关于向量与矩阵范数笔记
- 格式:pdf
- 大小:118.18 KB
- 文档页数:6
矩阵的范数文章目录•前言•一、诱导范数(Induced norm)••谱范数•二、向量式范数(Entry-wise norm)••F-范数•三、Schatten 范数(Schatten norm)•四、矩阵2-范数•总结前言矩阵分析学习笔记之矩阵范数。
三类重要的矩阵范数:诱导范数(Induced norm),向量式范数(Entry-wise norm),Schatten 范数(Schatten norm)。
矩阵A ∈ K m × n A\in K^{m\times n}A∈Km×n表示其定义在实数域或者复数域上。
一、诱导范数(Induced norm)诱导范数也称算子范数(operator norm)。
诱导p-范数的定义如下:∥ A ∥ p = s u p x ≠ 0 ∥ A x ∥ p ∥ x ∥ p \Vert A\Vert_p=\underset{x\neq 0}{\rm sup}\frac{\Vert Ax \Vert_p}{\Vert x\Vert_p}∥A∥p=x=0sup∥x∥p∥Ax∥p特别的,当p = 1 p=1p=1时,有∥ A ∥ 1 = max 1 ≤ j ≤ n ∑ i = 1 m ∣ a i j ∣ \Vert A\Vert_1=\max_{1\le j\le n}\sum_{i=1}^{m}\vert a_{ij}\vert∥A∥1=1≤j≤nmax i=1∑m∣aij∣也就是绝对值的列和的最大值。
当p = ∞ p=\inftyp=∞时,有∥ A ∥ ∞ = max 1 ≤ i ≤ m ∑ j = 1 n ∣ a i j ∣ \Vert A\Vert_{\infty}=\max_{1\le i\lem}\sum_{j=1}^{n}\vert a_{ij}\vert∥A∥∞=1≤i≤mmax j=1∑n∣aij∣也就是绝对值的行和的最大值。
矩阵论范数知识点总结一、概述矩阵论是线性代数的一个分支,它研究矩阵及其性质。
矩阵的范数是矩阵的一种性质的度量,它在矩阵分析、数值线性代数、优化理论等领域中有着广泛的应用。
本文将对矩阵范数的定义、性质、应用以及相关的其他知识点进行总结和介绍。
二、矩阵的定义在数学中,矩阵是一个按照矩形排列的复数或实数集合。
也可以看成是一个数域上的矩形阵列。
矩阵的元素可以是实数、复数或者是其他的数学对象。
一个n×n矩阵A是一个由n×n个元素(a_ij)组成的矩形数组。
三、范数的定义在数学中,范数是定义在向量空间中的一种函数,它通常被用来衡量向量的大小或长度。
对于矩阵来说,范数是一种度量矩阵大小的方法。
对于一个矩阵A,它的范数通常记作||A||。
矩阵的范数满足以下性质:1. 非负性:||A|| ≥ 0,并且当且仅当A = 0时,||A|| = 02. 齐次性:对于任意标量c,||cA|| = |c| * ||A||3. 三角不等式:||A+B|| ≤ ||A|| + ||B||四、矩阵范数的种类矩阵范数一般有几种不同的类型。
1. Frobenius范数:矩阵A的Frobenius范数定义为||A||_F = sqrt(Σ_(i=1)^m Σ_(j=1)^n|a_ij|^2)2. 1-范数:矩阵A的1-范数定义为||A||_1 = max(Σ_(i=1)^n |a_ij|)3. 2-范数:矩阵A的2-范数定义为||A||_2 = max(Σ_(i=1)^m Σ_(j=1)^n |a_ij|^2)^(1/2)4. ∞-范数:矩阵A的∞-范数定义为||A||_∞ = max(Σ_(j=1)^n |a_ij|)五、矩阵范数的性质矩阵范数具有一些重要的性质,下面将介绍其中一些主要性质。
1. 非负性:||A|| ≥ 0,并且当且仅当A = 0时,||A|| = 02. 齐次性:对于任意标量c,||cA|| = |c| * ||A||3. 三角不等式:||A+B|| ≤ ||A|| + ||B||4. 乘法范数:||AB|| ≤ ||A|| * ||B||5. 谱半径:对于任意矩阵A,它的谱半径定义为rho(A) = max|λ_i(A)|6. 对称矩阵:对于对称矩阵A,其2-范数定义为rho(A),即||A||_2 = rho(A),其中rho(A)是A的最大特征值六、矩阵范数的应用矩阵范数在数学和工程领域有着广泛的应用,下面将介绍一些主要的应用。
向量和矩阵的范数一、引言向量和矩阵是线性代数中最基本的概念之一,而范数则是线性代数中一个非常重要的概念。
范数可以用来度量向量或矩阵的大小,也可以用来衡量它们之间的距离。
在本文中,我们将讨论向量和矩阵的范数。
二、向量范数1. 定义向量范数是一个函数,它将一个向量映射到一个非负实数。
它满足以下条件:(1)非负性:对于任意的向量x,有||x||≥0;(2)齐次性:对于任意的标量α和向量x,有||αx||=|α|·||x||;(3)三角不等式:对于任意的向量x和y,有||x+y||≤||x||+||y||。
2. 常见范数(1)L1范数:也称为曼哈顿距离或城市街区距离。
它定义为所有元素绝对值之和:||x||1=∑i=1n|xi| 。
(2)L2范数:也称为欧几里得距离。
它定义为所有元素平方和再开平方根:||x||2=(∑i=1nxi^2)1/2 。
(3)p范数:它定义为所有元素p次方和的p次方根:||x||p=(∑i=1n|xi|^p)1/p 。
(4)无穷范数:它定义为所有元素绝对值中的最大值:||x||∞=ma xi|xi| 。
三、矩阵范数1. 定义矩阵范数是一个函数,它将一个矩阵映射到一个非负实数。
它满足以下条件:(1)非负性:对于任意的矩阵A,有||A||≥0;(2)齐次性:对于任意的标量α和矩阵A,有||αA||=|α|·||A||;(3)三角不等式:对于任意的矩阵A和B,有||A+B||≤||A||+||B||。
2. 常见范数(1)Frobenius范数:也称为欧几里得范数。
它定义为所有元素平方和再开平方根:||A||F=(∑i=1m∑j=1naij^2)1/2 。
(2)一范数:它定义为每列元素绝对值之和的最大值:||A||1=maxj(∑i=1m|aij|) 。
(3)二范数:它定义为矩阵A的最大奇异值:||A||2=σmax(A) 。
(4)∞范数:它定义为每行元素绝对值之和的最大值:||A||∞=maxi(∑j=1n|aij|) 。