最低点,因此周期应该约是T=1.2 s.因此③、④错误.本题
应选C.
8.某质点做简谐运动,其位移随时间变化的关系式为x=
Asin t,则质点(
4
)
A.第1 s末与第3 s末的位移相同 B.第1 s末与第3 s末的速度相同 C.3 s末至5 s末的位移方向都相同 D.3 s末至5 s末的速度方向都振幅之比、各自的频率以及它们的相 2
【解析】根据x=Asin(ωt+ )得:A1=4a,A2=2a.A1∶A2=4a∶
2a=2∶1,由ω1=ω2=4πb及ω1=ω2=2πf得:f1=f2=2b,它们的 相位差是:
1 (4πbt+ 3 π)-(4πbt+ π)=π 2 2
【典例1】一个做简谐运动的质点,其振幅是4 cm,频率是 2.5 Hz,该质点从平衡位置经过2.5 s后的位移大小和路程是 ( A.4 cm,24 cm C.0,24 cm B.4 cm,100 cm D.0,100 cm )
【解题指导】先作出简谐运动的模型(如图所示)
(1)根据频率与周期的关系计算周期; (2)根据题中给出的运动时间2.5 s找出振子所在的位置及时 间与周期的关系.
【解析】选A、D.由表达式x=Asin t知,ω= ,简谐运动的
4 4 2 周期T= =8 s.表达式对应的振动图象如图所示.
2 质点在1 s末的位移x1=Asin( ×1)= A 4 2
质点在3 s末的位移x3=Asin( ×3)= 2 A,故A正确;由前面
计算可知t=1 s和t=3 s质点连续通过同一位置,故两时刻质
关
【解析】选B、C.简谐运动的频率与物体运动的快慢没有关
系,描述物体运动的快慢用速度,假如说物体振动过程中最 大速度越大,也不能说明它的频率越大.振动的越快和运动 的越快意义是不同的,故A错误;简谐运动的物体在一个周期 内速度的方向改变两次,频率越高,单位时间内所包含的周 期个数越多,速度方向变化的次数就越多,故 B、C正确;弹 簧振子的固有频率与物体通过平衡位置的速度没有关系,它 由振动系统的固有量振子的质量m和弹簧的劲度系数k决定,故