主塔的风致振动控制
- 格式:pdf
- 大小:252.61 KB
- 文档页数:4
风力发电塔筒振动控制研究与方法讨论随着对可再生能源的依赖度逐渐增加,风力发电作为一种环保、可持续的能源方式受到了越来越多的关注。
然而,风力发电塔筒振动问题成为了一个亟待解决的难题。
本文将讨论风力发电塔筒振动的原因和影响,并探讨目前研究中使用的方法。
风力发电塔筒振动是指风力发电机组工作过程中,塔筒的振动现象。
塔筒振动的原因主要有两个方面:一是风作用力的影响,二是塔筒结构的固有特性。
当风作用力超过一定阈值时,将会引发塔筒的自然频率振动。
这种振动不仅会影响风速测量的准确性,还可能对发电机组的稳定性和安全性产生不可忽视的威胁。
塔筒振动对风力发电站的性能有着重要的影响。
首先,塔筒振动会产生噪声,对附近居民生活造成困扰,并可能引发环境污染的投诉。
其次,塔筒振动还会导致发电机组的机械疲劳和结构破坏,进而降低发电效率和延缓风力发电机组的使用寿命。
因此,研究和采用有效的塔筒振动控制方法具有重要的理论意义和实际价值。
目前,已经有一些针对风力发电塔筒振动的控制方法得到了广泛应用。
其中一种常用的方法是利用主动振动控制技术。
这种方法主要通过在塔筒上设置执行器和传感器,实时监控和主动控制塔筒振动。
执行器受到传感器的信号驱动,通过施加控制力或刹车力来抑制塔筒的振动。
这种方法具有即时性和精确性,并能在不同的风速和频率下实现精确的振动控制。
然而,主动振动控制技术的安装和维护成本较高,这对于风力发电站的投资和运营带来了一定的挑战。
pass页,除了主动振动控制技术,还有一些被用于风力发电塔筒振动控制的被动控制方法。
被动振动控制技术利用阻尼器、质量阻抗装置或减振器等来消除或减小塔筒振动。
这些被动控制装置通过改变塔筒的固有频率和振动幅度,起到了减振的作用。
虽然被动控制方法具有一定的有效性,但其控制效果相对较弱,难以实现对不同风速和频率的精确控制。
另外,为了更好地控制风力发电塔筒振动,还有一些新兴的控制方法正在被研究和开发。
其中,一种重要的方法是结合人工智能和控制算法,建立预测模型并实时优化振动控制策略。
高层建筑结构的风致振动控制在高层建筑结构设计和建造过程中,风致振动是一个重要的问题。
高楼居住者经常会感受到建筑物在强风中的晃动,这不仅影响住户的生活质量,还可能对建筑的结构稳定性产生负面影响。
因此,高层建筑结构的风致振动控制成为了研究的热点之一。
一、引言在引言中,我们将介绍高层建筑结构的风致振动控制的重要性,并提出本文研究的目的和意义。
二、背景这一部分将介绍高层建筑结构的基本特点和存在的挑战,特别是在面对大风时的振动问题。
我们还将简要讨论目前已有的研究成果和现有的风振控制方法。
三、风致振动现象的原理在这一部分,我们将解释高层建筑结构在风力作用下发生振动的原理。
这涉及到风荷载的作用机制以及结构的固有频率等基础知识。
四、风振控制方法本部分将介绍目前常用的风振控制方法,包括质量阻尼、刚度控制和主动控制等。
针对每种方法,我们将详细说明其工作原理和应用范围,并给出实例进行说明。
五、质量阻尼方法质量阻尼是一种被广泛应用于高层建筑结构的振动控制方法。
我们将介绍质量阻尼器的工作原理和种类,并分析其在不同情况下的有效性和适用性。
六、刚度控制方法刚度控制作为另一种常见的风振控制方法,可以通过调整结构的刚度来减小振动幅值。
我们将介绍刚度调整的原理和方法,并探讨其在实际工程中的应用情况。
七、主动控制方法相较于质量阻尼和刚度控制,主动控制是一种更加先进和灵活的振动控制方法。
我们将介绍主动控制方法的原理和实现方式,并分析其在高层建筑结构中的潜在应用前景。
八、结论在本文的结尾,我们将总结不同风振控制方法的优缺点,并对未来的研究方向进行展望。
我们还将强调高层建筑结构的风致振动控制对于建筑的安全性和居住者的舒适性的重要意义。
通过以上的分节论述,我们全面而系统地介绍了高层建筑结构的风致振动控制方法。
这些方法旨在减小建筑物在强风作用下的振动幅值,提高建筑物的稳定性和居住者的生活质量。
随着技术的不断进步和研究的深入,我们相信未来会有更多创新的方法和技术用于风振控制。
风力发电场中风机塔架振动监测与控制研究随着科技的不断发展,环保和可再生能源的重要性日渐凸显。
其中,风力发电逐渐成为各国政府和企业追逐的绿色能源之一。
而风机塔架振动监测和控制,则是风力发电场运行的关键之一。
本文将从监测和控制两个方面,探讨风机塔架振动的问题,以及相关研究成果。
一、振动的危害在风力发电场中,风机塔架振动是一项需要高度重视的问题。
风机塔架周期性的振动会对风机及其附件造成动力、疲劳和塌陷等方面的危害。
此外,风机塔架的振动还会对附近的住宅区造成噪音扰动,甚至引发公众对风能开发的抗拒情绪。
二、监测振动在风力发电场中,对风机塔架振动进行监测,是将风机塔架的运行状况加以监控、评价和管理的重要手段。
常用的监测方法有两种:1.振动监测方法振动监测方法利用加速度计等传感器来测量塔架的振动状态。
传感器通过模块化的方式,将振动信息采集和转化成数字信号后,供数据分析器进行处理。
这种方法的特点是非常灵敏,同时可以为风机塔架的疲劳验收、塌陷预警等方面提供数据。
2.相位参考方法相位参考方法是通过发射一段特定码型的影响波,研究塔架的结构状况。
这种方法可以通过测量入射波和反射波的相位和振幅,得到受检塔架在时间和空间上的结构状态。
三、控制振动在监测振动的基础上,控制风机塔架的振动也显得至关重要。
目前,常用的控制方法有两种:1.主动激振控制主动激振控制是利用电机来驱动振动控制器,从而引入与塔架振动相同或者相反的振动信号,使塔架振动降低。
这种方法需要使用大量驱动电机和传感器,成本相对较高,但可对反馈信号进行处理,减少对塔架的不利影响。
2.有源调谐质量阻尼器(ATMD)有源调谐质量阻尼器是在塔架的顶部或底部装置一组质量、阻尼器和控制器的系统。
该系统以特定频率振动,发生的对控制器的力可以将能量从系统中引导出去。
ATMD系统的优点在于系统控制成本低,维护和升级方便,还可以对灵敏的疲劳和动态振动进行控制。
四、研究成果“十一五”期间,中国开始启动风机塔架振动监测和控制相关方面的研究。
高耸塔破风防振结构高耸的塔器在风力作用下将会产生共振,一旦发生振动危害严重,轻者法兰泄露,地脚螺栓松动,重者发生疲劳破坏,导致事故发生。
所以要防止共振。
风诱导高耸设备振动控制措施,依据减振机理不同可分为三类:a)增加壁厚或采用拉索等,增强结构自身的抗风性能;b)采用扰流装置或合理布置塔体附件,破坏卡曼涡街的形成或改变卡曼旋涡脱落方式;c)在适当的位置安装振动控制系统,通过质量阻尼器的阻尼作用,可以有效减轻风诱导振动。
一、提高结构自身抗风性能的常规减振方法通过增加塔体壁厚或采用拉索控制等措施,可以提高结构自身的抗风性能,具体措施为:(1)增大塔径,降低塔高,可以增大塔器的固有频率;增加塔器的壁厚或采用密度小、弹性模量大的结构材料也可增大塔的自振周期。
但这些措施必须是在工艺条件许可的情况下才能进行,而且对于某些塔器减振效果并不明显,还会极大的增加塔器的制造成本。
(2)采用拉索或缆绳控制,交叉支撑等方式来使塔器固定,以减弱塔器的振动,沈阳某乙烯塔已采用此方法减振。
这种方法缺点是现场必须有足够的拉索空间,此法往往受场地空间的限制而难以实现。
二、采用扰流装置或合理布置塔体附件采用扰流装置,破风圈在塔的上部1/3塔高的范围内安装轴向的翅片或螺旋形翅片的扰流器。
轴向翅片的长度L为塔径D的0.75倍-0.9倍,翅片宽度b为D的0.069倍。
同一圆周上的翅片数为4,相互之间的夹角为90°。
相邻圆周上的翅片彼此错开30°角,装有轴向翅片的塔设备,共振时的振幅将减少1/2左右。
翅片为螺旋形时,其头数取3,相互之间错开120°,螺距t为直径D的5倍,翅片宽度W为直径D的0.1倍。
这里说的直径,指的是塔器的外径,包括保温.螺旋形纸片比轴向翅片的效果更好。
破风圈的设置应符合下列规定:a 设置条件:当烟囱的临界风速小于6~7m/s 时,应设置破风圈。
当烟囱的临界风速为7~13.4m/s,且小于设计风速时,而用改变烟囱高度、直径和增加厚度等措施不经济时,也可设置破风圈。
高楼振动控制施工方案在现代城市建设中,高楼大厦的兴起已经成为一种常态。
然而,高楼振动问题也随之而来。
高楼振动不仅会给建筑物结构造成损害,还可能给居民带来不适和不安全感。
因此,制定一个科学合理的高楼振动控制施工方案至关重要。
以下是一个可供参考的高楼振动控制施工方案。
一、引言高楼振动是指由自然或人为因素引起的建筑物的振动现象。
高楼振动的主要原因包括地震、风力、交通振动、机械振动等。
在施工过程中,我们需要采取一系列措施来有效地控制高楼振动。
二、理论分析1. 振动原理高楼振动是由外界作用力引起的,建筑物会对这些作用力产生反应而产生振动。
根据振动原理,我们可以采取相应的措施来控制振动幅值。
2. 主要影响因素高楼振动的幅值受到多个因素的影响,包括建筑物的刚度、质量、阻尼等。
我们需要在施工过程中针对这些因素进行控制,以减小振动幅值。
三、具体控制措施1. 选择合适的建筑材料选择刚性和轻质的建筑材料可以降低建筑物的振动响应。
对于高楼结构来说,使用钢材和钢筋混凝土等材料可以增加建筑物的刚度,从而降低振动幅值。
2. 合理设计建筑结构在设计建筑结构时,需要考虑到高楼振动问题。
例如,在建筑物的基础设计中,可以采用增加基础的刚度和深度,以提高建筑物的抗振能力。
3. 安装振动控制系统安装振动控制系统是控制高楼振动的一种重要手段。
常见的振动控制系统包括减振器和阻尼器。
减振器可以通过与主体结构相连并具有能量耗散能力的装置来减小振动幅值。
阻尼器则可以通过消耗振动能量来降低振动幅值。
4. 做好土壤改良工作高楼建设往往需要进行土壤改良工作,以增加土壤的承载能力和稳定性。
土壤改良可以减小地震和其他自然因素对建筑物的振动影响。
5. 控制施工过程中的振动源在施工过程中,需要注意控制振动源对建筑物的影响。
例如,在进行爆破作业时,需要合理安排爆破时间和爆破量,以减小对建筑物的振动影响。
四、实际案例以某高层写字楼为例,我们采用了上述控制措施进行高楼振动控制施工。
超高层建筑的风振分析与控制随着城市化进程的加速,超高层建筑在世界各地如雨后春笋般涌现。
这些高耸入云的建筑不仅是城市的地标,也是现代建筑技术的杰作。
然而,超高层建筑在面临强风时,会产生风振现象,这对建筑的安全性和舒适性构成了严峻的挑战。
因此,对超高层建筑进行风振分析与控制至关重要。
风振是指风对建筑物的作用引起的结构振动。
对于超高层建筑来说,由于其高度较大、结构柔性增加,风振的影响更为显著。
风振可能导致建筑结构的疲劳损伤、构件破坏,甚至影响建筑物的使用功能和居住者的舒适度。
为了确保超高层建筑在风荷载作用下的安全可靠,需要深入了解风振的产生机制和特点,并采取有效的分析和控制方法。
风振分析是研究超高层建筑在风荷载作用下响应的重要手段。
常见的风振分析方法包括风洞试验、数值模拟和理论分析等。
风洞试验是一种通过在风洞中模拟实际风场环境,对建筑模型进行测试的方法。
通过测量模型在不同风速和风向条件下的力和位移响应,可以获得较为准确的风振特性数据。
数值模拟则是利用计算机软件对风场和建筑结构进行建模和计算,能够快速预测风振响应,但需要对模型的准确性进行验证。
理论分析则基于力学原理和数学方法,对风振问题进行简化和求解,但在处理复杂结构和流场时存在一定的局限性。
在进行风振分析时,需要考虑多种因素。
首先是风的特性,包括风速、风向、风谱等。
不同地区的风特性差异较大,因此需要根据建筑所在的地理位置和气象条件确定合适的风荷载参数。
其次是建筑的结构特性,如结构形式、刚度分布、质量分布等。
这些因素会影响建筑对风荷载的响应。
此外,还需要考虑建筑周围的环境,如周边建筑物的干扰、地形地貌等。
风振控制是减小超高层建筑风振响应的有效措施。
常见的风振控制方法包括被动控制、主动控制和半主动控制。
被动控制是通过在建筑结构中设置耗能装置或调整结构的自身特性来消耗风振能量,例如安装调谐质量阻尼器(TMD)、调谐液体阻尼器(TLD)等。
主动控制则是通过外部能源输入,实时调整控制系统的参数,以主动抵消风振的作用。
超高层建筑风振效应的分析与控制随着城市化进程的不断加快,高楼大厦的数量不断增多。
在超高层建筑中,风振效应是一项非常重要的问题。
风振效应会对建筑物的安全性、舒适度和使用寿命等产生很大的影响。
因此,对超高层建筑的风振效应进行分析和控制是非常必要的。
超高层建筑的风振效应是指由于风力作用所引起的建筑物的振动现象。
在一定的风速条件下,建筑物会受到风力的作用,导致建筑物发生振动,并产生相应的结构应力。
建筑物的振动会对其内部和外部的使用环境产生直接的影响。
在极端情况下,风振效应还可能引起建筑物的倒塌等严重后果。
超高层建筑的风振效应主要受到以下因素的影响:建筑物的高度、形状、重量、弹性模量、抗风能力等。
其中,建筑物的高度是决定风振效应大小的关键因素。
当超高层建筑的高度超过50米时,就会出现明显的风振效应。
因此,对于高度超过50米的建筑物,风振效应的分析和控制显得尤为重要。
为了有效地分析和控制超高层建筑的风振效应,需要采取一系列的措施。
首先,需要对建筑物的结构进行优化设计,提高其抗风能力。
其次,需要采用适当的风洞模型进行风洞试验,以验证建筑物在不同风速下的风振响应。
此外,还可以通过在建筑物上设置减振器等结构配件,来减小建筑物的风振响应。
减振器是一种可以有效减小建筑物振动幅度的结构组件。
常见的减振器包括阻尼器、质量阻尼器、液态阻尼器等。
这些减振器可以通过消耗振动能量、调节建筑物的振动频率等方式来减小风振效应的影响。
使用减振器不仅可以提高建筑物的抗风能力,还可以改善建筑物的整体舒适度和使用寿命。
除了使用减振器外,还可以通过对建筑物的结构参数进行优化,减小建筑物的风振效应。
例如,可以采用不同的结构板式、改变结构布局等方式来控制振动频率和幅度,达到减小风振效应的目的。
此外,还可以通过增加建筑物的阻力系数、改变建筑物的外形等方式,来改善建筑物的抗风能力和降低风振效应的影响。
总之,在超高层建筑的设计和施工过程中,对风振效应进行分析和控制是非常重要的。
高层建筑的风振分析与控制在现代城市的天际线中,高层建筑如林立的巨人般引人注目。
然而,这些高耸的建筑在面对自然界的风力作用时,面临着严峻的挑战。
风振现象可能导致结构的损坏、使用者的不适,甚至威胁到建筑的安全性。
因此,对高层建筑进行风振分析与控制是至关重要的。
风对于高层建筑的影响是多方面的。
首先,风会在建筑表面产生压力分布的不均匀,从而导致水平方向的力和扭矩。
这种水平力可能引起建筑的整体晃动,尤其是在强风条件下。
其次,风的脉动特性会激发建筑的振动,类似于风吹过琴弦产生的振动。
如果这种振动的频率与建筑的固有频率接近,就会发生共振现象,使振动幅度急剧增大。
为了准确分析高层建筑的风振特性,工程师们采用了多种方法和技术。
风洞试验是其中一种常用且有效的手段。
在风洞中,可以模拟不同风速和风向条件下的风场,将缩小比例的建筑模型放置其中,通过测量模型表面的压力和模型的响应来获取风振相关的数据。
计算流体动力学(CFD)也是一种重要的分析方法,它通过数值模拟来计算风场和建筑表面的相互作用。
此外,基于结构动力学的理论分析方法,可以建立建筑的数学模型,计算其固有频率、振型和响应等。
在风振分析中,建筑的外形和结构形式对风振特性有着显著的影响。
流线型的建筑外形通常能够减少风的阻力和压力差,从而降低风振响应。
例如,一些现代化的高层建筑采用了逐渐收分的外形或者带有弧形边缘的设计。
结构的刚度和质量分布也会影响固有频率和振型,从而改变风振的响应特性。
增加结构的刚度,如使用更强大的梁柱体系或增加剪力墙,可以提高建筑抵抗风振的能力。
当分析出高层建筑可能存在较大的风振风险时,就需要采取相应的控制措施。
一种常见的方法是增加结构的阻尼。
阻尼可以消耗振动能量,减小振动的幅度。
通过在结构中安装阻尼器,如粘滞阻尼器、调谐质量阻尼器(TMD)或调谐液体阻尼器(TLD)等,可以有效地控制风振响应。
以 TMD 为例,它通常由质量块、弹簧和阻尼器组成,其固有频率被调整到接近建筑的主要振动频率,当建筑发生振动时,TMD 产生相反的力来抵消振动。
高层建筑的风振控制方法随着现代建筑技术的快速发展,高层建筑在城市中的地位日益重要。
然而,高层建筑面临的风振问题也越来越突出。
风振是指风力作用下建筑物发生的摆振现象,严重的情况下甚至可能造成建筑物的结构破坏。
为了确保高层建筑安全稳定地运行,各种风振控制方法应运而生。
本文将介绍几种常见的高层建筑风振控制方法。
一、结构抗风设计在高层建筑的风振控制中,最常见和重要的方法就是通过结构设计增加建筑物的抗风能力。
结构抗风设计主要包括确定建筑物的基本参数、选取合适的结构形式以及采取适当的构造措施等。
例如,在设计中使用抗风性能较好的结构形式,如框架结构、剪力墙结构等;同时,在结构材料的选择上,考虑到其抗风性能,如使用高强度、轻质材料等,以提高整体抗风性能。
二、调节阻尼器调节阻尼器是一种通过调节结构阻尼系数来减小风振响应的装置。
它通过增加建筑物的阻尼,使得建筑物在受到风力作用时能够减少摆动幅度。
常见的调节阻尼器包括液体阻尼器、摆式阻尼器和粘滞阻尼器等。
这些阻尼器通过消耗结构的振动能量,起到稳定建筑的作用。
由于调节阻尼器的精细调整能力,使用调节阻尼器可以有效降低高层建筑的风振问题。
三、风洞试验模拟风洞试验模拟是高层建筑风振研究中常用的方法之一。
通过建立高层建筑的风洞模型,模拟真实风场中的风力对建筑物的作用,可以获取建筑物受风振影响的数据。
利用这些数据,工程师可以更准确地判断高层建筑的风振响应,进而采取相应的控制措施。
风洞试验模拟可以帮助工程师优化建筑物结构设计,减小风振响应,提升建筑物的抗风能力。
四、主动控制方法主动控制方法是指通过电子和机械设备等手段主动干预建筑物的振动状态,以减小风振响应。
主动控制方法主要有主动质量法、主动刚度法和主动阻尼法。
主动质量法通过增加建筑物的质量,改变其固有频率,从而减小风振响应。
主动刚度法则通过改变建筑物的刚度,来抑制结构的振动。
主动阻尼法则是利用控制力干预结构的振动能量,降低结构响应。
总第321期交 通 科 技SerialNo.321 2023第6期TransportationScience&TechnologyNo.6Dec.2023DOI10.3963/j.issn.1671 7570.2023.06.004收稿日期:2023 07 13第一作者:何佳琛(1998-),男,硕士,助理工程师。
基于强化学习的大跨度桥梁风致振动主动控制研究何佳琛(中铁第四勘察设计院集团有限公司 武汉 430063)摘 要 主动控制措施依靠外部能源供给,可有效抑制大跨度桥梁的风致振动。
为探究基于强化学习的大跨度桥梁风致振动主动控制,以苏通长江大桥为工程背景,建立风 桥 主动质量阻尼器的时域控制方程,利用深度确定性策略梯度强化学习算法(DDPG)为主动质量阻尼器设计控制律,并与利用LQR算法所设计出的主动控制系统在抑振效果层面进行对比,检验利用强化学习算法所设计的控制系统在面对随机风环境及结构参数不确定时的鲁棒性能,并以一个单自由度非线性涡振主动控制的工况说明了强化学习对非线性系统的适用性。
结果表明,利用DDPG算法设计出的主动控制律在实施时仅需要测量桥梁跨中节点的位移响应和加速度响应就能够达到与LQR算法相当的控制效果;当系统产生外部扰动或桥梁结构本身的刚度矩阵发生改变时,利用强化学习设计的ATMD仍具备令人满意的控制性能;强化学习是一个适用范围广泛的通用性框架,可用于线性或非线性系统,由于其本身的理念,其所设计出的主动控制系统,在均方值控制效果方面优于相应的峰值控制效果。
关键词 主动控制措施 强化学习 深度确定性策略梯度算法 鲁棒性 非线性系统中图分类号 U441+.3 主动控制措施依靠外部能源供给,可有效抑制大跨度桥梁的风致振动。
主动控制律是主动控制设施的设计核心,其在很大程度上决定了主动控制设施的性能及鲁棒性。
在结构振动控制领域中较常使用的主动控制律设计方法主要可分为传统控制算法和智能控制算法[1]。