实数的运算(根式)
- 格式:doc
- 大小:34.00 KB
- 文档页数:1
第一章根式、指数及其运算
1.1根式定义及性质
根式定义
如果x 2=a ,那么x 叫做a 的平方根 ;如果x 3=a ,那么x 叫做a 的三次方根 。
一般地,如果x n =a ,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *,当n 为奇数时,用符合n a 表示,当n 为偶数时,用符号±n a 表示,其中式子n a 叫做根式,其中 n 叫做根指数,a 叫做被开方数。
性质
(1)在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数,0的奇次方根是0.
(2)在实数范围内,正数的偶次方根有两个,如16的4次方根是±2,它们互为相反数,0的偶次方根是0,负数的偶次方根没有意义,即n 为正偶数时,n a 有意义的条件是a ≥0. (3)n a n =⎩⎨⎧∈=∈+=Z k k n a Z k k n a ,2,,12, ,(n a )n =a. 例题讲解
例1、 用根式表示下列各式中的x :
(1)已知x 6=2013,则x =62013±
(2)已知x 5=-2013,则x =52013-
例2、求下列各式的值
(1)81±; (2)16-; (3)
25
9; (4)2)4(- 例3、求下列各式的值
⑴; ⑵
; ⑶; ⑷
(a<b).
课后跟踪练习
(1)9的平方根是________,-125的立方根是________.
(2)44.1,
(3)36-, (4)4925
±
(5)2)25(-。
根式运算法则一、引言在数学中,根式运算是解决数学问题中经常使用的一种基本运算方法。
根式是一个包含有根号符号的表达式,其中被根号包围的部分称为被开方数,根号下面的数字称为指数。
根式运算法则是对根式进行化简、运算和简化的一系列规则,掌握这些法则可以帮助我们在解决复杂的数学问题时更加高效和准确。
二、根式的基本概念根式可以分为次数为偶数和次数为奇数的两种情况。
当次数为偶数时,被开方数不能是负数;而次数为奇数时,则可以包含任意实数。
根式的化简就是将根式表达式简化到最简形式,即使根号下面不再有平方根或其他次数。
三、根式运算的规则1.同底合并:$\\sqrt{a} \\times \\sqrt{b} = \\sqrt{ab}$2.分解因式:$\\sqrt{a} \\div \\sqrt{b} = \\frac{\\sqrt{a}}{\\sqrt{b}}$3.开方运算:$\\sqrt{a^2} = a$4.分布律:$\\sqrt{a + b} \ eq \\sqrt{a} + \\sqrt{b}$5.乘方运算:$(\\sqrt{a})^2 = a$四、根式运算的例题分析例1简化根式$\\sqrt{50}$。
解: $\\sqrt{50} = \\sqrt{25} \\times \\sqrt{2} = 5\\sqrt{2}$例2计算$\\sqrt{12} \\div \\sqrt{3}$。
解: $\\sqrt{12} \\div \\sqrt{3} = \\frac{\\sqrt{12}}{\\sqrt{3}} =\\frac{\\sqrt{4} \\times \\sqrt{3}}{\\sqrt{3}} = 2$五、常见错误与注意事项1.忘记约分:在进行根式运算时,需要注意将不完全平方数进行约分,以便化简根式。
2.混淆因式分解:有时候会误将根号下的因式进行平方运算,需要注意分解因式和乘方运算的区别。
六、总结根式运算法则是数学中的基础知识之一,掌握好根式运算法则可以帮助我们更好地解决数学问题,提高解题效率。
【数学知识点】初中数学根式运算法则公式
根式开方法则是根式的运算法则之一,算术根开n次方,把根指数扩大n倍,被开方数不变。
非算术根的开方不总是可能的,负数的奇次方根开奇次方时,一般先将给定根式化为算术根后再按法则开方
1.根号2乘以2,把2变成根号4再乘,就是根号4乘根号2,再根号下的2乘以zhi4的积,就是根号8,也可化简写成2倍根号
2.
如题:√dao2*2=2√2=√2*√4=√(2*4)=√(2^2*4)=√8
2.根号3乘以根号6就是根号下6乘以3的积,就是根号18,再把18变成9乘以2,因为9可以开根,所以最后化简得出3倍根号2.
如题:√3*√6=√(3*6)=√18=√(9*2)=√3^2*2)=3√2
3.根号32乘以根号25,得出根号800,根号800再化简得根号下的400乘以2的
积,400又等于20乘以20,就是20的平方,最后化简得出20倍根号2.
如题:√32*√25=√(32*25)=√800=√(400*2)=√(20^2*2)=20√2
①根据字母的取值范围化简二次根式;
②根据二次根式的化简结果确定字母的取值范围;
③利用二次根式的性质求字母(或代数式)的最小(大)值;
④利用平方差公式进行分母有理化的计算求值;再者就是相关最简二次根式、同类二次根式等相关的基础知识考察,
在实数范围内:
(1)偶次根号下不能为负数,其运算结果也不为负。
(2)奇次根号下可以为负数。
不限于实数,即考虑虚数时,偶次根号下可以为负数,利用【i=√-1】即可。
以上就是一些数学根式的相关信息,希望对大家有所帮助。
感谢您的阅读,祝您生活愉快。
初一数学实数的运算试题答案及解析1.计算:= .【答案】﹣14【解析】先把二次根式、三次根式化简,再作乘法运算.解:原式=10×(﹣2)×0.7=﹣14.故答案为:﹣14.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、三次根式的运算.2.不用计算器,计算:= .【答案】5【解析】根据立方运算法则,分别相乘,直接得出答案.解:()3=××=5.故答案为:5.点评:此题主要考查了实数的运算,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式乘法运算.3.有一个数值转换器,原理如下:当输入x为4时,输出的y的值是.【答案】y=【解析】本题有x=4很容易解出它的算术平方根,在判断它的算术平方根是什么数,最后即可求出y的值.解:∵x=4时,它的算术平方根是2又∵2是有理数∴取2的算术平方根是∴y=点评:本题主要考查了算术平方根的计算和有理数、无理数的概念,解题时要掌握数的转换方法.4.= ;= .【答案】5,2【解析】根据幂的乘方法则进行计算即可.解:()2==5;()2==2.故答案为:5,2.点评:本题考查的是实数的运算,熟知幂的乘方法则是解法此题的关键.5.在下面算式的两个方框内,分别填入两个绝对值不相等的无理数,使得它们的积恰好为有理数,并写出它们的积.【答案】()()=2【解析】只要满足两个绝对值不相等的无理数,使得它们的积恰好为有理数即可,可以任意列举出两个不相等的无理数,如:和,()(+1)=3﹣1=2满足题意.解:和+1是两个绝对值不相等无理数,那么,()()=3﹣1=2,即:这两个数满足是两个绝对值不相等的无理数,且它们的积恰好为有理数,所以空白处应填:()()=2,答案不唯一.点评:本题主要考查写出两个绝对值不相等的无理数,使得它们的积恰好为有理数的能力,可以任意取两个绝对值不相等的无理数,使它们相乘,如满足乘积是有理数则可取,如不满足舍去即可,本题属于开放性类型.6.长方形的长为厘米,面积为平方厘米,则长方形的宽约为厘米.(,结果保留三个有效数字)【答案】5.66【解析】根据长方形面积公式,代入即可得出答案.解:长方形的面积=长×宽,∴长方形的宽为=4≈5.66.故答案为5.66.点评:本题主要考查了长方形面积公式,比较简单.7.是20a+2b的平方根,是﹣2a﹣b的立方根,则+= .【答案】6【解析】根据平方根与立方根的定义得到,解得,则原式=+,然后进行开方运算,再进行减法运算.解:根据题意得,解得,则原式=+=8﹣2=6.故答案为6.点评:本题考查了实数的运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.也考查了平方根与立方根.8.计算:(1)(2).【答案】(1)﹣2(2)0【解析】(1)先算乘方、开方和除法化为乘法得到原式=﹣16﹣6+4×(﹣)×(﹣2),再进行乘法运算,然后进行加减运算;(2)利用乘法的分配律进行计算.解:(1)原式=﹣16﹣6+4×(﹣)×(﹣2)=﹣16﹣6+20=﹣22+20=﹣2;(2)原式=﹣×(﹣18)+×(﹣18)﹣×(﹣18)=14﹣15+1=0.点评:本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.9.计算:.【答案】2【解析】本题涉及立方根、乘方、二次根式及绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解:=1﹣4+3+2=2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握乘方、立方根、二次根式、绝对值等考点的运算.10.在算式□的□中填上运算符号,使结果最大,这个运算符号是()A.加号B.减号C.乘号D.除号【答案】D【解析】将加减乘除符号放入计算,比较即可得到结果.解:+=,﹣=0,×=,÷=1,则这个运算符号是除号.故选D.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11.已知:≈5.196,计算:,保留3个有效数字,运算的结果是()A.1.73B.1.732C.1.74D.1.733【答案】A【解析】首先化简得3,再计算的值,可得,又由≈1.732,即可求得结果.解:=×3=≈1.732≈1.73.故选A.点评:此题考查了实数的计算.注意首先将二次根式化为最简二次根式,再进行计算.12.计算:的结果为()A.7B.﹣3C.±7D.3【答案】A【解析】先根据算术平方根的意义求出的值,再根据立方根的定义求出的值,然后再相减.解:原式=5﹣(﹣2)=5+2=7.故选A.点评:本题考查了实数的运算,熟悉算术平方根的意义和立方根的意义是解题的关键,解答此题时要注意要注意,负数的立方根是负数.13.若|a|=5,=3,且a和b均为正数,则a+b的值为()A.8B.﹣2C.2D.﹣8【答案】A【解析】利用绝对值以及二次根式的化简公式求出a与b的值,即可求出a+b的值.解:根据题意得:a=±5,b=±3,∵a和b都为正数,∴a=5,b=3,则a+b=5+3=8.故选A.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.的平方根与的差等于()A.6B.6或﹣12C.﹣6或12D.0或﹣6【答案】D【解析】首先利用二次根式的性质化简,然后利用实数的运算法则计算即可求解.解:∵=9,∴的平方根为±3,而=3,∴的平方根与的差等于0或﹣6.故选D.点评:此题主要考查了实数的运算,同时也利用了二次根式的性质及平方根的定义,是比较容易出错的计算题.15.若实数x,y,使得这四个数中的三个数相等,则|y|﹣|x|的值等于()A.B.0C.D.【答案】C【解析】此题可以先根据分母不为0确定x+y与x﹣y不相等,再分类讨论即可.解:因为有意义,所以y不为0,故x+y和x﹣y不等(1)x+y=xy=解得y=﹣1,x=,(2)x﹣y=xy=解得y=﹣1,x=﹣,所以|y|﹣|x|=1﹣=.故选C.点评:解答本题的关键是确定x+y与x﹣y不相等,再进行分类讨论.16. m,n为实数,且,则mn=()A.B.C.D.不能确定【答案】B【解析】先根据非负数的性质求出m、n的值,再计算出mn的值即可.解:由题意得,m+3=0,n﹣=0,解得m=﹣3,n=,故mn=﹣3.故选B.点评:本题考查的是非负数的性质,根据题意列出关于m、n的方程,求出m、n的值是解答此题的关键.17.对于正实数x和y,定义,那么()A.“*”符合交换律,但不符合结合律B.“*”符合结合律,但不符合交换律C.“*”既不符合交换律,也不符合结合律D.“*”符合交换律和结合律【答案】D【解析】根据实数混合运算的法则进行计算验证即可.解:∵x*y=,y*x==∴x*y=y*x,故*符合交换律;∵x*y*z=*z==,x*(y*z)=x*()==∴x*y*z=x*(y*z),*故满足结合律.∴“*”既符合交换律,也符合结合律.故选D.点评:本题考查的是实数的运算,熟知交换律与结合律是解答此题的关键.18.如果,则(xy)3等于()A.3B.﹣3C.1D.﹣1【答案】D【解析】首先根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解:由题意得:,解得,∴(xy)3=(﹣×)3=(﹣1)3=﹣1.故选D.点评:本题考查了实数的运算和非负数的性质:几个非负数的和为0时,这几个非负数都为0.19.下列运算中,错误的是()A.B.C.D.=3.14﹣π【答案】D【解析】A、根据二次根式的乘法法则即可判定;B、根据二次根式的除法法则即可判定;C、根据二次根式的加减法则计算即可判定;D、根据二次根式的性质即可判定.解:A、×==,故选项正确;B、==,故选项正确;C、2+3=5,故选项正确;D、=π﹣3.14,故选项错误.故选D.点评:此题主要考查了实数的运算,解题时根据二次根式的加减乘除的运算法则计算,要注意,二次根式的结果为非负数.20.下列各数与相乘,结果为有理数的是()A.B.C.D.【答案】A【解析】分别计算(+2)(2﹣)、(2﹣)(2﹣)、(﹣2+)(2﹣)、(2﹣),然后由计算的结果进行判断.解:A、(+2)(2﹣)=4﹣3=1,结果为有理,所以A选项正确;B、(2﹣)(2﹣)=7﹣4,结果为无理数的,所以B选项不正确;C、(﹣2+)(2﹣)=﹣7+4,结果为无理数的,所以,C选项不正确;D、(2﹣)=2﹣3,结果为无理数的,所以,D选项不正确.故选A.点评:本题考查了实数的运算:先算乘方或开方,再进行乘除运算,最后进行实数的加减运算;有括号或绝对值的,先计算括号或去绝对值.。
2018年数学全国中考真题实数的运算(含二次根式 三角函数特殊值的运算)(试题二)解析版一、选择题 1. 计算的结果等于( ) A. 5 B. C. 9 D.【答案】C【解析】分析:根据有理数的乘方运算进行计算. 详解:(-3)2=9, 故选C .点睛:本题考查了有理数的乘方,比较简单,注意负号.2. (2018黑龙江绥化,4,3分) 下列运算正确的是( ) A.2a +3a =5a 2B.552-=-)( C.a 3·a 4=a12D.(π-3)0=1【答案】D.【解析】解:A 、235a a a +=,故错误; B 255-=(),故错误;C 、34347·a a a a +==,故错误;D 、0(3)1π-=,故正确.故选:D.【知识点】合并同类项,二次根式的性质,同底数幂的乘法,零指数幂的意义3. (湖北省咸宁市,1,3)咸宁冬季里某一天的气温为- 3℃〜2 ),则这一天的温差是( )A .1℃B .-1℃C .5℃D .-5℃ 【答案】C【解析】解:根据“温差=最高气温-最低气温”,2℃-(-3))=2℃+3℃=5℃,故选C . 【知识点】有理数的减法运算4. (2018吉林省,1, 2分)计算(﹣1)×(﹣2)的结果是( ) A .2B .1C .﹣2D .﹣3【答案】A【解析】根据“两数相乘,同号得正”即可求出(﹣1)×(﹣2)=2.故选A .【知识点】有理数的乘法5. (2018贵州铜仁,10,4)计算990013012011216121++++++ 的值为( ) A. 1100 B. 99100 C. 199D. 10099【答案】B【解析】∵21-121121=⨯=,31-2132161=⨯=,41-31431121=⨯=,51-41541201=⨯=, 61-51651301=⨯=,……,1001-90110099199001=⨯=, ∴990013012011216121++++++ =11111111111122334455699100 =1991100100.6.(2018云南省昆明市,12,4分)下列运算正确的是( )A .2193-=⎛⎫ ⎪⎝⎭B . 020181-=- C . 32326(0)a a a a -⋅=≠ D =【答案】C .【解析】A 选项是幂的乘方,213-⎛⎫ ⎪⎝⎭=(13-)×(13-)=19,故A 选项错误; B 选项02018-1-(-2)=3,故B 选项错误;3232a a -⋅=3×2·32a -=6a ,故C 选项正确是同底数幂的乘法,其法则是底数不变,指数相加,即32325a a a a +⋅==,故C 选项正确;D ==故D 选项错误,故选C .【知识点】幂的乘方;同底数幂的乘法;零指数幂;负指数幂;合并同类二次根式7. (2018湖北恩施州,16,3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图6,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 个.【答案】1838.【解析】本题为探索规律型,由题意可知,因为满六进一,从右到左依次排列的绳子分别代表绳结束乘以6的0次幂,6的1幂,6的2次幂,6的3次幂,6的4次幂.她一共采集到的野果数量为1838个.8. (2018辽宁锦州,6,3分)下列运算正确的是A 、7a -a=6B 、a 2·a 3=a 5C 、(a 3)3=a 6D 、(ab)4=ab 4【答案】B ,【解析】:根据合并同类项、幂的乘方、同底数幂的乘法、积的乘方法则进行解答. 二、填空题1. (2018湖北省江汉油田潜江天门仙桃市,12,3分)112()2--= .【答案】0【解析】直接利用二次根式的化简、绝对值的性质和负整数指数幂的性质分别化简,再计算.2323)21(23331=--+=--+-【知识点】二次根式分母有理化,绝对值,负整数指数幂2. (湖北省咸宁市,5,3)按一定顺序排列的一列数叫做数列,如数列:1111,,,,,261220则这个数列的前2018个数的和为__________. 【答案】20182019【解析】11111111,,,,,21262312342045====⨯⨯⨯⨯则第2018个数为120182019⨯ 则这个数列的前2018个数的和为111111223344520182019+++++⨯⨯⨯⨯⨯ =1111111111223344520182019-+-+-+-++- =112019-=20182019【知识点】探究规律3. (2018年黔三州,19,3)根据下列各式的规律,在横线处填空: 11+12−1=12,13+14−12=112,15+16−13=130,17+18−14=156,... (1)2017+12018− =12017×2018 . 【答案】11009【解析】按照等式顺序,第一个为11+12−1=12,第二个为13+14−1(3−1)÷2+1=13×4,第3个式子15+16−1(5−1)÷2+1=15×6,17+18−1(7−1)÷2+1=17×8,… …以此类推,12017+12018−1(2017−1)÷2+1 =12017×2018 . 【知识点】等式规律探索4. (2018江苏常州,9,2)计算:3-1-=_______. 【答案】2 【解析】21313=-=--5. (2018四川巴中,21(1),6分)(1)计算:│-2│ -2cos 60°+()-1-(2018-)0【答案】原式=2-2×+6-1=2﹣1+6﹣1=6.【解析】依据数的绝对值意义,│-2│=2;由特殊角的三角函数值得cos 60°=;由负整数指数幂的意义得()-1=611=6或者()-1=(6-1)-1=6;根据a 0=1(a ≠0)得(2018-)0=1.6.(2018广西南宁,17,3) 观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是 . 【答案】3,【解析】∵30=1,31=3,32=9,33=27,34=81∴各位数4个数一循环, ∴(2018+1)÷4=504余3, ∴1+3+9=13∴30+31+32+…+32018的结果的个位数字3.7. (2018湖北十堰,14,3分) 对于实数a ,b ,定义运算“)”如下,a )b =a 2-ab ,例如,5)3=52-5*3=10.若(x +1))(x -2)=6,则x 的值为 . 【答案】1【解析】由于(x +1))(x -2)=6,所以(x +1)2-(x +1)(x -2)=6,即有3x +3=6,解得x =1,故答案为:1.8. (2018湖北随州11,3分)8|2-2+2tan45°=______.【答案】4.【解析】842⨯2根据“负数的绝对值等于它的相反数”可得|2-2|=22-2;熟记特殊角的三角函数值可得2tan45°=2×1=2,所以原式=222)+2=222+2=4.三、解答题1. (2018省市,题号,分值)计算:11220182-⎛⎫--+ ⎪⎝⎭【思路分析】先计算各项的值,进而求得结果,一个负数的绝对值为它的相反数,任何非零数的零次幂都为1,一个数的-1次幂相当于它的倒数 【解题过程】原式=2-1+2=3【知识点】绝对值;零指数幂和负整指数幂;有理数加减2. (2018省市,题号,分值)先化简,再求值:22221644a a a aa-+-,其中a 【思路分析】先将分式化简,再将a 值代入求值【解题过程】()()()222244216224444a a a a a a a a a a a a +--==+-+-,当a =2时,原式 【知识点】分式的乘除;二次根式3. (2018广西省桂林市,19,6分)1103)6cos 45+2---︒⎛⎫⎪⎝⎭.【思路分析】先算出每一个式子的值,再依据混合运算顺序,依次计算即可.1103)6cos 45+2---︒⎛⎫ ⎪⎝⎭=6+121232-⨯=-=. 【知识点】实数的四则运算;特殊角三角函数值的运用;负指数次幂;0次幂;二次根式的化简4. (2018黑龙江省龙东地区,21,5分) 先化简,再求值:2221(1)21a a a a a a --÷+++,其中a =sin30°. 【思路分析】先化简分式,再求a 的值,最后把a 的值代入计算即可.【解题过程】解:原式=2222(1)()(1)(1)a a a a a a a a a a ++-+-++=22(1)(1)(1)(1)a a a a a a +++-=1aa -.当a =sin30°=12时,原式=-1.【知识点】分式的化简求值;特殊角的锐角三角函数值;平方差公式;完全平方公式5. (2018山东省东营市,19①,4分) 计算:02018112133012)tan ()()--︒+-- 【思路分析】根据绝对值、0指数、三角函数、负数的偶次幂、分数的负整数指数幂的法则性质进行计算即可。
知识点 1 实数的概念及分类1.整数和________统称为有理数;____________叫无理数;有理数和无理数统称为________.分类:(1)按定义分类 实数⎩⎪⎨⎪⎧有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数0负整数分数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫正分数负分数有限小数或 小数无理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫正无理数负无理数 小数 (2)按正负分类实数⎩⎪⎨⎪⎧正实数⎩⎪⎨⎪⎧ ⎩⎪⎨⎪⎧正整数正分数正无理数⎩⎨⎪⎧负有理数⎩⎪⎨⎪⎧负整数负分数【名师提醒】1、任何分数都是有理数,如23,-45等;2、常见的几种无理数:①根号型,如5,8等开方开不尽的数;②构造型,如0.1010010001……;③π及含π的数,如π,π+4等.3、2π是 数,不是 数,722是 数,不是 数。
4、0既不是 数,也不是 数,但它是自然数.提分必练:下列各数:13,π,38,cos 60°,0,3,其中无理数的个数是( )A .1个B .2个C .3个D .4个 知识点2 实数的相关概念1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。
2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,互为相反数的两 个数(除0以外)分别位于数轴上原点的两侧, 且到原点的距离__________。
3、倒数:实数a 的倒数是 , 没有倒数,倒数是它本身的数是___,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离 的 距离叫做这个数的绝对值。
因为绝对值表示的是距离,所以一个数的绝对值是 数, 我们学过的非负数有三个: 、 、 。
化简绝对值的公式: |a|=⎩⎪⎨⎪⎧ (a ≥0),(a<0),一对相反数在数轴上的对应点到原点的距离相等,因此它们的绝对值__________。
【名师提醒:a+b 的相反数是 ,a-b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】提分必练:1.-12的绝对值的相反数是( )A .12B .-12C .2D .-2 2.-2015的相反数是________. 3.|-8|的倒数是________.知识点 3 科学记数法 1.科学记数法:把一个数写成________或_______的形式(其中________≤|a|<________,n 为整数),这种记数法称为科学记数法.例如574000记作________,-0.000737记作________.2.精确度与近似数:近似数与准确数的接近程度通常用________表示:近似数一般由________取得,________到哪一位,就说这个近似数精确到哪一位,如5.3746精确到0.001或精确到千分位是________.4.46万是精确到________位.提分必练:已知空气的单位体积质量是0.001239g /cm 3,则用科学记数法表示该数为( )A .1.239×10-3g /cm 3 B .1.239×10-2g /cm 3C .0.1239×10-2g /cm 3D .12.39×10-4g /cm 3 【方法点拨】用科学记数法表示一个数时,需要从两个方面入手,关键是确定a 和n 的值. (1)a 值的确定:1≤|a|<10; (2)n 值的确定:A .当原数大于或等于10时,n 等于原数的整数位数减1;B .当原数大于0且小于1时,n 是负整数,它的绝对值等于原数左起第一位非零数字前所有零的个数(含小数点前的零);知识点 4 数的开方1、若x 2=a(a 0),则x 叫做a 的 ,记做±a ,其中正数a 的 平方根叫做a 的算术平方根,记做 ,正数有 个平方根,它们互为 ,0的平方根是 ,负数 平方根。
实数的运算计算题30道一、加法运算1. 计算:√(2)+3√(2)- 解析:因为被加数和加数都是同类二次根式(二次根式的被开方数相同),所以可以直接将系数相加。
√(2)+3√(2)=(1 + 3)√(2)=4√(2)。
2. 计算:(-2)+5- 解析:这是简单的有理数加法,异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
|5|>| - 2|,所以(-2)+5 = 5-2=3。
3. 计算:√(5)+(-√(5))- 解析:互为相反数的两个数相加得0,√(5)与-√(5)互为相反数,所以√(5)+(-√(5)) = 0。
二、减法运算4. 计算:5 - √(3)-(3-√(3))- 解析:先去括号,括号前是减号,去括号后括号里的各项要变号。
则原式=5-√(3)-3 +√(3),然后再合并同类项,-√(3)+√(3)=0,5 - 3=2,所以结果为2。
5. 计算:7-(-2)- 解析:减去一个数等于加上这个数的相反数,所以7-(-2)=7 + 2=9。
6. 计算:√(8)-√(2)- 解析:先将√(8)化简为2√(2),则原式=2√(2)-√(2)=(2 - 1)√(2)=√(2)。
三、乘法运算7. 计算:2√(3)×√(6)- 解析:根据二次根式乘法法则√(a)×√(b)=√(ab),则2√(3)×√(6)=2√(3×6)=2√(18),再将√(18)化简为3√(2),所以2√(18)=2×3√(2)=6√(2)。
8. 计算:(-3)×5- 解析:两数相乘,异号得负,所以(-3)×5=-15。
9. 计算:√(5)×√(5)- 解析:根据二次根式乘法法则,√(5)×√(5)=√(5×5)=√(25) = 5。
四、除法运算10. 计算:(√(12))/(√(3))- 解析:根据二次根式除法法则(√(a))/(√(b))=√(frac{a){b}}(b≠0),则(√(12))/(√(3))=√(frac{12){3}}=√(4)=2。
三、解答题1. .(2017四川广安,17,5分)计算:-16×cos 45°-20170+3-1.解:原式=-1+2222⨯-1+31=-1+2-1+31=31. 2. (2017浙江丽水·17·6分)计算:(-2017)°-(31)-1+9 思路分析:先根据零指数幂、负整数指数幂和算术平方根的概念分别求(-2017)0、(31)-1、9,再进行有理数的加减运算. 解:(-2017)°-(31)-1+9=1-3+3=1.3. .(2017四川泸州,17,6分)计算:(-3)2+20170sin45°.思路分析:先计算:(-3)2、20170sin45sin45°的值,最后求和.解:原式=9+1-3 2 ×22=7. 4. 15.(本小题满分12分,每题6分)(1)(2017四川成都,62112sin 45()2-+12432-⨯+=.5. (2017浙江金华,17,6分)计算:2cos60°+(-1)2017+3--(2-1)0.思路分析:分别根据特殊角的三角函数值、乘方的意义、绝对值的性质及零指数幂计算出各数,再根据实数混合运算的运算法则计算即可. 解:原式=2×21-1+3-1=2.6. (2017安徽中考·15.8分)计算:11|2|cos603--⨯︒-()思路分析:先根据绝对值的意义求得2-=2,特殊角的三角函数值求得cos60°=12,负整数指数幂的意义得11()3-=3,然后再进行有理数的运算.解:11|2|cos603--⨯︒-()=1232⨯-=1-3=-2.7. (2017浙江衢州,17,6分)(本题满分6分)计算:π-1)0×|-2|-tan 60°.;②根据“除零以外的任何数的零次幂等于1”可得(Π-1)0=1③根据负数的绝对值等于它的相反数得|-2|=2④熟记特殊角的三角函数值可得tan601×22π-1)0×|-2|-tan60=1×2-=28.(2017山东菏泽,15,6分)(本题6分)计算:-13-3sin45°-01)思路分析:先按照乘方、绝对值、特殊角三角函数和零指数幂的法则进行运算,然后进行实数的加减运算即可.解:原式=-11=1.9.(2017年四川绵阳,19,8分)(本题共2个小题,每小题8分,共16分)(1)计算:;(1)原式=………………………………………………4分=…………………………………………………………………6分=………………………………………………………………………………8分10.(2017四川自贡,19,8分)(本小题满分8分)计算:4sin45°+|-2|0 13⎛⎫ ⎪⎝⎭.思路分析:先根据特殊锐角三角函数值、绝对值的意义、二次根式的化简、零指数幂的性质分别求值,再相加减.解:原式=2--1=1.11.(2017浙江舟山,17(1),6分)计算:(3)2-2-1×(-4);思路分析:根据二次根式及负指数幂的运算法则进行计算即可;解:原式=3+2=5;12.(2017江苏盐城,17,6分)101()20172--.11()2-、02017,然后再计算.解:原式=2+2-1=3.13.(2017四川内江,17,7分)计算:-12017-0220)2017()21()2(60tan331π-+⨯-+--.思路分析:分别根据乘方的意义、特殊角的三角函数值、二次根式的性质、绝对值的性质及零指数幂计算出各数,再根据实数混合运算的运算法则计算即可.解:原式=-1-1423331+⨯+⨯-=-1-0+8+1=8.14.(2017山东临沂,20,7分)计算:1112cos452-⎛⎫+︒- ⎪⎝⎭.思路分析:先根据二次根式的化简、负整指数幂运算法则、绝对值的意义、特殊角的三角函数值分别求出1、8、1)21(-、cos45°的值,然后根据实数的加减运算法则进行计算.解:|1-2|+2cos45°-8+(21)1-=2-1+2×22-22+2=115. 17.(2017江苏连云港,17,6分)(本小题满分6分)计算:()()01 3.14p----.思路分析:根据实数的运算,结合立方根,零次幂的性质可求解,解:原式=1-2+1=0.16.(2017四川达州17,6分)计算:11201712cos453-⎛⎫-++︒⎪⎝⎭思路分析:先分别算出零指数幂,绝对值,负整数指数幂,特殊角的三角函数值,最后进行加减运算.,解:原式+3+22⨯=5.17. 18.(2017四川德阳,18,6分) 计算:0)252(-+|2-5|+2017)1(--31×45 答案:-2,解析:本题考查基本的计算问题,属于简单题.原式=1+5-2-1-5=-218. 19.(2017江苏淮安,19(1), 6分)(1)0211)(2)--+-;思路分析:(1)先分别计算出1-,01),2(2)-的值,然后再进行加减运算; 解:(1)原式=1-1+4=4.2017江苏淮安,19(2), 6分)233(1)a a a--÷.思路分析:(2)先进行括号内的运算,再化除为乘求出最简结果.解:原式=233a a a a --÷=33a a a a 2-⋅-=a .19. 19.(2017江苏无锡,19(1),4分)计算:(1)|-6|+(-2)3)0;思路分析:(1)先计算|-6|=6,(-2)3=-8,,)0=1,再进行有理数的加减运算;解:(1)原式=6-8+1=-1.(2017江苏无锡,19(2),4分)(2)(a +b )(a -b )-a (a -b ). 思路分析:(2)先算整式乘法,后进行整式加减.解:(2)原式=a 2-b 2-a 2+ab =ab -b 2.20. 17.(2017浙江温州,17(1), 5分) 计算:2×(-3)+.(1)思路分析:实数的混合运算,解:原式=-6+1+-5.21. (2017四川宜宾,17(1),4分)计算.101(2017)24π-⎛⎫--+- ⎪⎝⎭解:原式=1﹣4+2=﹣1.22. 17.(2017湖南岳阳,17,6分)计算:2sin 60°+ (π-2)0- -112⎛⎫ ⎪⎝⎭思路分析:sin 60°= ,a 0=1(a ≠0),a -p = 1p a解:原式=2112=223. (2017江苏苏州,19,5分)计算:()013π-+--.思路分析:根据“实数的运算法则”,计算绝对值、算数平方根、0次幂,即可得出答案. 解:.原式=1+2-1=2.24. 19.(2017江苏扬州)(本题满分4分)计算或化简: (1)()02220172sin 601π-+--+ ;解:(1)原式=41212-+-⨯+=-4 【思路分析】要注意222(2)-≠-;因为10<,所以11=25. 19.(2017甘肃酒泉,19,5o113tan 30(4)()2π-+--思路分析:会正确化简二次根式、零指数、负指数幂. 解:原式=312+-=12-1.26. 21.(2017甘肃兰州,本小题满分10分,每题5分)(1)计算:-3)0+(-12)-2-∣-2∣-2cos60° (2)解方程:2x 2-4x -1=0 【答案】(1)解:原式=1+4-2-2×12=2 (2)解:2x 2-4x -1=0 x 2-2x -12=0 (x -1)2=32x -1=x =1∴x 1,x 227. 17.(2017江苏泰州,17(1),6分)计算:)20112-⎛⎫-- ⎪⎝⎭°;分析:根据任意不为0的数0次幂都等于1,得)1=1;根据负指数的意义,得2142-⎛⎫-= ⎪⎝⎭;由t a n 30°=,°=3. 解:原式=1-4+1=-2.28. 19.(2017江苏徐州,19(1),5分)1201(2)20172-⎛⎫--+ ⎪⎝⎭;思路分析:(1)先分别计算(-2)2,11()2-,20170的值,然后按有理数的运算法则进行计算; 解:.(1)原式=4-2+1=329. (2017山西,16(1),5分)计算:()︒⋅-⎪⎭⎫⎝⎛+--45sin 831223.思路分析:先分别计算乘方、负整指数幂、化简二次根式、特殊角的三角函数值,再进行实数的运算.解:()122229845sin 831223-=⨯-+-=︒⋅-⎪⎭⎫⎝⎛+--.30. 17.(2017浙江义乌,17(1),4分)计算:0)4π+-解:(1)原式=1+4-3.31. 17.(2017湖北咸宁,17⑴,4分)计算:0201748|3|+--;思路分析:(1)首先利用绝对值的求法、二次根式的化简公式、0指数的意义将每一部分进行化简,然后再进行合并,即可得到结果;解:(1)0201748|3|+--1 …… 3分=- …… 4分32. 16.(2017湖北宜昌)(本小题满分6分)计算:31210.54⎛⎫⨯-⨯ ⎪⎝⎭思路分析:根据有理数运算顺序及法则计算,先括号,再乘方,最后乘法. 解:原式=834⨯12⨯=3.33. 19.(2017湖南邵阳,19,8分)(本小题满8分)计算:4sin 60012-21-1-⎪⎭⎫⎝⎛思路分析:先把sin 600,22211-1-1-==)()(,3212=分别计算或化简,最后合并同类项或同类二次根式即可. 解:原式=4×23-2-23=-2.34. 17.(2017呼和浩特)(1)(5分)计算:322-+⎭;-2+32-2-(12)+32=35. 17.(2017湖北十堰,17,分)计算:2017|2|(1)--.思路分析:根据运算法则计算.解析:原式=2-2-(-1)=1.36. (2017湖北随州,17,5分)(本小题满分5分)计算:201()(2017)|2|3π----.思路分析:先根据负整数指数幂、零指数幂、算术平方根和绝对值的概念分别计算,再进行有理数的加减运算.解:原式=9-1+3-2=9.37. 15.(湖南益阳,15,8分)计算:0242cos60(3)--︒+--思路分析:本题主要考查实数及其运算,实数的混合运算法则是:先算乘方,再算乘除,最后算加减。
数学天地二次根式与实数运算数学天地:二次根式与实数运算数学是一门精确而又广泛应用的学科,其中二次根式与实数运算是数学中的重要概念之一。
本文将介绍二次根式的定义与性质,以及实数运算的基本规则和应用。
一、二次根式的定义与性质1. 二次根式的定义二次根式是指形如√a的数,其中a为一个非负实数。
二次根式的特点是结果是一个实数,且满足以下性质:(1)非负数的二次根式,结果是非负实数;(2)零的二次根式,结果仍为零;(3)负数的二次根式,结果是虚数,无实数解。
2. 二次根式的化简化简二次根式是将根号里的数尽可能提取出来,以便更方便进行实数运算。
常见的化简规则包括:(1)同底数相乘或相除:√a * √b = √(a * b),√a / √b = √(a / b);(2)同底数相加或相减:√a + √b ≠ √(a + b),√a - √b ≠ √(a - b);(3)乘方:(√a)² = a。
二、实数运算的基本规则和应用1. 实数运算的基本四则运算实数运算包括加法、减法、乘法和除法。
其基本规则如下:(1)加法规则:a + b = b + a;(2)减法规则:a - b ≠ b - a;(3)乘法规则:a * b = b * a;(4)除法规则:a / b ≠ b / a。
2. 实数运算的应用实数运算在现实生活中有着广泛的应用,例如:(1)计算金融相关问题:利率计算、投资回报率等;(2)物理学中的力、速度、加速度等问题的计算;(3)几何学中的长度、面积、体积等问题的计算;(4)经济学中的成本、销售额、利润等问题的计算。
总结:本文介绍了数学中的二次根式与实数运算的基本概念与应用。
二次根式是一种特殊的根式,其结果为实数,但在处理负数时会得到虚数。
实数运算是数学运算的基本规则,其四则运算在现实世界中有着广泛的应用。
数学天地广阔而深奥,希望本文能够为读者提供一些有关二次根式与实数运算的基本了解,并能够在实际问题中运用数学的方法解决难题。
一、填空题1.(2019山东滨州,13,5分)计算:(-12)-2-=____________.【答案】243【解析】原式=4-+31218=4-=243.【知识点】负整数指数幂;绝对值;二次根式的乘除2.(2019重庆市B 卷,13,4分)计算:()⎪⎭⎫ ⎝⎛-+-21113=【答案】3【解析】解题关键是理解零指数幂和负整数指数幂的意义.思路:利用“任意不为0的数的0次幂都等于1”,“任意不为零的数的-n (n 为正整数)次幂,等于这个数的n 次幂的倒数”,然后求和即可.故答案为3. 【知识点】零指数幂,负整数指数幂.3.(2019重庆A 卷,13,4)计算:=+1-0213-)()(π.【答案】3.【解析】因为原式=1+2=3,所以答案为3. 【知识点】实数的运算;0指数幂;负整数指数幂.二、解答题1.(2019重庆A 卷,19,10分)计算:(1))2(2y x y y x +-+)(;(2)292492--÷--+a a a a a )(.【思路分析】(1)按完全平方公式和单项式乘以多项式法则展开,再合并同类项即可;(2)按分式的运算法则进行计算即可.【解题过程】(1)原式=x 2+2xy +y 2-2xy -y 2=x 2;(2)原式=22294229a a a a a a -+--⋅--=2(3)22(3)(3)a a a a a --⋅-+-=33a a -+. 【知识点】整式的运算;分式的运算.2.(2019浙江台州, 18, 8分)先化简,再求值:22332121x x x x x --+-+,其中x =12. 【思路分析】先做减法,后约分,然后代入求值即可. 【解题过程】原式=()()22313332111x x x x x x --==-+--,当x =时,原式=31x -=-6.【知识点】分式计算,因式分解3.(2019浙江衢州,17,6分)计算,|-3|+(π-3)0- 4+tan45°.【思路分析】根据绝对值、零次幂、算术平方根的意义,化简代数式,根据特殊三角函数值的概念得到tan45°的值,依据运算法则进行计算。
实数的运算(根式)
一、 教学目的 使学生了解有理数的运算律在实数范围内仍然适用。
二、教学重点、难点 重点:实数运算律。
难点:实数运算。
三、教学过程
复习提问 1.有理数有哪几条运算律?
2.计算:,8
1,31,32,12- 3. 计算,35622b a b a --+-()()y a y a --+-
新课
1. 关于有理数的运算律和运算性质,在进行实数运算时仍然成立。
在实数范围内,不仅可以进行加、减、乘、除、乘方运算,而且正数和零总可以进行开平方和开立方运算。
负数只能进行开立方运算,应该注意负数不能开平方。
在实数运算中,当遇到无理数,并且需要求出结果的近似值时,可以按照所要求的精确度,用相应的近似值有限小数去代替无理数,再进行计算。
例1 计算:(1)2
13223312)3(,82)2(,15352+-+---+ (3)()()
326326)4(,1812812213---⎪⎪⎭⎫ ⎝⎛+--. (学生先进行练习,然后教师讲评)
例2 计算:(1)322-(精确到0.1);(2)π2113-(结果保留三个有效数
字);
(3)()
)78(323--+(精确到0.001)(学生先进行练习,然后教师讲评) 例3 比较大小:(1)32,11--;(2)3
193
,3.53,63 (学生先进行练习,然后教师讲评) 例4 设32的整数部分为x ,小数部分为y ,求22y x -的值.
巩固练习
见课文:学生板演,教师讲评.
总结:实数的运算.
作业:见作业本.。