第五章空间数据组织与管理
- 格式:ppt
- 大小:4.91 MB
- 文档页数:56
《测绘学概论》课程笔记第一章:测绘学总论1.1 测绘学的基本概念测绘学是一门研究地球形状、大小、重力场、表面形态及其空间位置的科学。
它的主要任务是对地球表面进行测量,获取地球表面的空间信息,并对其进行处理、分析和应用。
测绘学的研究对象包括地球的形状、大小、重力场、表面形态等自然属性,以及人类活动产生的各种地理现象和空间信息。
1.2 测绘学的研究内容测绘学的研究内容主要包括以下几个方面:(1)大地测量学:研究地球的形状、大小和重力场,建立地球的数学模型,为各种测量提供基准。
(2)摄影测量学:利用航空或卫星摄影技术,获取地球表面的空间信息,并通过图像处理技术对其进行解析和应用。
(3)全球卫星导航定位技术:利用卫星导航系统,如GPS、GLONASS、北斗等,进行地球表面空间位置的测量和定位。
(4)遥感科学与技术:利用遥感技术,如卫星遥感、航空遥感等,获取地球表面和大气的物理、化学和生物信息,并进行处理和应用。
(5)地理信息系统:利用计算机技术,对地理空间信息进行采集、存储、管理、分析和可视化,为地理研究和决策提供支持。
1.3 测绘学的现代发展随着科技的发展,测绘学进入了一个新的发展阶段。
现代测绘技术主要包括卫星大地测量、数字摄影测量、激光扫描、遥感技术、地理信息系统等。
这些技术的发展,使得测绘工作更加高效、精确和全面,为地球科学、资源调查、环境保护、城市规划等领域提供了强大的支持。
1.4 测绘学的科学地位和作用测绘学在科学体系中占有重要地位,它是地球科学的基础学科之一,为其他学科提供了重要的数据支持。
同时,测绘学在国民经济和国防建设中发挥着重要作用,如土地管理、城市规划、环境监测、资源调查、灾害预警等,都离不开测绘学的支持。
第二章:大地测量学2.1 概述大地测量学是测绘学的一个重要分支,主要研究地球的形状、大小、重力场及其变化,建立地球的数学模型,为各种测量提供基准。
大地测量学具有广泛的应用,如地球科学研究、资源调查、环境保护、城市规划等。
地理信息系统掌握要点集锦第一章绪论:1. 基本概念● 地理信息:有关地理实体和地理现象的性质、特征和运动状态的表征和一切有用的知● 识,是对表达地理特征和地理现象之间关系的地理数据的解释。
● 地理数据:各种地理特征和现象间关系的数字化表示。
● 地理信息系统:在计算机软、硬件系统支持下,对整个或部分地球表层(包括大气层)的有关地理分布数据进行采集、储存、管理、运算、分析、显示和描述的技术系统。
2. GIS的定义● 地理信息系统:在计算机软、硬件系统支持下,对整个或部分地球表层(包括大气层)的有关地理分布数据进行采集、储存、管理、运算、分析、显示和描述的技术系统。
3. 如何理解GIS?● GIS的物理外壳是计算机化的技术系统● GIS的操作对象是空间数据● GIS的技术优势在于它的空间分析能力● GIS与地理学、测绘学联系紧密4. GIS由哪几部分组成硬件基本配置软件 GIS软件空间数据人员5. GIS的主要功能有哪些?● 空间数据采集● 空间数据处理与编辑● 空间数据存储与管理● 空间查询与分析● 空间信息输出6. GIS与相关学科之间的关系GIS具有多学科交叉的特征,它既要吸取诸多相关学科的精华和营养,并逐步形成独立的边缘学科,又将被多个相关学科所运用,并推动他们的发展。
与之联系最为紧密的是地理学、制图学、计算机、测绘与遥感。
第二章地学基础:1. 基本概念● 地球椭球: 近似表示地球的形状和大小,并且其表面为等位面的旋转椭球。
(百度)● 大地体: 由大地水准面所包围的地球形体,称为大地体。
(百度)● 地图投影:将地球椭球面上的点映射到平面上的方法。
● 高斯—克吕格投影:横轴切椭圆柱等角投影,假想用一个椭圆柱横切于椭球面上投影带的中央子午线,按规定投影条件,将中央子午线两侧一定经差范围内的经纬线交点投影到椭圆柱上,并将此圆柱面展为平面,即得本投影● 横轴墨卡托投影:等角正切圆柱投影,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开就得到一幅选定标准纬线上的“墨卡托投影”绘制出的地图● 兰勃特等角投影:正轴等角割圆锥投影,设想用一个正圆锥割于球面两标准纬线,应用等角条件将地球面投影到圆锥面上,然后沿一母线展开,即为兰勃特投影平面。
一、总则为加强空间数据安全管理,确保国家地理信息安全,维护国家安全和社会公共利益,依据《中华人民共和国国家安全法》、《中华人民共和国测绘法》等相关法律法规,结合我单位实际情况,特制定本制度。
二、制度目标1. 保障空间数据安全,防止数据泄露、篡改、破坏和非法使用。
2. 提高空间数据使用效率,促进空间数据资源的合理利用。
3. 建立健全空间数据安全管理体系,确保空间数据安全稳定运行。
三、组织机构及职责1. 成立空间数据安全管理领导小组,负责制定空间数据安全管理制度,监督、检查和指导空间数据安全管理工作。
2. 设立空间数据安全管理办公室,负责具体实施空间数据安全管理工作,包括数据加密、访问控制、安全审计等。
3. 各部门、单位应指定专人负责空间数据安全管理工作,确保空间数据安全。
四、空间数据安全管理措施1. 数据分类分级根据空间数据的敏感性、重要性和影响程度,将空间数据分为一级、二级、三级和四级,并采取相应的安全措施。
2. 数据加密对涉及国家安全、社会公共利益和商业秘密的空间数据进行加密存储和传输,确保数据安全。
3. 访问控制实行严格的访问控制制度,对空间数据进行权限管理,确保只有授权人员才能访问和使用数据。
4. 安全审计定期进行安全审计,对空间数据的安全使用情况进行监督和检查,发现问题及时整改。
5. 网络安全加强网络安全防护,防止网络攻击、病毒入侵等安全事件对空间数据造成损害。
6. 物理安全对存储空间数据的服务器、存储设备等进行物理安全保护,防止人为破坏和自然灾害。
7. 应急处置制定空间数据安全事件应急预案,一旦发生数据泄露、篡改、破坏等事件,立即启动应急预案,采取有效措施进行处置。
五、人员管理1. 对空间数据管理人员进行安全教育和培训,提高其安全意识和技能。
2. 严格执行人员离职交接制度,确保空间数据安全。
3. 对违反空间数据安全管理制度的人员,依法依规进行处理。
六、附则1. 本制度自发布之日起施行。
空间数据组织与管理概述1. 引言空间数据指的是地理位置信息与属性信息结合的数据。
在现代化社会中,空间数据的组织与管理对于各种领域的决策和规划至关重要。
空间数据组织与管理的目的是有效地存储、查询、分析和可视化空间数据,以支持地理信息系统(Geographic Information System, GIS)的应用。
2. 空间数据组织在进行空间数据组织之前,我们首先需要了解空间数据的特征。
空间数据通常由几何数据与属性数据组成。
几何数据描述了地理实体的位置、形状和大小,而属性数据描述了与地理实体相关的数量、品质和状态等信息。
2.1 点、线和面几何数据的基本形式包括点、线和面。
点表示一个具体的地理位置,线表示连接两个或多个点的路径,面表示一个封闭的区域。
通过将这些基本形式组合,可以描述复杂的地理现象。
2.2 地理参照系地理参照系是空间数据组织的基础。
它定义了空间数据的坐标系统和地理投影方式,以确保不同数据源之间的一致性和对齐性。
2.3 空间索引为了提高空间数据的查询效率,通常需要使用空间索引来组织和管理数据。
空间索引是一种数据结构,能够快速定位空间数据的位置。
常用的空间索引包括网格索引、四叉树和R树等。
3. 空间数据管理空间数据管理是指对空间数据进行存储、查询、更新和删除等操作的过程。
在空间数据管理中,需要考虑数据的完整性、一致性和安全性。
3.1 数据存储空间数据存储可以采用关系型数据库、文件系统或分布式存储等方式。
关系型数据库通常使用空间扩展模块来支持空间数据的存储和查询。
文件系统可以直接存储空间数据的文件,而分布式存储则将数据分布在多个计算节点上,以提高数据的可扩展性和容错性。
3.2 数据查询空间数据查询是通过查询语言(如SQL)来获取满足特定条件的空间数据。
查询语言通常包括空间操作符(如相交、包含等)和空间函数(如计算距离、面积等)来处理空间数据。
3.3 数据更新和删除空间数据的更新和删除需要考虑数据完整性和一致性。
第五章:空间数据Geodatabase数据库创建⼀、关于Geodatabase 1.Geodatabase在⼀个公共模型框架下,对GIS通常所处理和表达的地理空间特征如⽮量、栅格、TIN、⽹络和地址进⾏同⼀描述。
2.Geodatabase是⾯向对象的地理数据模型。
3.ArcGIS的地理数据库(Geodatabase)是为更好地管理和使⽤地理要素数据,⽽按照⼀定的模型和规则组合起来的地理要素数据集(Feature Datasets)。
Geodatabase是按照成层次型的数据对象来组织地理数据的。
这些数据对象包括对象类(Objects)、要素类(FeatureClass)和要素数据集。
4.Geodatabase对地理要素类和要素类之间的相互关系、地理要素类⼏何⽹络和要素属性表对象等进⾏有效管理,并⽀持对要素数据集、关系及⼏何⽹络进⾏建⽴、删除和修改更新操作。
5.Geodatabase数据模型的结构、功能和特点。
⼆、空间数据库的设计 1.空间数据库的设计是指在现在的数据库管理系统的基础上,建⽴空间数据库的整个过程。
⼀般包括需求分析、结构设计和数据层设计等内容。
2.空间数据库的建⽴,有3种⽅法:1.建⽴⼀个新的地理数据库。
2.移植已经存在的数据到地理数据库。
3.⽤CASE⼯具创建地理数据库。
三、创建⼀个新的Geodatabase 1.进⾏设计,计划要包含哪些地理数据类、地理数据集、对象表、⼏何⽹络主关系类等。
2.利⽤ArcCatalog开始建库,步骤包括:建⽴新的空间数据库、建⽴其组成项、向数据库各项加载数据以及建⽴关系添加索引等。
①新建⼀个空的个⼈Geodatabase ②创建要素数据集:要素数据集是储存要素类的集合。
建⽴⼀个新的要素数据集,必须定义其空间参考,包括坐标系统(地理数据、投影坐标)和坐标域(X,Y,Z和M的范围及精度),数据集中所有的要素类必须使⽤相同的空间参考,且要素坐标要求在坐标域内。
空间数据的组织与结构在当今数字化的时代,空间数据的重要性日益凸显。
从导航应用到城市规划,从地质勘探到环境保护,空间数据在各个领域都发挥着关键作用。
而要有效地管理和利用这些空间数据,就需要深入理解其组织与结构。
空间数据,简单来说,是指具有空间位置特征或属性的数据。
它可以是地理坐标、地图上的点、线、面,也可以是与空间位置相关的其他信息,如温度、湿度、人口密度等。
那么,空间数据是如何组织起来的呢?常见的组织方式有栅格数据结构和矢量数据结构。
栅格数据结构将空间区域划分为规则的网格单元,每个单元都有一个值来表示相应的属性。
比如说,在一张卫星图像中,每个像素就是一个栅格单元,其颜色值代表了该位置的地物特征。
栅格数据结构的优点是处理简单、运算速度快,适用于对空间数据进行全局分析和大规模数据的快速处理。
但它也存在一些缺点,比如数据冗余度大,因为每个单元都要存储一个值,即使相邻单元的值可能相同;而且栅格数据的精度相对较低,难以精确表示复杂的地理实体边界。
与栅格数据结构不同,矢量数据结构通过点、线、面等几何对象来表示地理实体。
例如,一条河流可以用一条线来表示,一个湖泊可以用一个面来表示。
矢量数据结构能够更精确地描述地理实体的形状和位置,数据冗余度小,占用存储空间相对较少。
但矢量数据结构的处理算法相对复杂,在进行某些空间分析操作时可能不如栅格数据结构高效。
在实际应用中,选择栅格数据结构还是矢量数据结构,往往取决于具体的需求和数据特点。
如果需要对大面积的空间数据进行快速分析,且对精度要求不是特别高,栅格数据结构可能是更好的选择;而对于需要精确表示地理实体形状和边界的情况,矢量数据结构则更为合适。
除了这两种基本的数据结构,还有一些混合的数据结构,它们结合了栅格和矢量数据结构的优点,以满足更复杂的应用需求。
空间数据的组织还涉及到数据的分层。
就像我们整理书架时会把不同类型的书放在不同的层架上一样,空间数据也可以根据其主题、属性或用途进行分层。