数学兴趣小组共10名学生,参加一次只有5道填空题的测试。
填空第i 题的难度计算公式为i
i R P N
=(其中i R 为答对该题的人数,N 为参加测试的总人数)。
该次测试每道填空题的考前预估难度'i p 及考后实测难度i P 的数据如下表:
()()()222*
'''11221n n S p P p P p P n ⎡⎤=-+-++-⎢⎥⎣⎦ ,若*0.01S <,则称填空题的难度预估是合理的,否则为不合理。
请你判断该次测试中填空题的难度预估是否合理?并说明理由;
(2)从该小组中随机抽取2个考生,记被抽取的考生中第5题答对的人数为ξ,求ξ的分布列及数学期望。
18.(本小题满分13分)
已知a 为实数,函数3221()(2)3
f x x x a a x =--+-。
(1)当1a =时,求函数()f x 在0x =处的切线方程;
(2)若函数()f x 在区间[]1,2上单调递减,求(3)f -的取值范围。
19.(本小题满分13分)
如图,正方体ABCD-A 1B 1C 1D 1的棱长为2,P 为棱CD 上的一点,且三棱锥A- CP D 1的体积为
23。
(1)求CP 的长;
(2)求直线AD 与平面APD 1所成的角θ的正弦值;
(3)请直接写出正方体的棱上满足C 1M ∥平面APD 1的所有..
点M 的位置,并任选其中的一点予以证明。
20.(本小题满分14分)
20y +-过椭圆22
22:1(0)x y E a b a b
+=>>的两个顶点。
(1)求椭圆E 的标准方程;
(2)F 为椭圆E 的左焦点,且P ),(00y x 椭圆上的动点,过点M )0,4
1(0x 作直线PF 的垂线,垂足为N ,当0x 变化时,线段PN 的长度是否为定值?若是,请写出这个定值,并证明你的
结论;若不是,请说明理由。
21.(本小题满分14分)
湄洲湾港被誉为“世界不多,中国少有”的天然良港。
港口
各泊位每天的水深(水面与洋底的距离)()f x (单位:米)
与时间x (单位:小时)的函数关系近似地满足
()sin (,0,02)6f x A x B A B πϕϕπ⎛⎫=++>≤< ⎪⎝⎭。
在通常情况下,港口各泊位能正常进行额定吨位的货船的装卸货任务,而当货船的吨位超过泊位的额定吨位时,货船需在涨潮时驶入航道,靠近码头卸货,在落潮时返回海洋。
该港口某五万吨级泊位接到一艘七万吨货船卸货的紧急任务,货船将凌晨0点在该泊位开始卸货。
已知该泊位当天的最低水深12米,最大水深20米,并在凌晨3点达到最大水深。
(1)求该泊位当天的水深f(x)的解析式;
(2)已知该货船的吃水深度(船底与水面的距离)为12。
5米,安全条例规定,当船底与洋底距离不足1。
5米时,货船必须停止卸货,并将船驶向较深的水域。
据测算,一个装卸小队可使货船吃水深度以每小时0。
1米的速度减少。
(Ⅰ)如果只安排一装卸小队进行卸货,那么该船在什么时间必须停止卸货,并将船驶向较深的水域(精确到小时)?
(Ⅱ)如果安排三个这样的装卸小队同时执行该货船的卸货任务,问能否连续不间断的完成卸货任务?说明你的理由。