无向图的连通性
- 格式:pptx
- 大小:581.74 KB
- 文档页数:10
判断图的连通性连通性判断【试题描述】⽆向图,包含n个节点编号1⾄n,初始没有边。
现在逐次向图中添加m条边,你需要在添加边之前判断该两点是否连通。
【输⼊要求】第⼀⾏两个正整数n、m。
接下来m⾏,每⾏两个正整数x、y。
【输出要求】m⾏,每⾏包含⼀个整数0或1,0表⽰添加这条边之前两个点不连通,1表⽰连通。
【输⼊实例】4 51 21 32 34 43 4【输出实例】11【其他说明】n,m<=300000。
【试题分析】⽤并查集做,这是⼀道全世界最⽔的图论题,直接不⽤说,上代码……【代码】#include<iostream>using namespace std;int x,y,f[301001],n,m;int find(int x){if (f[x]==x) return f[x];return f[x]=find(f[x]);}void merge(int v,int u){int t1,t2;t1=find(v);t2=find(u);if(t1!=t2) f[t2]=t1;return ;}inline int read(){int x,f=1;char ch=getchar();for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-1;for(x=ch-'0';isdigit(ch=getchar());x=x*10+ch-'0');return x*f;}inline void write(int x){if(x==0){putchar('0');return;}if(x<0)putchar('-'),x=-x;int len=0,buf[15];while(x)buf[len++]=x%10,x/=10;for(int i=len-1;i>=0;i--)putchar(buf[i]+'0');return;}int main(){n=read(),m=read();for(int i=1;i<=n;i++) f[i]=i;for(int i=1;i<=m;i++){bool w=false;x=read(),y=read();if(find(x)!=find(y)) w=true;//如果x和y的根⼀样那么就可以知道这两条边加进去以后图是连通的 if(w==false)write(1),printf("\n");else write(0),printf("\n");merge(x,y);//把x和y连起来}}。
图连通性算法及应用图是计算机科学领域中常见的数据结构,用于表示对象之间的关系。
在图论中,图的连通性是一个重要的概念,指的是在图中任意两个顶点之间是否存在路径。
图连通性算法是为了判断图中的连通性而设计的算法,并且在实际应用中有着广泛的应用。
一、连通性的定义与分类在图论中,连通性有两种常见的定义方式:强连通性和弱连通性。
强连通性是指在有向图中,任意两个顶点之间存在互相可达的路径;弱连通性是指在有向图中,将其所有有向边的方向忽略后,剩下的无向图是连通的。
本文将重点介绍无向图的连通性算法及其应用。
二、连通性算法的原理1. 深度优先搜索(DFS)深度优先搜索是最常用的连通性算法之一。
它从图中的一个顶点开始,沿着一条未访问过的边深入图中的下一个顶点,直到无法深入为止,然后回溯至上一个顶点,继续深入其他未访问过的顶点。
通过深度优先搜索算法,我们可以得到一个图的连通分量,从而判断图是否连通。
2. 广度优先搜索(BFS)广度优先搜索同样是常用的连通性算法之一。
它从图中的一个顶点开始,沿着一条未访问过的边遍历与该顶点直接相邻的所有顶点,然后再以这些相邻顶点为起点,继续遍历它们的相邻顶点,直到遍历完所有连通的顶点。
通过广度优先搜索算法,我们可以得到一个图的层次遍历树,从而判断图是否连通。
三、连通性算法的应用1. 社交网络分析在社交网络分析中,连通性算法可以用来判断一个社交网络中是否存在分割成多个互不相连的社群。
通过判断社交网络的连通性,我们可以发现隐藏在社交网络背后的关系网络,从而更好地理解和分析社会关系。
2. 网络路由优化在计算机网络中,连通性算法可以用来判断网络节点之间的连通性。
通过分析网络的拓扑结构,我们可以选择合适的路由算法,从而实现快速且可靠的数据传输。
3. 图像分割在计算机视觉和图像处理中,连通性算法可以用来判断图像中的连通区域。
通过判断图像的连通性,我们可以对图像进行分割和提取,从而实现目标检测和图像识别等应用。