CCC防喘振控制介绍资料【全】
- 格式:pptx
- 大小:4.18 MB
- 文档页数:139
基于ITCC的压缩机防喘振控制系统王银锁;董志富【摘要】ITCC系统是针对压缩机组参数监测、控制、安全保护专门设计的综合性控制系统.该文主要论述了压缩机的防喘振控制理论和ITCC系统在乙烯裂解气压缩机组可变极限防喘振控制系统的应用.%ITCC is an integrated controlling system, which is designed specially for parameter moni-toring, system controlling and safe protecting of compressor set. This paper mainly introduces the theory of compressor using anti - surge control and ITCC system in ethylene cracking gas compressor unit with vari-able limit' s anti - surge control system application.【期刊名称】《工业仪表与自动化装置》【年(卷),期】2012(000)004【总页数】4页(P71-73,92)【关键词】ITCC;喘振;喘振线;防喘振控制线;防喘振控制【作者】王银锁;董志富【作者单位】兰州石化职业技术学院,兰州730060;兰州石化公司,兰州730060【正文语种】中文【中图分类】TP2730 引言压缩机组在化工生产过程中的作用是提高工艺介质的压力以改变物料的物理状态。
一旦机组故障将导致整个工艺流程停止,无法继续进行。
压缩机组在工厂整个生产过程中占据着重要地位。
其必须具有一套完整的实时监测与保护系统,良好的监控系统能够及时发现并解决机组的异常情况,必要时刻紧急停车对设备进行保护,防止事故的进一步扩大。
压缩机组的控制主要包括透平调速、压缩机防喘振控制、压缩机透平的振动位移监视保护和过程控制等[1]。
据我公司与陕鼓技术协议,压缩机流量调节方式为回流调节+变频调速,收集相关资料整理如下:回流调节+变频调速在离心压缩机喘振控制中的应用1 喘振1.1 喘振现象当压缩机在运转过程中,流量减小到一定程度时,就会在压缩机流道中出现严重的旋转脱离,流动严重恶化,使压缩机出口压力突然严重下降。
由于压缩机总是和管网系统联合工作的,这时管网中的压力并不马上减低,这时管网中的气体压力就反大于压缩机出口处的压力,因而管网中的气体就倒流向压缩机,一直到管网中的压力下降至低于压缩机出口压力为止,这时倒流停止,压缩机又开始向管网供气,压缩机的流量又增大,压缩机又恢复正常工作。
但是当管网中的压力也恢复到原来的压力时,压缩机的流量又减小,系统中气体又产生倒流,如此周而复始,就在整个系统中产生了周期性的气流振荡现象,这种现象称为“喘振”。
上图中n为压缩机的转速,在每种转速下都有一个p2/p1值最高的点(驼峰点),将不同转速下的各个驼峰点连接起来就可以得到一条所谓的喘振边界线(上图中实线所示)。
边界线左侧部分为不稳定的喘振区,边界右侧部分则是安全运行区。
在喘振区,压缩比p2/p1随着Q的增大而增大,即出口压力p2增大,到大于管道阻力时,就会使压缩机排出量增大,并恢复到稳定的值QA。
假如流量继续下降到小于驼峰值QB,这时压缩比不仅不会增大,反而下降,即p2下降,就会出现恶性循环:压缩机排出量会继续减小,而出口压力p2会继续下降,当p2下降到低于管网压力时,瞬间将会出现气体的倒流;随着倒流的产生,管网压力下降,当管网压力下降到与压缩机出口压力相等时倒流停止;然而压缩机仍在运转,于是压缩机又将倒流回来的气体重新压回去;此后又引起p2/p1下降,被压出的气体又倒流回来。
这种现象将重复产生,这就是所谓的喘振。
1.2 产生喘振的先决条件从喘振现象可知,影响喘振的因素有:(1) 流量;(2) 转速;(3) 管网特性。
(1)流量是导致喘振的先决条件,因为当压缩机越过最小流量值时,就会在流道中产生严重的旋转脱流和脱流区急剧扩大的情况,进而发展到喘振状态。
压缩机喘振与3C防喘振控制器在空压机上的设计策略王飞【摘要】For successful application of 3C antisurge controller in the 3TY air compressor in the Chemical Branch of Solution , a simple analysis is about the reason and phenomenon of the compressor surge and the dangers of the surge of compressor equipment .The introduction is about antisurge controller being produced by American CCC (Compressor Control Company , hereinafter referred to as 3C) from the following aspects , the calculation of the variable surge and the meaning of various surge line of control and some advanced control methods and characteristics of antisurge control on compressor , as well as the requirement of on -site measurement signal of 3C antisurge control system and movement sensitivity of antisurge regulating valve .% 针对3 C防喘振控制器在解化化工分公司3 TY空压机上的的成功应用,简单分析了压缩机发生喘振的原因、现象及喘振对压缩机设备的危害性。
氢气增压机(K202-1/K202-2)CCC控制系统操作手册一、改造方案这次改造选用美国压缩机控制公司COMPRESSOR CONTROLS CORPORATION的控制系统,主要实现氢气增压机K202-1/K202-2的速度控制、防喘振控制及性能(D-202压力)控制。
1、用1套CCC S5 Duplex系统构成的CCS实现入口压力控制、转速控制、喘振控制和POC控制,替代机组现有的TS3000控制系统中的相应功能,提高控制精度和水平。
原控制系统的联锁保护、逻辑和一般监控功能保留。
控制系统设置1个机柜,置于现场控制室内。
机柜间设置1台工程师站,现场控制室设置1台操作站,控制室内的操作站通过以太网与控制器连接;CCS与联锁保护系统之间的停机、系统故障、允许启动等信号通过硬接线连接。
2 、参与控制的信号通过一进二出信号分配器从TS3000分一路接入CCC系统。
3、 CCC在重新计算的基础上现场进行喘振测试,重新标定喘振曲线和性能曲线;二、人机界面介绍1、进入操作员环境系统开机后,自动进入到操作员环境,点击画面上左下侧按钮“login”(改变环境),出现一个对话框,有User Name:XXXXXX与Password:XXXXXX。
在其中输入工程师环境的用户名与密码,再点击“OK”就进入了“工程师环境”,若点击“Cancel”可退出重选环境。
进入了“工程师环境”则可进行更大权限的操作. 开机默认为英语界面,点击画面上左下侧按钮English(语言选择),选择“中文”,可切换到中文界面2、公用菜单图2如图2所示,人机界面主要包括如下内容:3、状态栏状态栏显示最近的一条报警或事件信息:淡蓝色:事件信息蓝色:曾有过报警,未确认,现已消失红色:正在报警,尚未确认黄色:报警已确认,但尚未消除图3图3是氢气增压机流程图,上面可以对过程参数进行监控,同时在出现仪表故障和控制器故障时报警提示。
a 、:调节阀符号,调速阀开时为绿色,关时为红色;防喘振阀关时为红色,开时为绿色。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载循环气压缩机防喘振控制地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容循环气压缩机防喘振控制摘要:本文系统介绍TRICON系统在循环气压缩机机组防喘振控制的应用及控制原理。
重点介绍防喘振系统的功能模块的构建,同时简述机组运行故障时的检修方法与分析思路。
关键词定义:喘振机理喘振线防喘振控制安全裕量盘旋设定点1、前言:大型离心式压缩机组由于其高效,经济,在现代企业中应用广泛,成为工艺连续运行的“心脏”。
但是由于其造价相对于往复式压缩机而言要高很多,控制系统复杂,而且占用的空间大等缺点,对于工艺成熟的企业一般不设置备用机组。
喘振是离心式压缩机固有的特性,每一台离心式压缩机都有它一定的喘振区,因此只能采取相应的防喘振调节方案以防止喘振的发生。
本文以天利高新技术公司醇酮厂的循环气压缩机C41101(SVK1-H型)为例,详细介绍TRICON三重化控制系统如何构建机组防喘振系统,并简述防喘振仪表常见故障的处理方法。
2、离心式压缩机喘振机理:离心式压缩机的特性曲线与喘振离心式压缩机的特性曲线是指压缩机的出口压力与入口压力之比(或称压缩比)与进口体积流量之间的关系曲线P2/P1~Q的关系,其压缩比是指绝对压力之比,特性曲线如图所示:图2.1 离心式压缩机喘振曲线由图2.1可见,其特性曲线随着转速不同而上下移动,组成一组特性曲线,而且每一条特性曲线都有一个最高点。
如果把各条曲线最高点联接起来得到一条表征喘振的极限曲线,如图中虚线。
所以,图中还有阴影部分称为喘振(或飞动)区;在虚线的右侧为正常工作区。
实线与虚线之间是临界区,压缩机可以运行,但太靠近喘振区,应尽量避免长期工作。