《金属学与热处理》名词解释汇总
- 格式:docx
- 大小:24.62 KB
- 文档页数:6
《金属学与热处理》名词解释汇总金属学与热处理名词解释汇总1.金属:具有正的电阻温度系数的物质,具有良好的导电性、导热性、延展性和金属光泽。
2.金属键:金属原子贡献出价电子,形成正离子,沉浸在电子云中,他们依靠运动于其中的公有化的自由电子的静电作用而结合起来,这种结合方式称之为金属键3.晶体:原子在三维空间作有规则的周期性重复排列的物质。
4.晶体结构:晶体中原子在三维空间有规律的周期性的具体排列方式。
5.空间点阵:将构成晶体的原子或原子团抽象成纯粹的几何点,由这些几何点有规则地周期性重复排列形成的三维空间阵列。
6.晶格:用一系列平行直线将阵点连接起来所形成的三维空间格架。
7.晶胞:从晶格中选取的能够反映晶格特征的最小几何单元。
8.配位数:晶体结构中与任一原子最近邻、等距离的原子数目。
9.致密度:晶胞中原子所占体积与晶胞体积的比值,用来表示原子排列的紧密程度。
10.晶向:在晶体中,任意两原子之间的连线所指的方向称为晶向。
11.晶向族:原子排列相同但空间位向不同的所有晶向。
12.晶面:在晶体中,由一系列原子所组成的平面称为晶面。
13.晶面族:原子排列情况完全相同的所有晶面。
14.各向异性:不同方向上晶体的各性能(导电性、导热性、强度等)不相同的特性。
15.多晶型性:某些金属在不同条件下具有不同晶体结构的特性。
16.多晶型转变(同素异构转变):当外部条件(温度或压强)改变时,金属内部由一种晶体结构向另一种晶体结构的转变。
17.强度:指金属材料抵抗塑性变形和断裂的能力。
18.硬度:金属材料抵抗其它更硬物体压入表面的能力。
19.塑形:指材料在载荷作用下发生不可逆永久变形的能力。
20.冲击韧性:材料在外加冲击载荷作用下断裂时消耗能量大小的特性。
21.晶体缺陷:在实际的金属材料中存在的一些原子偏离规则排列的不完整性区域。
22.点缺陷:在三个方向上尺度都很小,相当于原子尺寸,如空位、间隙原子、置换原子。
23.线缺陷:在两个方向上尺度很小,另一个方向上尺度很大,主要是位错。
7、弹性模量与刚度:金属在弹性范围内,应力与应变的比值σ/ε称为弹性模量E,也称为杨氏模量。
E标志材料抵抗弹性变形的能力,用以表示材料的刚度。
14、断裂韧性:金属材料阻止裂纹失稳扩散的属性或材料的韧性。
1、金属特性:金属在固态下具有以下特征:①具有良好的导电性和导热性;②具有正的电阻温度系数;③具有良好的反射能力、不透明性和金属光泽;④具有良好的塑性变形能力。
4、晶体与晶体特性:原子(或分子)在三维空间呈有规则的周期性排列的一类物质称为晶体。
晶体特性:①晶体中的原子(或分子)在三维空间呈有规则的周期性排列;②具有确定的熔点;③具有各向异性;④具有规则的几何外形。
5、空间点阵:将刚球模型中的刚球抽象为纯粹的几何点,得到一个由无数几何点在三维空间规则排列而成的列阵,称之为空间点阵。
6、晶格与晶胞:描述原子(离子、分子)或原子团在晶体中排列方式的几何空间格架称为结晶格子,简称晶格。
从晶格选取一个能够完全反映晶体特征的最小几何单元。
这个有代表性的最小几何单元称为晶胞。
7、晶面与晶向:在晶体中,有一系列原子所组成的平面称为晶面;任意两个原子之间的连线称为原子列,其所指方向称为晶向。
8、晶面指数与晶向指数:为确定晶面和原子列在晶体中的空间位向所采用的统一符号,分别称为晶面指数与晶向指数。
9、晶面族(或晶向族):某些晶面(或晶向)上的原子排列相同但空间位向不同,它们在晶体学上属等同晶面(或晶向),可归并为一个晶向族称为晶面族(或晶向族)。
10、配位数与致密度:晶格中任一原子周围与其最近邻且等距离的原子数目称为配位数;一个晶胞内原子所占体积与晶胞体积之比称为致密度。
12、多晶型转变或同素异构转变:具有多晶型的金属在温度或压力变化时,由一种晶体结构变为另一种晶体结构的过程叫多晶型转变或同素异构转变。
14、点缺陷:在三维尺度上都很小的晶体缺陷,一般不超过几个原子间距。
点缺陷主要有空位、间隙原子和置换原子等。
15、线缺陷:在二维尺度上很小,而在三维尺度上很大的晶体缺陷,包括刃型位错、螺型位错、混合位错。
金属学与热处理名词解释汇总热处理:在生产中,通过加热、保温和冷却,使钢发生固态相变,借此改变其内部组织结构,从而达到改善力学性能的目的的操作被称为热处理。
正火:将工件加热至Ac3(Ac是指加热时自由铁素体全部转变为奥氏体的终了温度,一般是从727℃到912℃之间)或Acm(Acm是实际加热中过共析钢完全奥氏体化的临界温度线)以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。
淬火:将钢加热到Ac3或Ac1以上的某一温度,保温一定时间,然后取出进行水冷或油冷获得马氏体的热处理工艺。
等温淬火:将奥氏体化的工件淬入温度稍高于Ms的熔盐中,等温保持足够时间,使过冷奥氏体恒温发生贝氏体转变,待转变结束后取出在空气中冷却的处理方法称为等温淬火。
分级淬火:将奥氏体化的工件淬入温度稍高于或稍低于Ms的熔盐中,待工件内外温度均匀后,从熔盐中取出置于空气中冷却至室温,以获得马氏体组织,这种处理方法称为分级淬火。
单液淬火:将奥氏体化的工件投入一种淬火介质中,直至转变结束。
双液淬火:将奥氏体化的工件先放入一种冷却能力强的冷却介质冷却一定时间,当冷却至稍高于Ms后立即将工件取出并放入另外一种冷却能力缓一些的冷却介质冷却,使之转变为马氏体的热处理工艺。
回火:将淬火钢加热到低于临界点A1某一温度,保温一定时间,然后冷却到室温的一种热处理工艺。
回火索氏体:淬火碳钢500~650℃回火时,得到粗粒状渗碳体和多边形铁素体所构成的复相组织。
回火屈氏体:淬火碳钢350~500℃回火时,得到细粒状渗碳体和针状铁素体所构成的复相组织。
回火马氏体:淬火碳钢在250℃以下回火时,得到的过饱和的α固溶体和弥散分布的碳化物组成的复相组织。
退火:是将钢加热到临界点以上或以下的某一温度,保温一定时间后,随炉冷却的一种热处理工艺。
它是热处理工艺中应用最广、种类最多的一种工艺,不同种类的退火目的也各不相同。
等温退火:将亚共析钢工件加热到A3以上20〜30°C,保温一定时间,然后在Arl以下珠光体转变区间的某一温度进行等温,使之转变为珠光体后出炉空冷的一种热处理工艺。
金属学与热处理复习资料一、名词解释1、晶体:原子在三维空间做有规则的周期性重复排列的物质。
2、非晶体:指原子呈不规则排列的固态物质。
3、晶格:一个能反映原子排列规律的空间格架。
4、晶胞:构成晶格的最基本单元。
5、晶界:晶粒和晶粒之间的界面。
6、单晶体:只有一个晶粒组成的晶体。
7、合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。
8、组元:组成合金最基本的、独立的物质称为组元。
9、相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。
10、固熔体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相。
11、结晶:纯金属或合金由液体转变为固态的过程。
12、重结晶:金属从一种固体晶态改变了晶体结构转变为另一种固体晶态的过程。
13、过冷度:理论结晶温度(T0)和实际结晶温度(T1)之间存在的温度差。
14、铁素体:碳溶解于α-Fe中形成的间隙固溶体。
15、渗碳体:是铁与碳形成的质量分数为6.69%的金属化合物。
16、奥氏体:碳溶解于γ-Fe中形成的间隙固溶体。
17、珠光体:是由铁素体与渗碳体组成的机械化合物。
18、莱氏体:奥氏体与渗碳体的混合物为莱氏体。
19、同素异构转变:一些金属,在固态下随温度或压力的改变,还会发生晶体结构变化,即由一种晶格转变为另一种晶格的变化,称为同素异构转变。
20、实际晶粒度:某一具体热处理或热加工条件下的奥氏体的晶粒度叫实际晶粒度,它决定钢冷却后的组织和性能。
21、马氏体:碳在α-Fe 中的过饱和间隙固溶体,具有很大的晶格畸变,强度很高。
22、贝氏体:渗碳体分布在含碳过饱和的铁素体基体上或的两相混合物。
根据形貌不同又可分为上贝氏体和下贝氏体。
23、淬透性:淬透性是指在规定条件下,钢在淬火冷却时获得马氏体组织的能力。
24、淬硬性:淬硬性是指钢在理想的淬火条件下,获得马氏体所能达到的最高硬度。
25、调质处理:淬火后高温回火的热处理工艺组合。
金属学与热处理复习资料一、名词解释1、晶体:原子在三维空间做有规则的周期性重复排列的物质。
2、非晶体:指原子呈不规则排列的固态物质。
3、晶格:一个能反映原子排列规律的空间格架。
4、晶胞:构成晶格的最基本单元。
5、晶界:晶粒和晶粒之间的界面。
6、单晶体:只有一个晶粒组成的晶体。
7、合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。
8、组元:组成合金最基本的、独立的物质称为组元。
9、相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。
10、固熔体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相。
11、结晶:纯金属或合金由液体转变为固态的过程。
12、重结晶:金属从一种固体晶态改变了晶体结构转变为另一种固体晶态的过程。
13、过冷度:理论结晶温度(T0)和实际结晶温度(T1)之间存在的温度差。
14、铁素体:碳溶解于α-Fe中形成的间隙固溶体。
15、渗碳体:是铁与碳形成的质量分数为6.69%的金属化合物。
16、奥氏体:碳溶解于γ-Fe中形成的间隙固溶体。
17、珠光体:是由铁素体与渗碳体组成的机械化合物。
18、莱氏体:奥氏体与渗碳体的混合物为莱氏体。
19、同素异构转变:一些金属,在固态下随温度或压力的改变,还会发生晶体结构变化,即由一种晶格转变为另一种晶格的变化,称为同素异构转变。
20、实际晶粒度:某一具体热处理或热加工条件下的奥氏体的晶粒度叫实际晶粒度,它决定钢冷却后的组织和性能。
21、马氏体:碳在α-Fe 中的过饱和间隙固溶体,具有很大的晶格畸变,强度很高。
22、贝氏体:渗碳体分布在含碳过饱和的铁素体基体上或的两相混合物。
根据形貌不同又可分为上贝氏体和下贝氏体。
23、淬透性:淬透性是指在规定条件下,钢在淬火冷却时获得马氏体组织的能力。
24、淬硬性:淬硬性是指钢在理想的淬火条件下,获得马氏体所能达到的最高硬度。
25、调质处理:淬火后高温回火的热处理工艺组合。
金属:具有正的电阻温度特性的物质。
晶体:物质的质点(原子、分子或离子)在三维空间作有规则的周期性重复排列的物质叫晶体。
原子排列规律不同,性能也不同。
点阵或晶格:从理想晶体的原子堆垛模型可看出,是有规律的,为清楚空间排列规律性,人们将实际质点(原子、分子或离子)忽略,抽象成纯粹几何点,称为阵点或节点。
为便于观察,用许多平行线将阵点连接起来,构成三维空间格架。
这种用以描述晶体中原子(分子或离子)排列规律的空间格架称为空间点阵,简称点阵或晶格。
晶胞:由于排列的周期性,简便起见,可从晶格中取出一个能够完全反映晶格特征的最小几何单元来分析原子排列的规律性。
这个用以完全反映晶格特征最小的几何单元称为晶胞。
多晶型转变或同素异构转变:当外部条件(如温度和压强)改变时,金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变或同素异构转变。
空位:某一温度下某一瞬间,总有一些原子具有足够能量克服周围原子约束,脱离原平能位置迁移到别处,在原位置上出现空节点,形成空位。
到晶体表面,称为肖脱基空位;到点阵间隙中,称弗兰克尔空位;位错:它是晶体中某处有一列或若干列原子发生了有规律的错排现象,使长达几百至几万个原子间距、宽约几个原子间距范围内原子离开平衡位置,发生有规律的错动,所以叫做位错。
基本类型有两种:即刃型位错和螺型位错。
晶界:晶体结构相同但位相不同的晶粒之间的界面称为晶粒间界,简称晶界。
小角度晶界位相差小于10°,基本上由位错组成。
大角度晶界相邻晶粒位相差大于10°,晶界很薄。
亚晶界和亚结构:分别泛指尺寸比晶粒更小的所有细微组织及分界面。
柯氏气团:刃型位错的应力场会与间隙及置换原子发生弹性交互作用,吸引这些原子向位错区偏聚。
小的间隙原子如C、N 等,往往钻入位错管道;而大置换原子,原来处的应力场是受压的,正位错下部受拉,由相互吸引作用,富集在受拉区域;小的置换原子原来受拉,易于聚集在受压区域,即位错的上部。
空间点阵:由阵点有规则地周期性重复排列形成的三位空间阵列伪共晶:成分在共晶点附近的亚共晶或者过共晶合金,在不平衡结晶条件下得到的共晶组织。
孪生:在切应力作用下,晶体的一部分沿一定的晶面和一定的晶向做均匀切变粒状珠光体:指分布在铁素体基体上的粒状渗碳体的组织回火脆性:钢在某些温度区间回火,反常出现的冲击韧性显著降低的现象淬透性:钢在淬火时获得马氏体的能力回复:是冷塑性变形的金属,在随后的加热时冷变形基体尚未发生变化时的退火过程。
在回复过程中,金属的组织发生了在光学显微镜下观察不到的变化,力学性能只有少许的变化,然而物理和化学性能却有明显的改变。
成分偏析:结晶时发生的化学成分不均匀现象均匀化退火:将钢锭或铸件加热到略低于固相线温度下,长时间保温然后缓慢冷却以消除化学成分不均匀现象的工艺晶粒反常长大:少数晶粒具有特别大的长大能力,逐步吞噬掉周围大量小晶粒,其尺寸比原始晶粒大上许多倍的过程多边化:冷变形后,金属加热时,原来处在滑移面上的位错,通过滑移和攀移,形成与滑移面垂直的亚晶界的过程加工硬化:在塑性变形的过程中,随着变形程度的增加,金属的强度和硬度增加,而韧性接塑性有所下降的现象,也叫形变强化。
形变织构:由于金属的塑性变形使晶粒具有择优取向的组织离异共晶:在先共晶相较多,而共晶相组织甚少的情况下,有时共晶组织中与先共晶相相同的那一相会依附于先共晶相上生长,生下的另一相则单独存在于晶界处,从而使共晶组织的特征消失固溶强化:通过形成固溶体使金属强化的现象称为固溶强化。
时效强化:合金元素经固溶处理后,获得过饱和固溶体。
在随后的室温放置或低温加热保温时,第二相从过饱和固溶体中析出,引起强度,硬度以及物理和化学性能的显著变化,这一过程被称为时效强化。
点阵匹配原理:作为非均匀形核基底的夹杂物必须具有与晶核相同的晶体结构,相近的点阵常数,以减小界面张力。
调质处理:淬火后高温回火的热处理方法称为调质处理。
金属学与热处理名词解释复习回复:即在加热温度较低时,仅因金属中的一些点缺陷和位错迁移而所引起的某些晶内的变化。
晶粒大小和形状无明显变化。
回复的目的是消除大部分甚至全部第一类内应力和一部分第二类和第三类内应力。
多边形化:冷变形金属加热时,原来处于滑移面上的位错,通过滑移和攀移,形成与滑移面垂直的亚晶界的过程。
多边形化的驱动力来自弹性应变能的降低。
多边形化降低了系统的应变能。
再结晶:冷变形后的金属加热到一定温度或保温足够时间后,在原来的变形组织中产生了无畸变的新晶粒,位错密度显著降低,性能也发生显著变化,并恢复到冷变形前的水平,这个过程称为再结晶。
再结晶不是相变。
再结晶的目的是释放储存能,使新的无畸变的等轴晶粒形成并长大,使之在热力学上变得更为稳定。
动态回复与再结晶:在再结晶温度以上进行热加工时,在塑性变形过程中发生的,而不是在变形停止后发生的回复与再结晶。
回复和再结晶的驱动力:金属处于热力学不稳定状态,有发生变化以降低能量的趋势,预先冷变形所产生的储存能的降低是回复和再结晶的驱动力。
再结晶形核机制:亚晶长大形核机制、晶界凸出形核机制。
再结晶温度:经过严重冷变形(变形度在70%以上)的金属,在约1h的保温时间内能够完成再结晶(>95%转变量)的温度。
影响奥氏体晶粒大小的因素:加热温度和保温时间、加热速度、钢的化学成分、钢的原始组织。
钢在冷却时的转变:钢在奥氏体化后的两种冷却方式:等温冷却方式、连续冷却方式珠光体转变及其组织在温度A1以下至550℃左右的温度范围内,过冷奥氏体转变产物是珠光体,即形成铁素体与渗碳体两相组成的相间排列的层片状的机械混和物组织。
在珠光体转变中,由A1以下温度依次降到鼻尖的550℃左右,层片状组织的片间距离依次减小。
根据片层的厚薄不同,这类组织又可细分为三种。
第一种是珠光体,其形成温度为A1~650℃,片层较厚,一般在500倍的光学显微镜下即可分辨。
用符号“P”表示。
第二种是索氏体,其形成温度为650℃~600℃,片层较薄,一般在800~1000倍光学显微镜下才可分辨。
金属键::失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。
刃型位错:刃型位错的柏氏矢量与位错线垂直;结晶潜热:1mol物质从一个相转变为另一个相时,伴随着放出的热量。
缩松:金属以树枝晶方式长大,由于树枝晶的发展以及各晶枝之间相互穿插和相互封锁作用,使一部分液体被孤立分隔于各晶枝之间,凝固收缩时得不到液体的补充。
结晶结束后便形成缩松。
真实应力:瞬时载荷除以试样的瞬时截面积。
晶向指数:任意两个原子之间的连线所指的方向称为晶向,晶向指数就是晶向的一种表示方法。
共格相界:是指界面上的原子同时位于两相晶格的结点上,同时为两种晶格所共有。
惯习面:新相往往在母相某一特定晶面上形成,母相的这个面被称为惯习面。
非均匀形核:在液态金属中总是存在一些微小的固相杂质质点,并且液体金属在凝固时还要和型壁相接触,于是晶核就可以优先依附于这些现成的固体表面上形成,这种形核方式就叫非均匀形核。
铁素体:碳溶于α-Fe 铁中的间隙固溶体叫铁素体晶内偏析(枝晶偏析):先结晶的部分含高熔点组元多,后结晶组元含低熔点组元多,在晶粒内部存在着浓度的差别,这种在一个晶粒内部化学成分不均匀现象成为晶内偏析。
比重偏析:组成相与溶液之间密度差所引起的一种区域偏析。
回火脆性:钢在一定温度范围内回火时,其冲击韧度显著下降,这种现象叫钢的回火脆性。
变形织构:塑性变形过程中,随着形变程度的增加,各个晶粒的滑移面和滑移方向都要向主形变方向转动,逐渐使多晶体中原取向互不相同的各个晶粒在空间取向上呈现一定程度的规律性,这一现象称为择优取向;择优取向后的晶体结构称为“织构”,这种由变形引起的织构称为变形织构。
灰铸铁的断面敏感性:钢铁材料的缺口敏感性:黄铜及特殊黄铜:以锌为主要合金元素的铜合金,在二元黄铜的基础上添加Al、Fe、Si、Mn、Pb、Ni、Sn等元素形成的特殊黄铜。
晶体缺陷:原子偏离规则排列的不完整性区域。
相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。
金属学与热处理名词解释汇总1.金属:具有正的电阻温度系数的物质,具有良好的导电性、导热性、延展性和金属光泽。
2.金属键:金属原子贡献出价电子,形成正离子,沉浸在电子云中,他们依靠运动于其中的公有化的自由电子的静电作用而结合起来,这种结合方式称之为金属键3.晶体:原子在三维空间作有规则的周期性重复排列的物质。
4.晶体结构:晶体中原子在三维空间有规律的周期性的具体排列方式。
5.空间点阵:将构成晶体的原子或原子团抽象成纯粹的几何点,由这些几何点有规则地周期性重复排列形成的三维空间阵列。
6.晶格:用一系列平行直线将阵点连接起来所形成的三维空间格架。
7.晶胞:从晶格中选取的能够反映晶格特征的最小几何单元。
8.配位数:晶体结构中与任一原子最近邻、等距离的原子数目。
9.致密度:晶胞中原子所占体积与晶胞体积的比值,用来表示原子排列的紧密程度。
10.晶向:在晶体中,任意两原子之间的连线所指的方向称为晶向。
11.晶向族:原子排列相同但空间位向不同的所有晶向。
12.晶面:在晶体中,由一系列原子所组成的平面称为晶面。
13.晶面族:原子排列情况完全相同的所有晶面。
14.各向异性:不同方向上晶体的各性能(导电性、导热性、强度等)不相同的特性。
15.多晶型性:某些金属在不同条件下具有不同晶体结构的特性。
16.多晶型转变(同素异构转变):当外部条件(温度或压强)改变时,金属内部由一种晶体结构向另一种晶体结构的转变。
17.强度:指金属材料抵抗塑性变形和断裂的能力。
18.硬度:金属材料抵抗其它更硬物体压入表面的能力。
19.塑形:指材料在载荷作用下发生不可逆永久变形的能力。
20.冲击韧性:材料在外加冲击载荷作用下断裂时消耗能量大小的特性。
21.晶体缺陷:在实际的金属材料中存在的一些原子偏离规则排列的不完整性区域。
22.点缺陷:在三个方向上尺度都很小,相当于原子尺寸,如空位、间隙原子、置换原子。
23.线缺陷:在两个方向上尺度很小,另一个方向上尺度很大,主要是位错。
24.面缺陷:在一个方向上尺度很小,两个方向上尺度很大,例如晶界、亚晶界等25.空位:在一定温度下,晶体中的原子因能量过高而克服周围原子的束缚,脱离原来的平衡位置而留下的空结点。
26.间隙原子:处于晶体间隙中的原子称为间隙原子。
27.置换原子:占据在原来基体原子平衡位置上的异类原子称为置换原子。
28.位错:晶体中有一列或某几列原子发生的有规律的错排现象。
29.层错:实际晶体中,晶面的堆垛顺序发生局部差错而产生的一种晶体缺陷。
30.位错密度:单位体积中所包含的位错线的总长度。
31.晶界:晶体结构相同但空间位向不同的晶粒之间的界面。
32.相界:具有不同晶体结构的两相之间的分界面称为相界。
33.结晶:晶体由液态向固态转变的过程称为结晶。
34.过冷:金属的实际结晶温度总是低于理论结晶温度的现象。
35.过冷度:金属的理论结晶温度与实际结晶温度之差。
36.过热度:液态金属温度与金属熔点的差值。
37.动态过冷度:晶核长大时,固-液界面前沿的过冷度称为动态过冷度。
38.结构(相)起伏:液态金属中存在着不断变化着的短程有序的原子集团。
39.能量起伏:液态金属中,各微观区域内的能量暂时偏离平衡能量的现象。
40.均匀形核:液相中各个区域出现新相晶核的几率是相同的,这种形核方式称为均匀形核。
41.非均匀形核:新相晶核优先出现在液相中某些区域,这样的形核过程称为非均匀形核。
42.形核率:单位时间单位体积液相中形成的晶核数目。
43.变质处理:在浇注前往液态金属中加入形核剂,促进大量非均匀形核来细化晶粒的工艺。
44.球化处理:铸铁在浇注时,往铁液里加入球化剂以获得球状石墨的操作过程。
45.球化退火:使钢中的碳化物球化,获得粒状珠光体的一种工艺。
46.组元:组成合金最基本的、独立的物质。
47.合金:由两种或两种以上的金属与金属或非金属经一定方法所得的具有金属特性的物质。
48.固溶体:合金的组元之间以不同比例相互混合后形成的固相,其晶体结构与组成合金的某一组元相同,这样的相称为固溶体。
49.固溶强化:随着溶质原子的增加,固溶体的强度硬度提高,塑性韧性下降的现象。
50.置换固溶体:溶质原子溶入溶剂晶格的某些结点位置所形成的固溶体。
51.间隙固溶体:溶质原子溶入溶剂晶格间隙中所形成的固溶体。
52.金属间化合物:当溶解度超过固溶体的固溶度极限时,合金组元之间发生相互作为形成的与原来两组元晶格类型均不同的化合物。
53.相:合金中结构相同、成分和性能均一并以界面相互分开的部分。
54.相律:在平衡状态下,系统的自由度数、组元数和相数之间的关系。
55.相图:在平衡状态下,合金系中合金的状态与温度、成分之间关系的图解。
56.匀晶转变:结晶时从液相结晶出单相的固溶体的过程。
57.异分结晶:固溶体合金结晶时,结晶出的晶体与母相化学成分不同的现象。
58.平衡分配系数:在一定温度下,固液两平衡相中的溶质浓度之比值。
59.成分过冷:固溶体合金平衡结晶时,由于固液界面前沿液相中成分差异所引起的实际结晶温度低于平衡结晶温度的现象。
60.共晶转变:由某一成分的液相在恒温下同时结晶出两个成分一定的固相的反应称为共晶转变。
61.伪共晶组织:在不平衡结晶条件下,成分在共晶点附近的亚共晶或过共晶合金,得到的全部的共晶组织。
62.离异共晶:在先共晶数量较多而共晶组织较少的情况下,共晶组织中与先共晶相相同的那一相,会优先依附于先共晶相上析出,剩下的另一相则单独存在于晶界处,使共晶组织的特征消失,这种两相分离的共晶称为离异共晶。
63.伪共析体:奥氏体在较快冷却速度时得到的不平衡组织。
如索氏体、托氏体。
64.比重偏析:由组成相和熔液之间密度的差异所引起的一种区域偏析。
65.区域偏析:固溶体合金在不平衡条件下结晶时,造成大范围内化学成分不均匀的现象。
66.包晶反应:在恒温下由一定成分的液相与一定成分的固相相互作用,形成另一个一定成分的固相的反应。
67.包晶偏析:由于包晶转变不能充分进行而产生的化学成分不均匀现象。
68.晶内偏析:晶粒内部的化学成分不均匀的现象。
69.枝晶偏析:固溶体合金结晶时,枝干和枝晶间的化学成分不均匀的现象。
70.平衡分配系数:在一定温度下,液固两平衡相中溶质浓度的比值。
71.渗碳体:铁与碳形成的间隙化合物。
72.莱氏体:共晶转变所形成的奥氏体和渗碳体的机械混合物。
73.珠光体:共析转变形成的铁素体与渗碳体组成的片层状组织。
74.索氏体:在较低温度下形成的铁素体与渗碳体组成的细片状组织。
75.镇静钢:钢液在浇注前进行充分脱氧的钢,氧的质量分数不超过%76.沸腾钢:指脱氧不完全的钢,浇注时钢中的氧与碳发生反应放出一氧化碳气体使钢沸腾。
77.淬火时效:钢材在室温下长期放置或稍加热时,氮就逐渐以氮化铁的形式从铁素体中析出,使钢的强度硬度升高,塑性韧性下降,使钢材变脆的现象。
78.滑移面:晶体的一部分沿着一定的晶面和晶向相对于另一部分作相对的滑动,这个晶面称为滑移面,滑动方向称为滑移方向。
79.滑移系:一个滑移面和该面上的一个滑移方向组成一个滑移系。
80.临界分切应力:使滑移系开动的最小分切应力。
81.滑移:在切应力作用下,晶体的一部分相对于另一部分沿某些晶面和晶向发生滑动。
82.孪生:在切应力作用下,晶体的一部分沿一定的晶面和一定的晶向相对于另一部分作均匀切变的过程。
83.攀移:指刃型位错沿垂直于滑移面方向的运动。
84.交滑移:指晶体中出现两个或多个滑移面沿着同一个方向同时或交替滑移的现象。
(螺)85.固溶强化:固溶体合金随着溶质含量的增加,其强度硬度增加,塑形韧性下降的现象。
86.形变强化:冷变形金属随着变形量的增大,强度硬度逐渐增加,塑形韧性下降的现象。
87.第二相强化:由于第二相粒子弥散分布于基体金属中,阻碍位错运动而造成的强化现象。
弥散强化(绕过)沉淀强化(切过)88.细晶强化:晶粒越细,金属的强度硬度越高,塑性韧性也越好的现象。
89.珠光体:由奥氏体在727℃发生共析转变获得的铁素体和渗碳体交替分布的片层状组织。
90.纤维组织:当变形量很大时,晶粒沿变形方向逐渐伸长,呈现出一片如纤维状的条纹组织,称为纤维组织。
91.带状组织:复合合金中的各个相,在热加工时沿着变形方向交替地呈带状分布的组织。
92.形变织构:当变形量很大时,多晶体中原为任意取向的各个晶粒会逐渐调整其取向而彼此趋于一致,这一现象称为择优取向,具有择优取向的组织称为变形织构。
93.宏观内应力(第一类内应力):由于金属工件或材料各部分的不均匀变形引起的。
94.微观内应力(第二类内应力):金属经冷变形后,由于晶粒或亚晶粒变形不均匀引起的内应力。
95.点阵畸变(第三类内应力):点阵中一部分原子偏离原来的平衡位置产生的应力。
96.临界变形度:当变形度达到一定数值时(2~10%),再结晶后的晶粒变得特别粗大,此时的变形度即为临界变形度。
97.回复:冷变形金属加热到较低温度时,其显微组织无可见变化,但物理性能、力学性能(如导电性、导热性)恢复到变形前的过程。
98.再结晶:冷变形金属加热到一定温度保温足够长时间后,在原来的变形组织中产生了无畸变的新晶粒,位错密度降低,性能恢复到变形前的水平的过程。
99.二次再结晶:某些金属材料经严重冷变形后,在较高温度下退火时,少数晶粒具有特别大的长大能力,逐步吞食掉周围的小晶粒,导致的异常长大的现象。
100.再结晶织构:金属再结晶退火后形成的织构。
101.动态回复和动态再结晶:在热加工时,金属内部同时进行着加工硬化与回复再结晶软化两个相反的过程。
102.起始晶粒度:加热时原始组织刚钢完全变为奥氏体时晶粒的大小。
103.实际晶粒度:在具体加热条件下获得的晶粒的大小。
104.本质晶粒度:在规定条件下(930±10℃),保温3~8小时后获得的晶粒大小。
105.过冷奥氏体:在A1线以下的、不稳定的、即将发生转变的奥氏体。
106.残余奥氏体:淬火后未能转变为马氏体而保留到室温的奥氏体。
107.伪共析体:合金成分偏离共析点在不平衡冷却时形成的珠光体组织。
108.魏氏组织:当加热温度过高并以较快速度冷却时,先共析铁素体或先共析渗碳体从奥氏体晶界析出,在金相显微镜下观察到析出的针状铁素体或渗碳体以及期间存在的珠光体组织,称为魏氏组织。
109.临界淬火速度:过冷奥氏体连续冷却转变过程中,发生马氏体转变的最小冷却速度。
110.回火脆性:钢在一定温度范围回火时,其冲击韧性显著下降,脆性增加的现象。
111.低温回火脆性:钢在250~400℃温度范围内出现的回火脆性称为第一类回火脆性。
(所有钢种)112.高温回火脆性:钢在450~650℃温度范围内出现的回火脆性称为第二类回火脆性。
(某些合金钢)113.淬透性:指奥氏体化后的钢淬火时获得马氏体的能力。