微积分56章期末复习试题
- 格式:docx
- 大小:144.06 KB
- 文档页数:13
数三《微积分》期末复习题一、选择题1. 对于xy x y x f +=2),(,原点(0,0)( C ).(A ) 不是驻点 (B ) 是极大值点 (C ) 是驻点却不是极值点 (D ) 是极小值点 2.下列积分值为0的是___C_A. ⎰+∞+0211dx x ; B. ⎰-1121dx x(利用几何意义去判定); C. 22sin (cos cos )1x x x dx xππ-++⎰; D. ⎰--1121dx x . 解:2arctan 11002π==+∞++∞⎰x dx x C :考察奇偶函数在对称区间上的积分D :利用几何意义:此积分可以看成函数012≥-=x y 在(-1,1)上的面积。
0,11222≥=+⇒-=y y x x y ,即是上半圆的面积2π3. 二元函数2222222,0(,)00,xy x y x y f x y x y ⎧+≠⎪+=⎨+=⎪⎩在点(0,0)处( B ). A. 连续,偏导数存在; B. 不连续,偏导数存在; C. 连续,偏导数不存在; D. 不连续,偏导数不存在. 4. 下列级数收敛的是___D____.A . 21+151n n n n ∞=++∑ B. ∑∞=+11n n n n )(C . ∑∞=⎥⎦⎤⎢⎣⎡-1)32(1n n nD. ∑∞=1!n n n n . 5 . 级数113cos ()n nn n ∞=-∑( B ). (A )条件收敛 (B ) 绝对收敛 (C ) 发散 (D ) 敛散性不能判定解:11333cos cos ()()nn n n n n -=≤,而113()nn ∞=∑收敛,所以绝对收敛。
6 设)(x f 为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则'(2)_____.F =(A) )(2f ; (B) )(22f ; (C) )(2f -; (D) 0. 解:对⎰⎰=tt ydx x f dy t F 1)()(交换积分次序得⎰⎰⎰-==tt x dx x x f dy x f dx t F 111)1)(()()(所以),1)(()(-='t t f t F'(2)(2).F f = 所以选A二、填空题1、若D 为区域2218x y ≤+≤,则3Ddxdy ⎰⎰=( 21π )=⎰⎰Ddxdy 3πππ21)8(33=-=⋅D S2、函数()y zf x=,其中f 可微,则.))((2x y x y f x z -'=∂∂3. 若ln 21()x xF x t dt =⎰,则()F x '=___2411ln x x x +________.所以本题的答案为24ln x x x+4. 已知22(,)y f x y x y xy x+=+-,则222)1()1(),(y y y x y x f ++-=__________.解:令vuv y v u x x y v y x u +=+=⇒=+=11,, 所以22211)()(),(v v v u v u f ++-=,222)1()1(),(y y y x y x f ++-= 5 设arctanxz y =,则=),(|11dz 1122dz dx dy =- . 本题考查全微分,求全微分实质就是两个偏导数z x y ∂∂∂,然后再利用z zdz dx dy x y∂∂=+∂∂ 本题:2222222111(),()1()1()zy z x xx x xy x y y y x y y y∂∂=⋅==⋅-=-∂+∂+++ 在点(1,1)处,有11,22z z x y ∂∂==-∂∂,所以1122dz dx dy =-6.若级数为1111,357-+-+ 则它的一般项__121)1(1--=-n u n n _______.7. 交换积分次序()⎰⎰12xxdy y x f dx ,=1(,)ydy f x y dx ⎰.8. 定积分4121cos ()xx x x dx e -⋅+=⎰______32______. 考查定积分的奇偶性,三、计算题1.求极限(,)limx y →.解:(,)(,)(,)limlimlimx y x y x y →→→==(,)(0,0)lim 1)2x y →==2. 已知方程),(x yxy f x z 3=,f 具有二阶连续偏导数,求222,,,z z z z x y y x y∂∂∂∂∂∂∂∂∂. 分析:本题考察复合函数求导,特别要注意在求二阶偏导数时要注意11(,)yf f xy x''=,22(,)yf f xy x''=。
《微积分》(全册)期末复习题 黄士叶 老师一、填空题1、复合函数x y 5sin 4=可分解为______________________;2、若y=f (x )的定义域是[0,1],则)(2x f 的定义域是__________;3、=-→)13(lim 1x x ___ 4、=++→21lim1x x x ____ 5、=+∞→22342limxx x ____6、=-+-→265lim22x x x x _______;7、=++-∞→3223lim232x x x x ___8、=→x x x 5sin lim_ 9.=→xx x ωsin lim_____10、=-→xxx x sin tan lim______;11、=→xx x tan lim_____12.xx xx 21lim )(+∞→=____ 13.x x x 1)1lim -→( = ___ 14、xx x)81lim -∞→( = __;15、43)31lim +∞→+x x x( = ______; 16xx x2)21lim +∞→( = ______;17、函数2)2(1+=x y 的间断点是______;是第______类间断点;18、函数2212)(2>≤⎩⎨⎧-=x x x x x f ,当2→x 时的左极限是______;右极限是______;在2=x 处______;(填是否连续) 19、函数3313)(≥<⎩⎨⎧-=x x x xx f ,当3→x 时的左极限是______;右极限是______;极限是______;在3=x 处______;(填是否连续) 20、函数2)1(1-=x y 当______时,是无穷大量;当______时,是无穷小量;21、函数11)2(1++-=x x y 的间断点是______和______;22、函数)(x f y =在点x 处的导数)(x f '表示曲线)(x f y =在点(x ,y )处的______和______; 23、曲线x y ln =在点M (e ,1)处的切线方程是____________ ;24、若函数)(x f y =在点0x 处可导,则)(x f y =在点0x 处必______,且=→)(lim 0x f x x ______;25、函数112)(3++=x x x f 在定义域内是单调______的; 26、函数6)1()(-=x x f 的凹区间为________ ;27、已知函数)(x f y =在点0x 处可导,且)(0x f 是极小值,则=')(0x f ___ ; 28、若点(1,4)是曲线23bx ax y +=的拐点,则a =_____,=b ___ ;29、已知函数F (x )和G (x )都是函数f (x )的原函数,且G (x )=2x e ,F (0)=0,则F(x )=________ ;30、已知不定积分⎰+=,)()(C x F dx x f 则⎰=dx x F x f )()(________ ;31、根据定积分的几何意义可知:⎰=-1021dx x ____;32、已知0)2(1⎰=+dx b x ,则b=________ ; 33、已知连续函数)(x f 是奇函数,且1)(10-=⎰dx x f ,则⎰-=01)(dx x f ________ ;34、曲线y=x 3在点A(2,8)处的切线斜率为_________; 二、选择题1、=→x x e 1lim ( )A 0; B -∞; C +∞; D 不存在。
微积分复习试题及答案10套(大学期末复习资料)习题一(A) 1、求下列函数的定义域:ln(4),x2(1) (2) (3) y,y,logarcsinxyx,,4a||2x,113y,,log(2x,3)(4) (5) yx,,,1arctanax,2x2、求下列函数的反函数及其定义域xx,32(1) (2) (3) yy,,yx,,,1ln(2)x2,1x,3x,,(4)yx,,,2sin,[,] 3223、将下列复合函分解成若干个基本初等函数2x(1) (2) (3) yx,lnlnlnyx,,(32ln)ye,,arcsin123(4) y,logcosxa4、求下列函数的解析式:112,求. (1)设fxx(),,,fx()2xx2(2)设,求 fgxgfx[()],[()]fxxgxx()1,()cos,,,5、用数列极限定义证明下列极限:1232n,1,,(1)lim(3)3 (2) lim, (3) ,lim0nn,,n,,n,,3353n,n6、用函数极限定义证明下列极限:x,31x,32lim(8)1x,,lim1,lim,(1) (2) (3) 23x,x,,x,,3xx,967、求下列数列极限22nn,,211020100nn,,3100n,limlimlim(1) (2) (3)32n,,n,,n,,54n,n,144nn,,,12n111,,,,?,lim,,lim,,,(4)? (5) ,,222,,x,,x,,1223n(n1),,,nnn,,,,1111,,k,0(6) (7)() lim,,,?lim,,2x,,x,,n,31541,,nknnkn,,,111,,,,?12n222lim(1)nnn,,(8) (9) limx,,x,,111,,,,?12n5558、用极限的定义说明下列极限不存在:1x,3limcosx(1) (2) (3) limsinlimx,,x,0x,3x|3|x,9、求下列函数极限:22xx,,56xx,,562(1) (2) (3) limlimlim(21)xx,,x,x,13x,3x,3x,2222256x,xx,,44()xx,,,(4) (5) (6) limlimlim2x,x,,,220xx,,21x,2,nx,1x,9x,1(7) (8) (9) limlimlimm3,1xx,9x,1x,1x,3x,1 2nnxxx,,,,?13x,,12(10), (11)lim() (12)limlim33x,1,x1x,1xx,,111,xx,110、求下列函数极限:22xx,,56xx,,56 (2) (1)limlim2x,,x,,x,3x,3nn,1axaxaxa,,,,?011nn,lim(11)xx,,,(3) (4)lim,(,0)ab,00mm,1x,,x,,bxbxbxb,,,,?011mm,lim(11)xxx,,,(5) x,,11、求下列极限式中的参变量的值:2axbx,,6lim3,(1)设,求的值; ab,x,,23x,2xaxb,,lim5,,(2)设,求的值; ab,x,11x,22axbxc,,lim1,(3)设,求的值; abc,,x,,31x,12x,0arcsin~xxtan~xx1cos~,xx12、证明:当时,有:(1),(2) ,(3); 213、利用等价无穷小的性质,求下列极限:sin2xsin2xsecxlimlimlim(1) (2) (3) 2x,0x,0x,0,tan5x3x2x3sinx21111sin,,x,limlim()(4) (5)lim (6)x,0x,0x,0xxx,tansinxxtansin1cos,x14、利用重要极限的性质,求下列极限:sin2xsinsinxa,xxsin(1) (2) (3) limlimlimx,0xa,x,0,sin3xxa,1cos2x xsinxx,tan3sin2xx,4,,(4) (5) (6) limlimlim1,,,x,0x,0,,xsinxx,3xx,, xxx,3xk,21,,,,,,(7) (8) (9) limlim1,,lim1,,,,,,,,,,xxx,,xxxk,,,,,,, 1/x(10)lim12,x ,,,,x15、讨论下列函数的连续性:,,,xx1,,2fxxx()11,,,,(1) ,,211xx,,,x,x,0,sinx,x,0(2)若,在处连续,则为何值. fxax()0,,a,,1,1sin1,,xxx,x,e(0,x,1)(3) 为何值时函数f(x),在[0,2]上连续 a,a,x(1,x,2),53xx,,,52016、证明方程在区间上至少有一个根. (0,1)32x,0x,317、证明曲线在与之间至少与轴有一交点. xyxxx,,,,252(B)arccoslg(3,x)y,1、函数的定义域为 ( ) 228,3x,x(A) ,,,,,7,3 (B) (-7, 3) (C) ,7,2.9 (D) (-7, 2.9),1 2、若与互为反函数,则关系式( )成立。
(A)p1(B)p1(C) 1 p 2(D)p24x,22f (x,y)2 2 , x 2 y 2xy7数0, 22xy在原点间断 ,中南民族大学06、07微积分(下)试卷及参考答案f (x1、已知y, y) x 2x 2y,则 f (x,y)2、已知 , 则1x 2edxe xdxf(x, y)3、函数x 2xy2y 2 y1在 点取得极值 .4、已知f (x, y) (xarctan y) arctan y, 则f x (1,0) .5、以 y3x(C 1 C 2x )e 3x (C 1,C 2为任意常数 )为通解的微分方、选择题 ( 每小题 3分, 共15分)e dx 与edx1xln p 1x 均收敛 ,则常数 p的取值范围是 ().(A) 在原点无定义(B) 在原点二重极限不存在(C) 在原点有二重极限 , 但无定义(D)在原点二重极限存在 , 但不等于函数值10、设 n 1 a n 收敛,则 n1( 1) a n(32(A) 绝对收敛 (B)条件收敛 (C) 发散(D)不定三、计算题 ( 每小题 6分, 共60分)I 18、若I 3x 231 x2 y 2dxdy 131 x 2y 2 dxdyy 2 4I 2 3 1 x 2 y 2 dxdy1 x2 y 2 2, 则下列关系式成立的是 ( ).(A) (C)I 1I 19、方程 y (A) (C)I 2 I 3I 2 I 3(B) (D)I 2 I 1I 3I 2I 1I 36y y ax b y (ax 29y 5(xbx)e 3x1)e具有特解 ( y (ax (ax 3bx 2 )e3x).(B) (D)3xb)e2 3x).所围图形绕 y轴旋转的旋转体的体积11、求由y x2, x 4, y13、z z(x,y)由z e z xy确定,求2z12、求二重极限22l x y im00 x2 y2 1 1xy2214、用拉格朗日乘数法求z x2 y2 1在条件x y 1下的极值.x 1yy1dy 2 e dx15、计算 2 y2围成的在第一象限内的区域16、计算二重积分 (x 2 y 2) dxdyD, 2其中 D 是由y轴及圆周x22y 21所17y y x18、判别级数n 1( n 1n 1)的敛散性.119、将函数 3 x 展开成 x 的幂级数 , 并求展开式成立的区间20、某公司可通过电台及报纸两种方式做销售某商品的广告 . 根据统计资料 , 销售收入 R (万元 )与电台广告费用 x1 (万元)的及报 纸广告费用 x2(万元) 之间的关系有如下的经验公式 :22R 15 14x 1 32x 2 8x 1x 2 2x 12 10x 22,求最优广告策略.四、证明题 ( 每小题 5分, 共10分)答案、填空题 (每小题 3分,共15分)评分评阅人1121、设 z ln( x 3 y 3 ) ,证明:u n22、若 n 1与都收敛 , 则 (u1v n )2收敛.2x 2(1 y) 1 2( , )1、 1 y. 2 、 . 3 、 3 3 . 4 、1. 5 、y" 6y' y 0.二、选择题 (每小题 3分,共15分)6、(C ). 7 、 (B). 8 、(A ) . 9、(D). 10 、(D).三、计算题 (每小题 6分,共60分)311、求由 y x2 , x 4, y 0所围图形绕 y轴旋转的旋转体的体积 .32 23解: y x2的反函数为 x y 3,y 0。
实用文档之"第一章 函数极限与连续"一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sin lim 0=→xx kx 成立的k 为 。
5、=-∞→x e xx arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim 0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、lim ____________x →+∞=。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题 1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
微积分下学期末试卷及答案Document number:NOCG-YUNOO-BUYTT-UU986-1986UT微积分下期末试题(一)一、填空题(每小题3分,共15分)1、已知22(,)y f x y x yx +=-,则=),(y x f ___2(1)1x y y -+__________.2、已知, π=⎰∞+∞--dx ex 2则=⎰∞+--dx e x x21.3、函数22(,)1f x y x xy y y =++-+在 点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f __1______.5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________."6'0y y y -+= 二、选择题(每小题3分,共15分 6 知dxexp ⎰∞+- 0)1(与⎰-ep x x dx11ln 均收敛,则常数p 的取值范围是( C ).(A) 1p > (B) 1p < (C) 12p << (D) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( B ).(A) 在原点无定义 (B) 在原点二重极限不存在(C) 在原点有二重极限,但无定义 (D) 在原点二重极限存在,但不等于函数值8、若2211x y I +≤=⎰⎰,22212x y I ≤+≤=⎰⎰,22324x y I ≤+≤=⎰⎰,则下列关系式成立的是( A). (A)123I I I >> (B)213I I I >> (C)123I I I <<(D)213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解( D ).(A) b ax y += (B) x e b ax y 3)(+= (C) x e bx ax y 32)(+= (D) xe bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nna ( D ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.解:32y x =的函数为23,0x y y =>。
一、选择题(每题5分,共25分)1. 下列函数中,属于连续函数的是()A. $f(x) = \frac{1}{x}$,定义域为$x \neq 0$B. $f(x) = |x|$,定义域为$R$C. $f(x) = \sqrt[3]{x}$,定义域为$x \geq 0$D. $f(x) = \frac{\sin x}{x}$,定义域为$x \neq 0$2. 若函数$f(x)$在$x=1$处可导,则$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$的值为()A. $f'(1)$B. $f(1)$C. 0D. 不存在3. 已知函数$f(x) = x^3 - 3x + 1$,则$f'(x)$的值为()A. $3x^2 - 3$B. $3x^2 + 3$C. $3x^2 - 6$D. $3x^2 + 6$4. 设函数$f(x) = \ln x$,则$f'(x)$的值为()A. $\frac{1}{x}$B. $\frac{1}{x^2}$C. $x$D. $x^2$5. 设函数$f(x) = e^x$,则$\lim_{x \to \infty} f(x)$的值为()A. 0B. 1C. $\infty$D. 不存在二、填空题(每题5分,共25分)6. 函数$f(x) = x^2 - 4x + 3$的极值点为________。
7. 设$f(x) = \frac{x^2 - 1}{x - 1}$,则$f'(1)$的值为________。
8. 函数$f(x) = \ln(x^2 + 1)$的导数$f'(x)$为________。
9. $\lim_{x \to 0} \frac{\sin x}{x}$的值为________。
10. 设$f(x) = e^{-x}$,则$f''(x)$的值为________。
三、解答题(每题15分,共60分)11. (15分)求函数$f(x) = x^3 - 6x^2 + 9x + 1$的极值。
微积分下期末试题一一、填空题每小题3分,共15分1、 已知22(,)y f x y x yx +=-,则=),(y x f ___2(1)1x y y -+__________.2、 已知, π=⎰∞+∞--dx ex 2则=⎰∞+--dx e x x213、函数22(,)1f x y x xy y y =++-+在 点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f __1______.5、以x e x C C y 321)(+=21,C C 为任意常数为通解的微分方程是 ____________________."6'0y y y -+= 二、选择题每小题3分,共15分6知dxexp ⎰∞+- 0)1(与⎰-ep x x dx11ln 均收敛,则常数p 的取值范围是 C .A 1p >B 1p <C 12p <<D 2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0,4),(222222y x y x y x x y x f 在原点间断,是因为该函数 B .A 在原点无定义B 在原点二重极限不存在C 在原点有二重极限,但无定义D 在原点二重极限存在,但不等于函数值8、若2211x y I +≤=⎰⎰,22212x y I ≤+≤=⎰⎰,22324x y I ≤+≤=⎰⎰,则下列关系式成立的是 A.A 123I I I >> B213I I I >> C123I I I <<D213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解 D .A b ax y +=B xe b ax y 3)(+=C x e bx ax y 32)(+=D x e bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nna D .A 绝对收敛B 条件收敛C 发散D 不定11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.解:32y x=的函数为23,0x y y =>;且4=x 时,8=y ;于是)6()3(分分24882233837730(4)16(80)33128128(80)775127V y dy y dyy ππππππππ=-=--⎡⎤=-⋅=-⋅-⎢⎥⎣⎦=⎰⎰12、求二重极限11lim22220-+++→→y x y x y x .解:原式11)11)((lim 22222200-++++++=→→y x y x y x y x 3分2)11(lim 220=+++=→→y x y x 6分13、),(y x z z =由xy e z z=+确定,求y x z∂∂∂2.解:设(,,)zF x y z z e xy =+-,则x F y=-,y F x=- ,1zz F e =+11x z z z z F y y x F e e ∂-=-=-=∂++, 11y z z z F z x x y F e e ∂-=-=-=∂++ 3分222111(1)1(1)z z z zz z z ze y e z ye xy yx y y e e e e ∂+-⋅⋅∂∂∂⎛⎫===-⎪∂∂∂++++⎝⎭6分14、用拉格朗日乘数法求221z x y =++在条件1=+y x 下的极值. 解:222(1)1222z x x x x =+-+=-+ 令'420z x =-=,得12x =,"40z =>,12x =为极小值点. 3分故221z x y =++在1y x =-下的极小值点为11(,)22,极小值为326分 15、计算⎰⎰1 212dxe dy yyyx .解:2112123182xyyy I dy e dx e e ==-⎰⎰ 6分 16、计算二重积分22()Dxy dxdy+⎰⎰,其中D 是由y 轴及圆周221x y +=所围成的在第一象限内的区域.解:22()Dx y dxdy +⎰⎰=1320d r drπθ⎰⎰=8π6分17、解微分方程x y y +'=''.解:令y p '=,p y '='',方程化为x p p +=',于是])1([1C e x e x x ++-=-x e C x 1)1(++-= 3分 ⇒2121)1(21])1([C e C x dx e C x dx p y x x +++-=++-==⎰⎰ 6分18、判别级数)11(133∑∞=--+n n n 的敛散性.解:=3分因为lim 11n n →∞==19、将函数x -31展开成x 的幂级数,并求展开式成立的区间.解:由于3113131x x -⋅=-,已知 ∑∞==-011n nx x ,11<<-x , 3分 那么 ∑∑∞=+∞===-01031)3(3131n nn n n xx x ,33<<-x . 6分20、某公司可通过电台及报纸两种方式做销售某商品的广告.根据统计资料,销售收入R 万元与电台广告费用1x 万元的及报纸广告费用2x 万元之间的关系有如下的经验公式:222121211028321415x x x x x x R ---++=,求最优广告策略 解:公司利润为22212121211028311315x x x x x x x x R L ---++=--= 令⎪⎩⎪⎨⎧=--='=--=',020831,04813211221x x L x x L x x 即⎩⎨⎧=+=+,31208,13842121x x x x得驻点)25.1,75.0()45,43(),(21==x x ,而 3分0411<-=''=x xL A ,821-=''=x x L B ,2022-=''=x x L C , 064802>-=-=B AC D ,所以最优广告策略为:电台广告费用75.0万元,报纸广告费用25.1万元. 6分 四、证明题每小题5分,共10分21、设1133ln()z x y =+,证明:13z z xy x y ∂∂+=∂∂. 证:2233113311113333,x y z z xyx yx y --∂∂==∂∂++22、若∑∞=12n nu与∑∞=12n nv都收敛,则∑∞=+12)(n n n v u 收敛.证:由于)(22)(022222n n n n n n n n v u v u v u v u +≤++=+≤, 3分 并由题设知∑∞=12n nu与∑∞=12n nv都收敛,则)(2212n n n v u∑∞=+收敛,从而∑∞=+12)(n n nv u收敛; 6分微积分下期末试题二一、填空题每小题3分,共15分1、设)(y x f y x z -++=,且当0=y 时,2x z =,则=z ;答案2222x xy y y -++2、计算广义积分⎰+∞13x dx = ;答案12 3、设xye z =,则=)1,1(dz ;答案)(dy dx e +4、微分方程x xe y y y 265=+'-''具有 形式的特解. 答案xe bx ax 22)(+5、设14n n u ∞==∑,则11122n n n u ∞=⎛⎫-=⎪⎝⎭∑_________;答案1二、选择题每小题3分,共15分1、2222003sin()lim x y x y x y →→++的值为 A.0 C D.不存在2、),(00y x f x 和),(00y x f y 存在是函数),(y x f 在点),(00y x 可微的 A ;A.必要非充分的条件;B.充分非必要的条件;C.充分且必要的条件;D.即非充分又非必要的条件; 3、由曲面z x y =--422和z =0及柱面x y 221+=所围的体积是 D ;A.d d θπr r r4222-⎰⎰;B.204d rπθ⎰⎰;C、20d rπθ⎰⎰; D.442012d d θπr r r-⎰⎰4、设二阶常系数非齐次线性方程()y py qy f x '''++=有三个特解x y =1,xe y =2,x e y 23=,则其通解为 C ;A.xx e C e C x 221++; B.x x e C e C x C 2321++;C.)()(221x x x e x C e e C x -+-+;D.)()(2221x e C e e C xx x -+-5、无穷级数∑∞=--11)1(n pn n p 为任意实数 D A 、收敛 B 、绝对收敛 C 、发散 D 、无法判断三、计算题每小题6分,共60分1、求下列极限:00x y →→;解:0x y →→00x y →→= …3分1)112x y →→==+= …6分2、求由x y =与直线1=x 、4=x 、0=y 所围图形绕x 轴旋转的旋转体的体积;解:421d x V xπ=⎰ …4分7.5π= …6分3、求由xyz e z=所确定的隐函数),(y x z z =的偏导数,z z x y ∂∂∂∂; 解:方程两边对x 求导得:x z xyyz x z e z∂∂+=∂∂,有)1(-=-=∂∂z x z xy e yz x z z …3分方程两边对y 求导得:y z xy xz y z e z∂∂+=∂∂,有)1(-=-=∂∂z y z xy e xz y z z …6分4、求函数322(,)42f x y x x xy y =-+-的极值;解:322(,)42f x y x x xy y =-+-,则2(,)382x f x y x x y=-+,(,)22y f x y x y=-,(,)68xx f x y x =-,(,)2xy f x y =,(,)2yy f x y =-,求驻点,解方程组23820220x x y x y ⎧-+=⎨-=⎩,,得)0,0(和(2,2). …2分对)0,0(有(0,0)80xx f =-<,(0,0)2xy f =,(0,0)2yy f =-,于是2120B AC -=-<,所以)0,0(是函数的极大值点,且(0,0)0f = …4分对(2,2)有(2,2)4xx f =,(2,2)2xy f =,(2,2)2yy f =-,于是2120B AC -=>, (2,2)不是函数的极值点;6、计算积分⎰⎰D d x y σ,其中D 是由直线x y x y 2,==及2,1==x x 所围成的闭区域;解:221x x Dyy d dx dyx x σ=⎰⎰⎰⎰. (4)分213924xdx ==⎰ …6分7、已知连续函数)(x f 满足⎰+=xx x xf dt t f 0)(2)(,且0)1(=f ,求)(x f ;解:关系式两端关于x 求导得:1)(2)(2)(+'+=x f x x f x f 即x x f x x f 21)(21)(-=+' …2分这是关于f )(x 的一阶线性微分方程,其通解为:=1)(1-=+-x c c x x…5分又0)1(=f ,即01=-c ,故1=c ,所以11)(-=xx f …6分8、求解微分方程212y y y '-+''=0 ;解:令y p '=,则dp y pdy ''=,于是原方程可化为:221dp p p dy y +=- …3分即201dp p dy y +=-,其通解为22111(1)dy yp c e c y --⎰==- …5分21)1(-=∴y c dx dy 即dx c y dy 12)1(=-故原方程通解为:2111c x c y +-= …6分9、求级数1n n ∞=的收敛区间; 解:令2t x =-,幂级数变形为1n n ∞=1lim 1n t n n n a R a →∞+===. …3分当1-=t 时,级数为0(1)nn ∞=-∑收敛;当1=t 时,级数为1n ∞=.故1n n ∞=)1,1[-=t I , (5)分那么1n n ∞=的收敛区间为[1,3)x I =. …6分10、 判定级数∑∞=⋅1!)2sin(n n n x 是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛;解:因为sin(2)1!!n x n n ⋅≤ (2)分由比值判别法知11!n n ∞=∑收敛1(1)!lim 01!n n n →∞+=, …4分从而由比较判别法知1sin(2)!n n x n ∞=⋅∑收敛,所以级数1sin(2)!n n x n ∞=⋅∑绝对收敛. …6分四、证明题每小题5分,共10分1、设正项级数1nn u∞=∑收敛,证明级数1n ∞=也收敛;证:)(2111+++≤n n n n u u u u , …3分 而由已知∑++)(211n n u u 收敛,故由比较原则,∑+1n n u u 也收敛; …5分2、设)(22y x f y z -=,其中)(u f 为可导函数, 证明211y zy z y x z x =∂∂+∂∂.证明:因为22f f xy xz '-=∂∂, …2分222f f y f y z '+=∂∂ (4)分所以222212211y zyf yf f y f f f y y z y x z x =='++'-=∂∂+∂∂. …5分微积分下期末试题三一、填空题每小题3分,共15分1、设()z x y f y x =++-,且当0x =时,2z y =,则=z ;答案2222x xy x y -++2、计算广义积分21dxx +∞⎰= ;答案13、设)1ln(22y x z ++=,则(1,2)dz=;答案1233dx dy +4、微分方程x e x y y y 3)1(596+=+'-''具有 形式的特解.xe bx ax 323)(+ 5、级数∑∞=+1913n nn 的和为 ;答案58二、选择题每小题3分,共15分1、2222003sin()lim x y x y x y →→++的值为 BA 、0B 、3C 、2D 、不存在2、),(y x f x 和),(y x f y 在),(00y x 存在且连续是函数),(y x f 在点),(00y x 可微的 BA.必要非充分的条件;B.充分非必要的条件;C.充分且必要的条件;D.即非充分又非必要的条件; 3、由曲面z x y =--422和z =0及柱面224x y +=所围的体积是 BA. 240d rπθ⎰⎰;B.2204d rπθ⎰⎰;C、20d rπθ⎰⎰;D.204d rπθ⎰⎰4、设二阶常系数非齐次微分方程()y py qy f x '''++=有三个特解21y x =,x e y =2,x e y 23=,则其通解为 D A 、22212()()x x x C e e C e x -+-; B 、22123x xC x C e C e ++;C 、2212x xx C e C e ++; D 、)()(22212xx x e x C e e C x -+-+ 5、无穷级数121(1)n pn n -∞=-∑p 为任意实数 A A 、无法判断 B 、绝对收敛 C 、收敛 D 、发散 三、计算题每小题6分,共60分1、求下列极限:00x y →→;解:0000x x y y →→→→=…3分0011224x y →→-===-+ …6分2、求由在区间]2,0[π上,曲线x y sin =与直线2π=x 、0=y 所围图形绕x 轴旋转的旋转体的体积;解:220sin d x V x xππ=⎰ …4分214π= …6分3、求由xy xyz z=-e 所确定的隐函数),(y x z z =的偏导数,z z x y ∂∂∂∂;解:一令=),,(z y x F xy xyz z--e 则 y yz x F --=∂∂, x xz y F --=∂∂, xy z F z -=∂∂e利用公式,得xy y yz xy y yz z F x Fx z zz -+=----=∂∂∂∂-=∂∂e e …3分 xy x xz xy x xz z F y Fy z zz -+=----=∂∂∂∂-=∂∂e e …6分二在方程两边同时对x 求导,得解出xy y yz x z z-+=∂∂e , …3分同理解出xy x xz y z z-+=∂∂e …6分4、求函数33812),(y xy x y x f +-=的极值;解:33812),(y xy x y x f +-=,则yx y x f x 123),(2-=,xy y x f y 1224),(2-=,x y x f xx 6),(=,12),(-=y x f xy ,,y y x f yy 48),(=求驻点,解方程组⎪⎩⎪⎨⎧=-=-,,01224012322x y y x 得)0,0(和)1,2(. …2分对)0,0(有0)0,0(=xx f ,12)0,0(-=xy f ,0)0,0(=yy f ,于是01442>=-AC B ,所以)0,0(点不是函数的极值点. …4分对)1,2(有12)1,2(=xx f ,12)1,2(-=xy f ,48)1,2(=yy f ,于是048121442<⨯-=-AC B ,且012>=A ,所以函数在)1,2(点取得极小值,33(2,1)21221818f =-⨯⨯+⨯=- …6分 …5分6、计算二重积分⎰⎰+D d y x σ)2(,其中D 是由x y x y 1,==及2=y 所围成的闭区域; 解:211(2)(2)yyDx y d dy x y dxσ+=+⎰⎰⎰⎰ …4分2221119(21)6y dy y =--=⎰ …6分7、已知连续函数)(x f 满足0)(2)(0=++⎰xx x f dt t f ,求)(x f ;解:关系式两端关于x 求导得:01)(2)(=+'+x f x f 即21)(21)(-=+'x f x f …2分这是关于f )(x 的一阶线性微分方程,其通解为:2221)(x x xce c e e --+-=+-= …5分又0)0(=f ,即c +-=10,故1=c ,所以1)(2-=-xex f …6分8、求微分方程02)1(2='-''+y x y x 的通解;解 这是一个不明显含有未知函数y 的方程作变换 令 dyp dx =,则22d y dp dx dx =,于是原方程降阶为2(1)20dpx px dx +-=…3分, 分离变量221dp xdx p x =+,积分得21ln ln(1)ln p x C =++即 21(1)p C x =+,从而 21(1)dyC x dx =+ …5分再积分一次得原方程的通解y =312()3x C x C ++ …6分9、求级数∑∞=-1)3(n nn x 的收敛区间; 解:令3-=x t ,幂级数变形为∑∞=1n n n t ,11lim 1n tn n n a n R a n →∞++===. …3分当1-=t 时,级数为∑∞=-01)1(n nn 收敛;当1=t 时,级数为∑∞=11n n 发散.故∑∞=1n nn t 的收敛区间是)1,1[-=t I , (5)分那么∑∞=-1)3(n n n x 的收敛区间为)4,2[=x I . …6分 10、 判定级数1cos()!n n x n ∞=⋅∑是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛:解:因为cos()1!!n x n n ⋅≤ …2分 由比值判别法知11!n n ∞=∑收敛1(1)!lim 01!n n n →∞+=, …4分从而由比较判别法知1cos()!n n x n ∞=⋅∑收敛,所以级数1cos()!n n x n ∞=⋅∑绝对收敛. …6分四、证明题每小题5分,共10分1、设级数21nn a∞=∑收敛,证明1(0)nn n a a n ∞=>∑也收敛;证:由于)1(21||22n a n a n n +≤, …3分 而∑2na ,∑21n 都收敛,故∑+)1(2122n a n 收敛,由比较原则知 n a n ∑收敛.;…5分 2、设)2(cos 22tx z -=,证明:02222=∂∂∂+∂∂t x z t z ;证明: 因为)2sin()21()2sin()2cos(22t x t x t x t z -=-⋅--⋅-=∂∂, …2分)2cos(22t x t z --=∂∂,22222)2cos(2t zt x x t z t x z ∂∂-=-=∂∂∂=∂∂∂, …4分所以02222=∂∂∂+∂∂t x z t z (5)分微积分下期末试题及答案四一、选择题每题2分1、设x ƒ()定义域为1,2,则lg x ƒ()的定义域为 A 、0,lg2 B 、0,lg2] C 、10,100 D 、1,22、x=-1是函数x ƒ()=()221x x x x --的 A 、跳跃间断点 B 、可去间断点 C 、无穷间断点 D 、不是间断点3、试求0x →A 、-14 B 、0 C 、1 D 、∞4、若1y xx y +=,求y '等于A 、22x y y x --B 、22y x y x --C 、22y x x y-- D 、22x y x y +-5、曲线221xy x=-的渐近线条数为 A 、0 B 、1 C 、2 D 、3 6、下列函数中,那个不是映射A 、2y x = (,)x R y R +-∈∈B 、221y x =-+C 、2y x =D 、ln y x = (0)x > 二、填空题每题2分1、__________ 2、、2(1))lim ()1x n xf x f x nx →∞-=+设 (,则 的间断点为__________3、21lim51x x bx ax→++=-已知常数 a 、b,,则此函数的最大值为__________ 4、263y x k y x k =-==已知直线 是 的切线,则 __________5、ln 2111x y y x +-=求曲线 ,在点(,)的法线方程是__________ 三、判断题每题2分1、221x y x=+函数是有界函数 2、有界函数是收敛数列的充分不必要条件 3、limββαα=∞若,就说是比低阶的无穷小4、可导函数的极值点未必是它的驻点5、曲线上凹弧与凸弧的分界点称为拐点 四、计算题每题6分 1、1sin xy x=求函数 的导数2、21()arctan ln(12f x x x x dy =-+已知),求3、2326x xy y y x y -+="已知,确定是的函数,求4、20tan sin lim sin x x xx x→-求 5、计算6、210lim(cos )x x x +→计算 五、应用题1、设某企业在生产一种商品x 件时的总收益为2)100Rx x x =-(,总成本函数为2()20050C x x x =++,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大8分2、描绘函数21y x x=+的图形12分六、证明题每题6分1、用极限的定义证明:设01lim (),lim ()x x f x A f A x+→+∞→==则2、证明方程10,1xxe =在区间()内有且仅有一个实数 试题四答案 一、 选择题1、C2、C3、A4、B5、D6、B 二、填空题1、0x =2、6,7a b ==-3、184、35、20x y +-= 三、判断题1、√2、×3、√4、×5、× 四、计算题 1、 2、 3、 解: 4、解: 5、 解:6、解: 五、应用题1、解:设每件商品征收的货物税为a ,利润为()L x2、 解:图象六、证明题1、证明:2、证明:。
微积分(III ) MOOC 期末考试题选择题111 lim=( D ).23() ()321()8 ()8x y x yA B C D →→-、计算10333262 lim(12)=( A ).() ()() ()xx y xy A e B e C e D e→→+、计算222222222222223322222222223B 11,0,()cos ,0,(1)(,) (2)(,)0,0.0,0.,0,,0,(3)(,) (4)(,)0,0.0x y x y x y x y x y f x y f x y x y x y xy x y x y x y x y x y f x y f x y x y ⎧+≠++≠⎪++==⎨⎪⎪+=+=⎩⎩-⎧+≠+≠⎪++==⎨⎪+=⎩、下列二元函数在(0,0)处可微的有( )个.22,0.()0 ()1 ()2 ()3x y A B C D ⎧⎪⎨⎪+=⎩4(,)(0,0) ( D )(1)(,)(0,0) (2)lim (,0)lim (0,)(3)(,)(0,0) (4)lim (,)()0 ()1 ()2x y x y f x y f x y f x f y f x y f x y A B C →→→→、若在点的两个偏导数存在,则下列命题不正确的个数为在点连续与均存在在点可微存在()3D (0,21)3333e 3 =( C ).11()(1) ()(1)2211()(1) ()(1)33x y z x x y z z xA eB eC eD e ----=-+∂∂-+-+,5、已知z 是由方程确定的函数,则22(1,1)6 ln()=( A ).11() ()22()2 ()2zz x y x yA B C D -∂=+∂∂--、已知,则()()221,07,,=( D ).1() () 121()2 ()8zx y e z z z x y zx A B C D +-==∂∂--、设方程确定则23222(,,), 30(1,1,1)=( C ).()1 ()2 () 2 ()1x f x y z xy z z x y z xyz f A B C D =++-=--8、已知函数由方程确定,则222222334=() ()3 ()3 ()4DD x y dxdy A B C D ππππππ≤+≤⎰⎰9、设为,计算积分(C )1111=( A ).()ln ()ln ()()ln ln yy y y y y y y y z x dz A yx dx x xdy B x xdx yx dy C yxdx yxdy D x xdx x xdy----=++++10、已知,则全微分10 (3,1,2) ( C ).312312() ()152152() (3)5(1)2(2)0 ()(3)5(1)2(2)0xy yz zx x y z x y z A B C x y z D x y z ++-=--+--+-====---+++-=--++--=11、计曲面的切平面在方程算在点为2226,12(1,2,1) ( D ).0.121121() ()121101()(1)2(2)(1) =0 ()x y z x y z x y z x y z A B C x y z D x z⎧++=-⎨++=⎩-+--+-====---++--=、设曲线 则此曲线在点的法平面方程为221342210,( A ).()(1,1,2) ()(1,1,2)() (1,1,2) ()(1,1,2)z x y x y z A B C P P D =--++-=----抛物面点处的切平面平行于平面切点的坐标、已知是上则 1 ( A ).9() () 222() 9 ()9xyz A B C D =曲面的切平面与坐标面围成的四面体的体积为14、计算152( D ).()6 () 12()2 ()4A B C D ++=上任一点处的切平面在各坐标轴上的截距之和为、计算16(,,)(4,2,1)(2,1,1)=( C ).( () 1( (f x y z l flA B C D =-=-∂∂函数处沿方向的方向导、计算数2172,(2,1,1)()(2,4,2) () (2,4,2)()(2,4,2) () (2,2,2 A )u xy z A B C D u =-------函数在点处沿着().方向的方向、值最大。
设导数则22218224100 ()6 () 4 ()2 C ( ) 1x y z x y z A B C D ++----=--、计隐函数为().算的极小值3(1,1) (,)(1,1),(1,1)=1(1,1)=2, (1,1)=3,()=[,(,)], [()]|( A ).()51 ()45 ()6 ()4x y z f x y f f f d x f x f x x x dxA B C D ϕϕ19、已知=在处可微且,则22202 2 3( ()4( ()C z x y x y z A B CD =++-=曲面到平面的最短距离为(算).、计23211P=(1)d Q=(1)d R=(1)d B ()P Q R ()P Q R ()P R ()P R VVVx y z x y z V x y z V x V y z V A B C Q D Q ++=+++++++++≥≥≤≤≤≤≥≥⎰⎰⎰⎰⎰⎰⎰⎰⎰其中是由三坐标面与平面所围成的闭区、设且,,,则下列正确的是( ).域,2202cos 2200220d (cos ,sin )d ()d (,)d ()d (,)d ()d (,)d ()d (,)d f r r r r A x f x y y B x f x y y C x f x y y D x f x y yπθθθθ⎰⎰⎰⎰⎰⎰22、化为直角二次积分的二次积分,则下列正确坐标形的是B 式( )⎰2sin d d =()2sin1 ()2cos1 ()1sin1 ()1cos1D D y x y x xx y x A B C D ==--⎰⎰是由抛物线所围成的闭区域,积分(C )23、计算.设与直线()()()2111124=11()(1) ()12211()1 ()122y xdx e dy A e B e C e D e -------⎰⎰、计算积分( A ).22222254,0,24d =5() ()249()5 ()C 2VV x y z z x y x z V A B C D ππππ++≤≥+≤⎰⎰⎰、设计算是由不等式:所确定的闭区域,积分( )2222261= 4() ()151() ()415VV x y z z dv A B C D ππππ++≤⎰⎰⎰、设是由不等式:所确定的闭区域,计算积分( B ).222715,(,,)(,,)4822() ()334488() 3B ()3V z x y z zx y z x y z A B C D μππππ=++==一物体占有的、设与平面空间闭区域由曲面的体密度为则该物体的质量为( )所围成在点.,221()322281,11[]d d =212() ()332() ()3x y Dx y y x y x e x y A B C D e D +==-=---⎰⎰是由直线所围成的闭区域,积分( A ).、设,计算222292=8()()529() ()4A 4VV x y z z V A B C D ππππ++=⎰⎰⎰、设是由球面所围成的闭区域,积分( )计算.22222222304sin=() ()2 ()6 ()2D D x y A B C D ππππππ≤+≤---⎰⎰、设:,计算积分(C )2222310,0,0 d =()sin cos ()sin cos 22()cos cos B ()si 22VV x y z R x y z V A R R R B R R R C R R R D R R ππππ++====+-+-⎰⎰⎰、设计算()是由球面与平面所围成的在第一卦限内的闭区域,积分()()(cos ( )n R )2222321,,23(32)=B ()2 ()6 ()3 ()8Lx y L a x y ds A a B a C a D a+=+⎰Ñ、设为椭圆其周长为计算( ).2222223333,330.()d =24() ()331() ()23B Lx y z a x y z x y s A a B a C a D a L ππππ⎧++=⎨++=⎩+⎰Ñ为圆周积分( ).、设计算222340=() 2 ()44() 2 ()24D 2R RR R RLR L x y R y x y e eA R eB Re C e D R e πππ+===+--+-⎰j 是由曲线,积分(、设与直线及在第一象限内所围的扇 形的整个边界算)计.()435 04A ()16 ()8 ()24 ()0x oy x A B C D θπ=≤≤⎰、计算曲线的弧长为( ).2222236 1 (A ).()4 ()2()2(2)()2x y x x y z A B C D ππ+=++=--、圆柱面位于球面内的面积是12121212222222221237:,0:,0,0,0,().()4 ()4()4 ()4V V V V V V V V V x y z R x V x y z R x y z A A xdV xdVB ydV ydVC zdV zdVD xyzdV xyzdV++≤≥++≤≥≥≥====⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰、设空间区域和则下列正确的是1ln ln 10011ln 038d (,)d ()d (,)d ()d (,)d()d (,)d ()d (,)dy xeee xe xe e e xy f x y x A x f x y y B x f x y y C x f x y y D x f x y y ⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰改变二次积分的顺序,则下列正确的是( A ).、222222239(),()(),(1)=1, (1)=1() ()2()2 ()4x y z t f u F t f x y z dxdydz f F A B C D ππππ++≤'=++⎰⎰⎰、设连续且则( D ).()d =()4 ()2 ()3 ()D Sz x y z S B C S A D ππππ=++⎰⎰40、设曲面为半球面积分( 计算 ).222222222410,(0)d =()2ln(1) ()2arctan()ln(1) ()arc A tan s x y R z z H H Sx y z H HA B R R H HC D R S Rππππ+===>++++⎰⎰为柱面位于平面之间的部分,积分( 、设 )曲面计算.222242(0)()ln ()2ln()2ln ()lnC s x y z R z h h R R hA RB R h R R hC RD R h S Rππππ++==<<⎰⎰、设曲为球面位于平面的部分,积分( 以上 ).面计算222B 16()2 ()3()3 ()6V z x y z V A B C D ππππ=+=43、设是由所围成的立体,则的表面积为( ).22244 1 111444()(,,) ()(,,)333333444222()(,,) (B )(,,)x y z A B C D ππππππππππππ++=质量分布在球面在第一卦限部分的边界上的形心的坐标、计为( ).算 222224,0C 31()(1,1,) ()(1,1,)83453()0,0, ()(0,0,)568V R x y z R z A R B R C R D R ≤++≤≥⎛⎫ ⎪⎝⎭45、计算质量均匀分布在空间区域:上的形心的坐标为( ).2224334462(0)1d =2()4 ()4()2 C ()2S x y z Rz R z S A R B RC RD S R ππππ++=>⎰⎰Ò为球面,积分( ).、设曲面计算()47(1cos )0D ()4 ()3 ()6 ()8r a a A a B a C a D aθ=->、计算心形线的全长为( ).481(01)2() ()331() (A )32z z A B C D μππ==-≤≤、计算面密度的质量为( ).圆锥壳49(4)1,0, 6 8844()(,) () (,)3333()(3,3) () C (4,4)z xy x y x y x y A B C D =--==+=、计算函数在所围城区域取得最小值的点的为(坐标).2222322344250++=[tan()]= . 44() ()33()4 ()4sS x y z R x y z dS A R B R C R D R ππππ+⎰⎰Ò、曲面:,计算( B )。