基于PLC的工业控制系统的设计与实现
- 格式:doc
- 大小:25.00 KB
- 文档页数:3
基于PLC控制的工业机器人系统的研究与实现基于PLC控制的工业机器人系统的研究与实现摘要:工业机器人在现代制造业中起着不可替代的作用。
本文利用PLC(可编程逻辑控制器)技术研究和实现了一套基于PLC控制的工业机器人系统。
通过对系统的架构和编程方法的研究,控制了机器人的运动和动作,实现了较为灵活和高效的自动化生产。
1.引言工业机器人是现代制造业的重要设备之一,通过替代传统的人工劳动,实现了高效、灵活和精确的生产流程。
工业机器人系统的核心是控制系统,控制系统的设计和实现对工业机器人的性能和效率有着重要的影响。
目前,PLC技术被广泛应用于工业控制领域,通过使用PLC,可以实现对工业机器人的精准控制和灵活编程。
本文通过研究和实践,探讨了基于PLC控制的工业机器人系统的研究与实现。
2.系统架构设计基于PLC控制的工业机器人系统主要包括机器人机械结构、传感器、执行机构和控制器。
机器人机械结构由关节、连杆和末端执行器等组成,用于实现机器人的运动和动作。
传感器用于采集其环境信息,控制器则根据传感器反馈的信息进行相应的处理和控制。
本系统采用PLC作为控制器,实现了对机器人的控制和编程。
3.PLC程序设计为了实现对工业机器人的控制和编程,需要设计相应的PLC程序。
首先,通过Ladder图设计机器人的运动控制部分,根据输入的信号控制机器人的运动轨迹和速度。
其次,通过设置输出信号,实现机器人的不同动作,如抓取、放置等。
此外,还可以加入相应的判断逻辑,实现机器人在不同情况下的不同动作和反应。
4.系统实现与调试通过编写程序,将PLC和机器人系统进行连接和调试。
首先,将PLC与机器人的传感器和执行机构进行连接,确保输入和输出信号的正常传递和响应。
其次,进行系统的自检和调试,检查和纠正系统中可能存在的错误和故障。
最后,对系统进行实际操作和运行,观察机器人运动和动作是否符合预期,并根据需要进行相应的调整和优化。
5.实验结果与分析通过实验验证了基于PLC控制的工业机器人系统的性能和效果。
基于PLC的工业自动化控制系统设计与优化工业自动化是现代工业化生产中的一个重要组成部分,它可以提高生产效率、减少劳动力成本,并提高产品质量和一致性。
PLC (Programmable Logic Controller)作为工业自动化控制系统的核心设备,广泛应用于各种制造过程中。
本文将就基于PLC的工业自动化控制系统的设计和优化进行探讨。
一、工业自动化控制系统的设计在工业自动化控制系统的设计过程中,首先需要确定系统的控制目标和功能需求。
根据不同的生产过程和需求,可以选择不同的PLC型号和配置。
其次,需要进行硬件设备的选型,如传感器、执行器等。
通过PLC可以实现对这些硬件设备的控制和监测。
接下来,需要进行编程设计,即编写PLC的控制逻辑。
控制逻辑包括输入信号的采集、处理和输出信号的控制等。
最后,需要进行系统的调试和测试,确保系统能够按照预期的方式运行。
在PLC编程设计中,需要充分考虑系统的可靠性、稳定性和安全性。
在编写控制逻辑时,应避免死循环、并发冲突、内存泄露等问题。
同时,应采取一定的安全措施,如设置密码保护、数据备份、异常处理等,以避免系统的故障和数据丢失。
二、工业自动化控制系统的优化工业自动化控制系统的优化可以从多个方面进行,以提高系统的效率和性能。
1. 优化控制逻辑:通过对PLC编程设计进行优化,可以提高系统的响应速度和控制精度。
可以采用并行处理、状态机设计等技术,减少冗余运算和延迟。
2. 优化硬件设备:选择合适的传感器和执行器,具有高精度和稳定性,以保证数据的准确性和可靠性。
同时,定期对设备进行维护和保养,确保其性能处于最佳状态。
3. 优化通信协议:PLC与其他设备的通信是工业自动化控制系统中的关键环节。
选择合适的通信协议和网络结构,以提高数据的传输速度和稳定性,减少通信误差。
4. 优化能耗管理:工业自动化控制系统的能耗是一个重要考虑因素。
可以通过优化控制策略、节能设备的应用等方式,降低能耗并提高系统的能源利用率。
基于PLC的控制系统毕业设计1. 引言在工业自动化领域,PLC(可编程逻辑控制器)是一种广泛应用的控制设备。
它通过编程控制输入输出(I/O)模块的状态,实现自动化的逻辑控制。
本毕业设计将基于PLC开发一个控制系统,旨在展示PLC在实际工程中的应用。
2. 毕业设计背景在工业自动化领域,控制系统的设计和实施对于提高生产效率、降低能源消耗和减少人为错误等方面都具有重要意义。
PLC作为一种可靠稳定的控制设备,广泛应用于各种自动化系统中。
本毕业设计将基于PLC开发一个控制系统,以解决某个具体工业过程中的控制问题。
3. 设计目标本毕业设计的主要目标是设计一个基于PLC的控制系统,能够实现对某个工业过程的自动化控制。
具体设计目标如下: - 实现对输入输出设备的控制和监测; - 实现对工业过程的逻辑控制; - 实现人机界面,方便操作和监测; - 提高系统的稳定性和可靠性; - 实现故障诊断和状态监测。
4. 设计方案4.1 系统硬件设计本系统将采用以下硬件设备: - 基于PLC的控制器:选用某款主流PLC控制器,具备足够的输入输出接口,支持编程和通信功能; - 输入输出(I/O)模块:选择适应工业过程需求的I/O模块,用于与外部设备的接口; - 传感器和执行器:根据实际需求选择合适的传感器和执行器,用于检测和控制工业过程中的状态; - 人机界面:采用触摸屏或其它交互设备,方便操作和监测工业过程; - 通信设备:可选配通信模块,实现与上位机或其它设备的数据交互。
4.2 系统软件设计本系统将采用以下软件技术: - 编程语言:选择常用的PLC编程语言,如 ladder diagram (LD) 或 function block diagram (FBD); - 编程编辑软件:根据所选PLC型号选择合适的编程编辑软件; - 数据库管理系统:可选配数据库管理系统,用于存储和管理工业过程中的数据; - 数据通信协议:根据实际需求选择合适的通信协议,实现与其它设备的数据交互。
基于PLC的自动控制系统设计与实现1.引言现代工业已经迈入了智能化、自动化的时代。
为了实现生产过程的快速、高效、可靠的自动控制,所以自动化技术的应用越来越广泛。
自动化控制系统是一种使生产系统自动化的技术,其中最常用的自动控制器是可编程逻辑控制器(PLC)。
PLC在自动化控制系统中发挥了重要作用,成为了目前自动化控制系统中最先进和最重要的设备之一。
本文旨在介绍基于PLC的自动控制系统的设计和实现。
2.什么是PLC?PLC是一种专门用于控制自动化设备的电子设备。
以埃里克·马伯(Eric Matsubara)和约翰·波纳斯(John Ponas)于1968年共同发明的MELSEC (MELdable SEQuence Controller)为代表,PLC在50年代后半叶开始应用于工业控制系统中。
PLC是一个由多种接口、输入/输出设备和微处理器组成的数字控制器。
PLC可以根据设定的程序执行其功能,实现对工业控制系统的监测和控制。
PLC具有稳定性高、运行可靠、抗干扰能力强等特点,同时操作简单,可以编写和调试代码。
3.基于PLC的自动控制系统的设计自动控制系统是由人员、设备和程序构成的系统。
其中,人员负责输入系统的指令和监测系统的状态,设备则负责执行任务和输出结果,程序则负责指导设备执行任务。
本文将从程序的设计方案入手,详述基于PLC的自动控制系统设计过程。
(1)控制系统的功能设计为了实现系统的自动化控制,系统必须具备一定的控制功能。
在进行控制功能设计时,需要根据生产过程的要求来确定控制方案和功能。
这包括计算机的参数设置、输入输出端口、电源接口以及其他相关硬件设备。
在设计过程中,需要考虑电子原件的安装、线路连接以及程序的设计等因素。
(2)PLC的程序设计PLC的程序设计是控制系统设计的重要环节。
在程序设计过程中,需要先明确控制系统的运行流程。
通常情况下,系统的运行流程是由多个逐个执行的程序组成的。
基于PLC的工业控制系统的设计与实现摘要:随着社会的进步,科技文化日新月异,现在的很多企业已经逐渐学会利用科技所带来的便利了,可编程逻辑控制器(plc)就是科技发展所带来的成果,它是一种新型的数字运算操作的电子设备,被人们广泛的应用于工业环境之中。
笔者结合多年的实践经验,结合理论,介绍了一个基于plc的工业控制系统是如何设计和被实现的,本文所述的工业控制系统主要就是使用了集散式控制结构,一台plc对应于一个单独的工位,负责对其工位上的相关设施进行操控。
关键词:plc;集散式控制;技术分析中图分类号: c931文献标识码:a 文章编号:前言工业控制技术要运用到很多的技术,其中包含有控制理论、计算机、仪器仪表和其它相关的信息技术,它能够对工业生产过程实现控制、检测、调度、优化、管理和决策,以期能够实现降低消耗、增加产量、确保安全、提高质量等目的的复合型技术。
plc的中文全称是可编程逻辑控制器,简称plc,plc是一种专门在工业环境下应用而设计的数字运算操作的电子装置。
它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。
plc及其有关的外围设备都应按照易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。
本文主要是要分析、研究整个生产线控制系统的控制系统硬件模块和软件模块相关技术。
一、可编程逻辑控制器技术特点plc的特点如下1、特别容易被工程技术人员学会现在工程技术人员学习新生事物可能比较困难,但是plc技术却避免了这样一个问题,它的操作比较简单,很容易让工程技术人员掌握、操作。
plc要在工矿企业中使用首先一定凭借工业控制计算机这一设备。
而工业控制计算机本身的接口是很容易的,在这上面编程也是很容易被工程技术人员掌握。
2、能够抵抗干扰,比较可靠plc技术要对电气设备等进行控制,它的可靠性和抗干扰性就是很重要的。
《基于PLC的工业机械手运动控制系统设计》篇一一、引言随着工业自动化技术的不断发展,PLC(可编程逻辑控制器)已成为工业控制领域中最重要的技术之一。
工业机械手作为自动化生产线上重要的执行机构,其运动控制系统的设计直接关系到生产效率和产品质量。
本文将详细介绍基于PLC的工业机械手运动控制系统设计,包括系统架构、硬件配置、软件设计以及实际应用等方面。
二、系统架构设计基于PLC的工业机械手运动控制系统采用分层式结构设计,主要包括上位机监控系统、PLC控制器和机械手执行机构三个部分。
其中,上位机监控系统负责人机交互、数据监控和系统管理等功能;PLC控制器负责接收上位机指令,控制机械手的运动;机械手执行机构包括电机、传感器、气动元件等,负责完成具体的动作。
三、硬件配置1. PLC控制器:选用高性能、高可靠性的PLC控制器,具备强大的运算能力和丰富的I/O接口,以满足机械手运动控制的需求。
2. 电机:根据机械手的具体需求,选用合适的电机类型和规格,如伺服电机、步进电机等。
3. 传感器:包括位置传感器、速度传感器、力传感器等,用于检测机械手的运动状态和外部环境信息。
4. 气动元件:包括气缸、电磁阀等,用于实现机械手的抓取和释放等功能。
四、软件设计1. 编程语言:采用PLC的编程语言,如梯形图、指令表等,进行程序编写和调试。
2. 控制算法:根据机械手的运动需求,设计合适的控制算法,如PID控制、轨迹规划等,以实现精确的运动控制。
3. 上位机监控系统:开发上位机监控软件,实现人机交互、数据监控和系统管理等功能。
监控软件应具备友好的界面、实时的数据显示和报警功能。
4. 通信协议:建立PLC控制器与上位机监控系统之间的通信协议,实现数据的实时传输和交互。
五、实际应用基于PLC的工业机械手运动控制系统在实际应用中表现出良好的性能和稳定性。
通过上位机监控系统,操作人员可以方便地监控机械手的运动状态和生产数据。
PLC控制器根据上位机的指令,精确地控制机械手的运动,实现高精度的抓取、搬运、装配等任务。
基于PLC的自动化生产线控制系统设计与实现随着技术的不断进步和工业化的发展,自动化生产线在现代工业中扮演着越来越重要的角色。
自动化生产线的设计与实现中,PLC(可编程控制器)技术被广泛应用,其稳定性和可靠性使之成为自动控制的首选。
本文将探讨基于PLC的自动化生产线控制系统的设计与实现。
1. 控制系统框架设计在基于PLC的自动化生产线控制系统中,一个常见的框架设计包括输入模块、输出模块、PLC控制器、执行器和人机界面。
其中,输入模块通过各类传感器将传感信号转换为电信号输入给PLC;输出模块通过电信号将PLC的控制信号转换为动作信号输出给执行器;PLC控制器是系统的核心,负责处理输入信号,根据程序逻辑进行计算控制,并通过输出模块输出相应的动作信号给执行器;执行器负责根据PLC的控制信号进行相应的机构运动;人机界面则通过触摸屏或者其他交互方式与控制系统进行人机对话和监控。
2. PLC程序设计PLC程序的设计是控制系统设计中的关键一环。
根据自动化生产线的需求和具体控制逻辑,编写PLC程序可以实现自动化的逻辑控制。
通常,在PLC程序设计中,可以使用Ladder图、功能块图或者指令表等方式进行梯形逻辑的表示和运算。
根据具体控制要求,逻辑图中可以包含计数器、定时器、比较器等功能模块,实现对传感信号的监测、计数和定时控制等功能。
3. 实时监测与报警处理在自动化生产线控制系统中,实时监测和报警处理是非常重要的环节。
通过PLC与各类传感器的连接,可以实时监测生产线中的各项参数和状态。
一旦出现异常情况,PLC可以及时发出报警信号,并通过人机界面向操作员提示异常信息。
同时,PLC还可以与其他设备进行联动控制,实现故障自动排除或者设备自动停机等功能,保证生产线的安全和稳定运行。
4. 网络通信与数据分析随着信息化的发展,自动化生产线控制系统的网络通信与数据分析功能也变得越来越重要。
通过将PLC与上位机或者云平台进行网络连接,可以实现远程监控和管理。
基于PLC的磨线机和剥线机控制系统的设计与实现一、概述随着现代工业自动化程度的不断提升,越来越多的企业开始关注如何提高生产效率和产品质量。
在电线电缆行业中,磨线机和剥线机作为重要的生产设备,其自动化和智能化水平的提升尤为重要。
传统的磨线机和剥线机控制系统多采用硬线逻辑控制器或简单的继电器控制系统,这些系统存在接线复杂、维护困难、功能单一等问题,已无法满足现代工业生产的需求。
基于可编程逻辑控制器(PLC)的磨线机和剥线机控制系统,以其高度的灵活性、可靠性和扩展性,成为当前工业自动化领域的热门选择。
PLC控制系统通过编程实现对磨线机和剥线机的精确控制,不仅提高了生产效率,还降低了设备故障率和维护成本。
PLC控制系统还具备强大的通信功能,可以实现与上位机、触摸屏等设备的无缝连接,为企业的智能化升级提供了有力支持。
本文旨在探讨基于PLC的磨线机和剥线机控制系统的设计与实现。
我们将介绍PLC控制系统的基本原理和特点,然后详细阐述控制系统的硬件和软件设计,包括PLC的选型、输入输出模块的配置、控制程序的编写等。
接着,我们将通过实际案例,分析PLC控制系统在磨线机和剥线机中的应用效果,并探讨其在实际生产中的优势和局限性。
我们将对基于PLC的磨线机和剥线机控制系统的未来发展趋势进行展望,以期为企业的智能化升级提供有益的参考。
1. 磨线机和剥线机在工业生产中的重要性在工业生产中,电线电缆的加工处理是非常重要的一环。
作为电线电缆加工过程中的关键设备,磨线机和剥线机的作用不可小觑。
这两种机器设备能够高效、准确地完成电线的外皮剥离和线芯磨削工作,为后续的电线连接、焊接等工艺提供了高质量的原材料准备。
磨线机主要用于去除电线线芯表面的绝缘层或氧化层,使线芯露出纯净的金属部分,以确保电线连接时的导电性能。
在电气、电子、通讯、汽车制造等众多行业中,磨线机的应用广泛,对于保证产品质量和生产效率起着至关重要的作用。
剥线机则负责将电线外皮按照预设长度剥离,暴露出内部的线芯,以供后续的接线操作。
基于PLC的自动化控制系统设计随着科学技术的不断发展,自动化控制技术已经在各个领域取得了广泛应用。
在工业领域,自动化控制技术的应用可以大大提高生产效率和生产品质,同时降低了生产成本。
本文将以基于PLC的自动化控制系统设计为主题,介绍其基本原理、设计流程和注意事项。
一、基本原理PLC(可编程逻辑控制器)是一种专门用于自动化控制的计算机,采用可编程的存储程序控制,可与多种传感器、执行器等设备进行通信,实现自动化控制。
其基本原理就是通过输入信号触发PLC控制器,控制器再通过输出端口驱动各种执行器完成各种动作。
PLC具有可编程性、可扩展性和可靠性等优点,可以编写程序来实现各种控制任务。
其硬件组成包括中央处理器、输入模块、输出模块、电源模块等,而软件部分则主要是编写PLC程序,以实现各种控制逻辑。
二、设计流程PLC的自动化控制系统设计包括以下步骤:1.需求分析:明确系统的控制任务和控制要求,确定所需的输入信号和输出信号,以及其他相关参数。
2.工程调研:了解现场环境、设备情况和用户需求,设计出合适的控制方案。
3.系统设计:确定PLC的型号和规格,配备相应的输入输出模块,设计PLC程序,测试并优化控制逻辑。
4.安装调试:安装PLC设备和其他外部设备,进行初步调试和测试,确保系统正常运行。
5.维护保养:监测PLC的运行状况,定期检查和维护设备,及时处理故障。
三、注意事项在进行PLC的自动化控制系统设计时,还需要注意以下几个方面:1.合理性和可行性:设计方案应符合实际情况,具有可行性。
2.稳定性和可靠性:PLC设备应选择品质可靠、性能稳定的产品,以确保系统的长期稳定运行。
3.灵活性和扩展性:系统设计应具有一定的灵活性和扩展性,能够满足未来的发展需求。
4.安全性和操作性:PLC的自动化控制系统设计需考虑安全和操作性,以确保设备和人员的安全。
5.节能环保:系统设计应符合节能环保要求,避免过度能耗和环境污染。
四、结论基于PLC的自动化控制系统设计是现代工业生产中的重要技术,它能大大提高生产效率和品质。
基于PLC的工业控制系统的设计与实现
随着科学技术水平的提升,工业控制技术也在不断创新与发展,目前在工业控制系统中应用最广泛的技术为PLC,PLC技术有着诸多的优点,因此,能够满足工业控制系统的需求。
文章将分析PLC技术的概况,并介绍基于PLC的工业控制系统的设计与实现。
标签:PLC技术;工业控制系统;设计与实现
引言
目前,随着社会的发展,工业得到了快速的发展,工业控制系统积极运用先进的技术,其中PLC技术完善了其控制系统,保证了工业的可持续生产,提升了其自动化的进程,控制了生产风险。
文章将研究基于PLC技术的工业控制系统的设计与实现。
1 PLC技术的概况
工业控制技术主要是通过对先进的信息技术的应用,从而实现工业生产的高质量、低消耗与安全性等,PLC技术属于工业控制技术中的一种,PLC的基础为计算机技术,核心为微处理器,优点如下:安全性较高、适用性较强、易学易用易建造、便于维护、轻体重、小体积、低能耗等[1]。
2 基于PLC的工业控制系统的设计
工业控制系统包括硬件模块与软件设计,其中软件设计是最为关键的环节,软件设计对整个系统的数据进行处理、显示其状态、存储其参数等,主要包括PLC程序,主控、界面与动画PC程序等。
2.1 PLC程序的设计
PLC程序的设计将实现对生产线上执行活动的全过程的负责,主要内容为采集数据、控制顺序、处理数据等。
PLC的内部结构包括CPU模块、内部存储器、电源模块与输入、输出单元等。
在其内部结构中最为核心的是CPU模块,对整个程序有着重要的作用,将对用户的数据与程序等进行存储,对现场输入装置传递的状态、数据等进行采集,对PLC内部的电路、电源等进行诊断。
内部存储器是一种半导体电路,其最为突出的特点便是具有记忆功能,内部存储器分为两种:一种为系统程序存储器,主要存储的为系统程序,如:管理程序、解释编译程序与监控程序等;另一种为用户存储器。
电源模块为PLC各个模块提供工作电源。
PLC程序的设计原则为:其一,科学性,对于被控对象的控制要求要做到最大限度的满足,因此,在其设计时,要对现场进行仔细的研究与考察,通过搜集
的资料,根据机械与电气设备等,制定全面的控制方案。
其二,经济性,工业控制系统要具有经济性,才能通过控制保证其质量,提升其效益,同时其系统的便捷性将易于其维护。
其三,安全性,控制系统的安全性是必要的。
其四,适用性,控制系统要根据工业的需求与技术的更新,进行适当的改进,因此,PLC要具有适应性。
PLC程序的设计内容为:对用户的输入设备、输出设备、控制对象进行选择,如:文本显示器、控制按钮、传感器、继电器与电机等;对PLC进行选择,要保证其正确性,包括机型、容量、电源模块等;对控制程序进行设计,包括控制系统流程图、PLC梯形图,其中最为关键的是控制程序,它关系着系统的安全性、可靠性,对程序设计要进行反复的修改、调试,从而保证其满足设计的需求。
PLC程序的控制模式要根据生产线的实际情况进行设计,其设备有自动、手动与半自动的控制操作,因此PLC程序的控制模式也要具备相应的三种控制模式,即:自动、手动、半自动控制模式。
自动模式是指当生产线保持在自动状态之际,PLC程序将进入到自动模式,通过远程主控PC实现控制;手动模式是指当生产线保持在调试状态之际,PLC程序将进入到手动模式,通过文本显示器控制实现控制;半自动模式是指生产线保持在调试状态之际,PLC程序将进入到半自动模式,通过半自动动作实现控制[2]。
2.2 主控PC程序的設计
在控制系统中主控PC是重要的设计环节,主控PC有效的结合了PLC、界面与动画PC。
设计主控PC程序的思路,首先考虑的是程序的整体设计,主要是由于其设计具有复杂性与繁琐性,同时其工作量较大,其整体设计要保证其合理性、功能性,其设计方法选用的是现代的、经典的程序设计方法,根据生产性的实际需求,由此规划其功能,明确与其他设备的关系;将程序模块进行划分,并保证每个模块具有独立的功能;将程序模块进行调试,促进其功能的充分发挥;将程序模块进行综合研究,提升程序的综合性能,使其发挥最大的作用。
主控PC程序主要包括PLC通讯模块、PC间通讯模块与数据库模块,将实现主控PC与PLC二者间的数据传输与控制命令的传递;主控PC也将实现与界面、动画PC间的数据传输与控制命令传递;同时也将实现主控PC对内部数据的存储与命令的收发等。
2.3 界面与动画PC程序的设计
在生产线控制系统中界面PC是其操作平台,将用户界面与状态反馈给操作人员,从而通过操作人员、界面PC实现对生产线的控制;在生产线控制系统中动画PC是其模拟平台,将对生产线的实时生产状态进行模拟,其形式为动画。
3 基于PLC的工业控制系统的实现
基于PLC的工业控制系统的实现要对其各个模块进行调试,再通过在线测试、验收等,从而保证其满足生产线的需求。
模块调试主要是对PLC与其他硬
件设备进行调试,主要是由于硬件设备极易受到外界因素的影响,通过调整将降低外界因素对其影响。
同时要对生产线控制系统进行初始化,主要步骤有设备复位、设备自检,在其完成后,便可以进行正式运行,操作人员通过对界面PC的操作,将实现对生产线的控制[3]。
4 结束语
综上所述,在现代化的工业作业中,PLC程序得到了广泛的应用,从而进一步促进了工作控制系统的自动化与现代化,文章介绍了PLC技术的概况,并分析了基于PLC的工业控制系统设计与实现,相信,工业控制系统将得到进一步的发展。
参考文献
[1]张敏菊.基于PLC的工业控制实验系统的研究[D].南京理工大学,2011.
[2]谭威.基于PLC的工业控制系统的设计与实现[D].华中科技大学,2013.
[3]王洪猛,谢建君,曾云,等.基于PLC的过程控制系统设计与实现[J].自动化技术与应用,2012,7(03):71-72.。