树,二叉树,森林间的转换方法
- 格式:doc
- 大小:275.50 KB
- 文档页数:2
二叉树,树,森林遍历之间的对应关系一、引言在计算机科学中,数据结构是非常重要的知识点之一。
而树这一数据结构,作为基础的数据结构之一,在软件开发中有着广泛的应用。
本文将重点探讨二叉树、树和森林遍历之间的对应关系,帮助读者更加全面地理解这些概念。
二、二叉树1. 二叉树的定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树可以为空,也可以是一棵空树。
2. 二叉树的遍历在二叉树中,有三种常见的遍历方式,分别是前序遍历、中序遍历和后序遍历。
在前序遍历中,节点的访问顺序是根节点、左子树、右子树;在中序遍历中,节点的访问顺序是左子树、根节点、右子树;在后序遍历中,节点的访问顺序是左子树、右子树、根节点。
3. 二叉树的应用二叉树在计算机科学领域有着广泛的应用,例如用于构建文件系统、在数据库中存储有序数据、实现算法中的搜索和排序等。
掌握二叉树的遍历方式对于理解这些应用场景非常重要。
三、树1. 树的定义树是一种抽象数据类型,由n(n>0)个节点组成一个具有层次关系的集合。
树的特点是每个节点都有零个或多个子节点,而这些子节点又构成了一颗子树。
树中最顶层的节点称为根节点。
2. 树的遍历树的遍历方式有先根遍历、后根遍历和层次遍历。
在先根遍历中,节点的访问顺序是根节点、子树1、子树2...;在后根遍历中,节点的访问顺序是子树1、子树2...,根节点;在层次遍历中,节点的访问顺序是从上到下、从左到右依次访问每个节点。
3. 树的应用树广泛用于分层数据的表示和操作,例如在计算机网络中的路由算法、在操作系统中的文件系统、在程序设计中的树形结构等。
树的遍历方式对于处理这些应用来说至关重要。
四、森林1. 森林的定义森林是n(n>=0)棵互不相交的树的集合。
每棵树都是一颗独立的树,不存在交集。
2. 森林的遍历森林的遍历方式是树的遍历方式的超集,对森林进行遍历就是对每棵树进行遍历的集合。
3. 森林的应用森林在实际编程中经常用于解决多个独立树结构的问题,例如在数据库中对多个表进行操作、在图像处理中对多个图形进行处理等。
数据结构树的知识点总结一、树的基本概念。
1. 树的定义。
- 树是n(n ≥ 0)个结点的有限集。
当n = 0时,称为空树。
在任意一棵非空树中:- 有且仅有一个特定的称为根(root)的结点。
- 当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1、T2、…、Tm,其中每个集合本身又是一棵树,并且称为根的子树(sub - tree)。
2. 结点的度、树的度。
- 结点的度:结点拥有的子树个数称为结点的度。
- 树的度:树内各结点的度的最大值称为树的度。
3. 叶子结点(终端结点)和分支结点(非终端结点)- 叶子结点:度为0的结点称为叶子结点或终端结点。
- 分支结点:度不为0的结点称为分支结点或非终端结点。
- 除根结点之外,分支结点也称为内部结点。
4. 树的深度(高度)- 树的层次从根开始定义起,根为第1层,根的子结点为第2层,以此类推。
树中结点的最大层次称为树的深度(或高度)。
二、二叉树。
1. 二叉树的定义。
- 二叉树是n(n ≥ 0)个结点的有限集合:- 或者为空二叉树,即n = 0。
- 或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。
2. 二叉树的特点。
- 每个结点最多有两棵子树,即二叉树不存在度大于2的结点。
- 二叉树的子树有左右之分,次序不能颠倒。
3. 特殊的二叉树。
- 满二叉树。
- 一棵深度为k且有2^k - 1个结点的二叉树称为满二叉树。
满二叉树的特点是每一层上的结点数都是最大结点数。
- 完全二叉树。
- 深度为k的、有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1至n的结点一一对应时,称之为完全二叉树。
完全二叉树的叶子结点只可能在层次最大的两层上出现;对于最大层次中的叶子结点,都依次排列在该层最左边的位置上;如果有度为1的结点,只可能有一个,且该结点只有左孩子而无右孩子。
三、二叉树的存储结构。
1. 顺序存储结构。
- 二叉树的顺序存储结构就是用一组地址连续的存储单元依次自上而下、自左至右存储完全二叉树上的结点元素。
第6章 树和二叉树内容概要:本章主要介绍树,二叉树,最优二叉树的相关概念和操作,存储结构和相应的操作,并在综合应用设计中,给出了对应算法的C 语言实现。
教学目标1.理解各种树和森林与二叉树的相应操作。
2.熟练掌握二叉树的各种遍历算法,并能灵活运用遍历算法实现二叉树的其他操作。
3.熟练掌握二叉树和树的各种存储结构及其建立的算法。
4.掌握哈夫曼编码的方法。
5.通过综合应用设计,掌握各种算法的C 语言实现过程。
基本知识点:树和二叉树的定义、二叉树的存储表示、二叉树的遍历以及其它操作的实现、树和森林的存储表示、树和森林的遍历以及其它操作的实现、最优树和赫夫曼编码重点:二叉树的性质、二叉树的遍历及其应用,构造哈夫曼树。
难点:编写实现二叉树和树的各种操作的递归算法。
本章知识体系结构:课时安排:6个课时树的定义 树树的性质 树的逻辑表示法 树形表示法 树的存储结构 双亲存储结构 文氏表示法凹入表示法 括号表示法 孩子存储结构 孩子双亲存储结构二叉树二叉树的定义 二叉树的性质二叉树的逻辑表示法(采用树的逻辑表示法)二叉树的存储结构二叉树的顺序存储结构先序遍历 中序遍历 后序遍历二叉树的遍历 二叉树的链式存储结构(二叉链) 由先序序列和中序序列构造二叉树 由中序序列和后序序列构造二叉树二叉树的构造 二叉树的线索化 哈夫曼树二叉树和树之间的差别 二叉树与树、森林之间的转换二叉树和树课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标掌握树、二叉树的基本概念和术语,二叉树的性质教学重点二叉树的定义、二叉树的性质、链式存储结构教学难点二叉树的性质、链式存储二叉树的基本操作组织教学一、树的定义二、树的基本概念三、二叉树的定义、性质四、二叉树的顺序存储结构和链式存储结构五、小结作业复习本讲内容并预习下一讲内容课堂情况及课后分析课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标掌握二叉树遍历的三种方法及二叉树的基本操作教学重点二叉树的遍历算法教学难点中序与后序遍历的非递归算法组织教学一、复习二叉树的定义二、遍历二叉树的三种方法三、递归法遍历二叉树四、二叉树的基本操作五、总结作业复习本讲内容并预习下一讲内容课堂情况及课后分析课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标理解树与森林的转换,掌握哈夫曼树教学重点哈夫曼树教学难点树与森林的转换组织教学一、导入二、树与森林三、哈夫曼树四、小结作业习题6课堂情况及课后分析前面几章讨论的数据结构都属于线性结构,线性结构的特点是逻辑结构简单,易于进行查找、插入和删除等操作,可用于描述客观世界中具有单一前驱和后继的数据关系。
第7章树和森林树形结构是一类重要的非线性结构。
树形结构的特点是结点之间具有层次关系。
本章介绍树的定义、存储结构、树的遍历方法、树和森林与二叉树之间的转换以及树的应用等内容。
重点提示:●树的存储结构●树的遍历●树和森林与二叉树之间的转换7-1 重点难点指导7-1-1 相关术语1.树的定义:树是n(n>=0)个结点的有限集T,T为空时称为空树,否则它满足如下两个条件:①有且仅有一个特定的称为根的结点;②其余的结点可分为m(m>=0)个互不相交的子集T1,T2,…,T m,其中每个子集本身又是一棵树,并称为根的子树。
要点:树是一种递归的数据结构。
2.结点的度:一个结点拥有的子树数称为该结点的度。
3.树的度:一棵树的度指该树中结点的最大度数。
如图7-1所示的树为3度树。
4.分支结点:度大于0的结点为分支结点或非终端结点。
如结点a、b、c、d。
5.叶子结点:度为0的结点为叶子结点或终端结点。
如e、f、g、h、i。
6.结点的层数:树是一种层次结构,根结点为第一层,根结点的孩子结点为第二层,…依次类推,可得到每一结点的层次。
7.兄弟结点:具有同一父亲的结点为兄弟结点。
如b、c、d;e、f;h、i。
8.树的深度:树中结点的最大层数称为树的深度或高度。
9.有序树:若将树中每个结点的子树看成从左到右有次序的(即不能互换),则称该树为有序树,否则称为无序树。
10.森林:是m棵互不相交的树的集合。
7-1-2 树的存储结构1.双亲链表表示法以图7-1所示的树为例。
(1)存储思想:因为树中每个元素的双亲是惟一的,因此对每个元素,将其值和一个指向双亲的指针parent构成一个元素的结点,再将这些结点存储在向量中。
(2)存储示意图:-1 data:parent:(3)注意: Parrent域存储其双亲结点的存储下标,而不是存放结点值。
下面的存储是不正确的:-1 data:parent:2.孩子链表表示法(1)存储思想:将每个数据元素的孩子拉成一个链表,链表的头指针与该元素的值存储为一个结点,树中各结点顺序存储起来,一般根结点的存储号为0。
树,二叉树,森林间的转换方法
<1>将树转换为二叉树
树中每个结点最多只有一个最左边的孩子(长子)和一个右邻的兄弟。
按照这种关系很自然地就能将树转换成相应的二叉树。
将一般树转化为二叉树的思路,主要根据树的孩子-兄弟存储方式而来,步骤是:
①加线:在各兄弟结点之间用虚线相连。
可理解为每个结点的兄弟指针指向它的一个兄弟。
②抹线:对每个结点仅保留它与其最左一个孩子的连线,抹去该结点与其他孩子之间的连线。
可理解为每个结点仅有一个孩子指针,让它指向自己的长子。
③旋转:把虚线改为实线从水平方向向下旋转45℃,成右斜下方向。
原树中实线成左斜下方向。
这样就树的形状成呈现出一棵二叉树。
如下图:
<2>二叉树转换为一般树
此时的二叉树必须是由某一树(一般树)转换而来的没有右子树的二叉树。
并非随便一棵二叉树都能还原成一般树。
其还原过程也分为三步:
①加线:若某结点i是双亲结点的左孩子,则将该结点i的右孩子以及当且仅当连续地沿着右孩子的右链不断搜索到所有右孩子,都分别与结点i的双亲结点用虚线连接。
②抹线:把原二叉树中所有双亲结点与其右孩子的连线抹去。
这里的右孩子实质上是原一般树中结点的兄弟,抹去的连线是兄弟间的关系。
③进行整理:把虚线改为实线,把结点按层次排列。
如图:
<3>二叉树转换为森林
将一棵二叉树转化成森林,可按如下步骤进行:
①抹线:将二叉树根结点与其右孩子之间的连线,以及沿着此右孩子的右链连续不继搜索到的右孩子间的连线抹掉。
这样就得到了若干棵根结点没有右子树的二叉树。
②将得到的这些二叉树用前述方法分别转化成一般树。
<4>森林转换为二叉树
森林是树的有限集合,如图3-55a所示。
由上节可知,一棵树可以转换为二叉树(没有右子树),一个森林就可以转换为二叉树(没有右子树)的森林。
将森林转换为二叉树的一般步骤为:
①将森林中每棵子树转换成相应的二叉树。
形成有若干二叉树的森林,如图3-55b所示。
②按森林图形中树的先后次序,依次将后边一棵二叉树作为前边一棵二叉树根结点的右子树,这样整个森林就生成了一棵二叉树,实际上第一棵树的根结点便是生成后的二叉树的根结点。
下图将一个森林转化为一棵二叉树的示例:。