卫星通信系统汇总
- 格式:pdf
- 大小:1.89 MB
- 文档页数:3
卫星通信系统概述
卫星通信系统是指利用卫星进行通信的一种系统。
卫星通信系统利用
地球上的通信站与卫星进行通信,再通过卫星之间的通信连接实现全球范
围内的通信。
它具有广泛的覆盖范围、高可靠性和持续连接的特点,是现
代通信领域的重要组成部分。
卫星通信系统由地面控制站、卫星及通信设备组成。
地面控制站负责
管理整个系统,并通过射频系统与卫星进行通信。
卫星作为通信中继器,
负责接收、放大和转发信号。
通信设备包括地球站、航天器和卫星地面站,用于连接用户和卫星。
1.广域覆盖能力:卫星通信系统通过卫星之间的通信连接,可以实现
全球范围内的通信覆盖,即使在边远地区也能进行通信。
2.高可靠性:由于卫星通信系统具有多点接入的特点,即使一些通信
节点故障,通信仍然可以通过其他节点进行。
3.持续连接:卫星通信系统可以提供持续的通信连接,不受地理位置
和时间的限制,方便用户进行长时间的通信。
4.大容量传输:卫星通信系统具有较大的带宽和传输速率,可以同时
传输多个通道和大量的数据。
5.灵活性:卫星通信系统可以根据需求进行调整和扩展,适用于不同
规模和需求的通信应用。
然而,卫星通信系统也存在一些挑战和限制:
1.高成本:卫星通信系统的建设和运营成本较高,包括卫星的制造和
发射、地面控制站的建设和维护等。
2.延迟问题:由于信号需要经过地面站、卫星和地面站的传输,卫星通信系统存在一定的信号传输延迟,不适用于实时性要求较高的应用。
3.天气影响:卫星通信系统受天气条件的影响较大,特别是在恶劣天气下,如暴风雨或大雪,信号传输可能会受到干扰或中断。
卫星通信系统基础知识卫星通信简单地说就是地球上(包括地面和低层大气中)的无线电通信站间利用卫星作为中继而进行的通信。
卫星通信系统由卫星和地球站两部分组成。
卫星通信的特点是:通信范围大;只要在卫星发射的电波所覆盖的范围内,从任何两点之间都可进行通信;不易受陆地灾害的影响(可靠性高);只要设置地球站电路即可开通(开通电路迅速);同时可在多处接收,能经济地实现广播、多址通信(多址特点);电路设置非常灵活,可随时分散过于集中的话务量;同一信道可用于不同方向或不同区间(多址联接)。
1、卫星通信系统基本概念1.1系统组成卫星通信系统由卫星端、地面端、用户端三部分组成。
卫星端在空中起中继站的作用,即把地面站发上来的电磁波放大后再返送回另一地面站,卫星星体又包括两大子系统:星载设备和卫星母体。
地面站则是卫星系统与地面公众网的接口,地面用户也可以通过地面站出入卫星系统形成链路,地面站还包括地面卫星控制中心,及其跟踪、遥测和指令站。
用户段即是各种用户终端。
1.2卫星通信网络的结构●点对点:两个卫星站之间互通;小站间信息的传输无需中央站转接;组网方式简单。
●星状网:外围各边远站仅与中心站直接发生联系,各边远站之间不能通过卫星直接相互通信(必要时,经中心站转接才能建立联系)。
●网状网:网络中的各站,彼此可经卫星直接沟通。
●混合网:星状网和网状网的混合形式1.3卫星通信的应用范围●长途电话、传真●电视广播、娱乐●计算机联网●电视会议、电话会议●交互型远程教育●医疗数据●应急业务、新闻广播●交通信息、船舶、飞机的航行数据及军事通信等1.4卫星通信使用频率●电波应能穿过电离层,传输损耗和外部附加噪声应尽可能小●有较宽的可用频带,尽可能增大通信容量●较合理的使用无线电频谱,防止各宇宙通信业务之间及与其它地面通信业务之间产生相互干扰●通信采用微波频段(300MHz-300GHz)注:由于空间通信是超越国界的,频谱分配是在ITU主管下进行的,1979年世界无线电行政大会(WRAC)分配给卫星通信的频带包含17个业务分类,并将全球分为三个地理区域:Ⅰ区、Ⅱ区、Ⅲ区,我国位于第Ⅲ区。
卫星通信系统与卫星通信技术分析随着科技的不断发展,卫星通信系统在现代社会中扮演着越来越重要的角色。
它通过卫星与地面站之间的通信,实现了全球范围内的信息传输和通信服务。
卫星通信系统的普及不仅带来了便利和高效的通讯服务,也在地面通信无法覆盖的区域提供了重要的通讯支持。
本文将对卫星通信系统及其相关技术进行深入分析。
一、卫星通信系统卫星通信系统是通过卫星与地面站之间的通信连接,实现信息传输和通信服务的系统。
通常包括卫星、地面站和用户终端等部分。
卫星通信系统的关键技术包括发射、传输、接收和处理等环节,每一个环节都需要高精度的技术支持。
1. 卫星卫星是卫星通信系统的核心组成部分,一般由发射天线、载荷、动力系统、存储系统等部分组成。
载荷是卫星传输信息的关键部分,它包括了信号的发射和接收器、天线等设备。
通过载荷系统,卫星能够实现信息的接收和发送,并将其传输到地面站或用户终端。
2. 地面站地面站是卫星通信系统的另一个重要组成部分,它用于与卫星进行双向通信。
地面站由天线、发射接收设备、信号处理设备等部分组成。
当地面用户需要进行通信时,地面站通过发射天线向卫星发送信号,并通过接收天线接收卫星传输的信号,完成信息交换的过程。
3. 用户终端用户终端是卫星通信系统中的最终用户设备,它通过卫星进行通信和信息传输。
用户终端通常包括卫星电话、卫星电视接收器、卫星定位接收器等设备。
用户终端设备通过接收卫星传输的信号,实现了通信、定位、导航和信息接收等功能。
卫星通信技术是支撑卫星通信系统实现通信和信息传输的关键技术。
它主要涉及到卫星发射接收、信号处理、频谱管理等方面的技术。
1. 频率与频率复用在卫星通信系统中,频率是信息传输的关键要素。
卫星通信用户使用的频率是有限的,为了提高频谱资源的利用率,需要采用频率复用技术。
频率复用技术能够实现多个用户共享同一频谱资源,通过不同的调制方案或多址接入技术,使得不同用户之间的信号不会互相干扰,从而实现了频谱资源的有效利用。
卫星移动通信系统简介卫星移动通信系统简介一、引言卫星移动通信系统是指通过卫星进行无线通信的一种技术。
它利用地球上的卫星作为中继站点,将信号传送到接收器上,实现人与人之间、人与物之间的远程通信。
本文将详细介绍卫星移动通信系统的工作原理、应用领域以及目前的发展情况。
二、工作原理卫星移动通信系统的工作原理如下:1.用户终端发送信号:用户通过方式、电脑等终端设备发送信号,该信号经过射频前端进行调制处理。
2.地面站接收信号:地面站接收到用户终端发送的信号,并进行解调处理。
3.卫星中继信号:地面站将接收到的信号经过调制处理后发送到卫星。
4.卫星转发信号:卫星接收到地面站发送的信号后,进行频率转换和功率放大处理,然后将信号发射出去。
5.用户终端接收信号:用户终端接收到卫星发送的信号,并进行解调处理,最终将信号转化为可识别的信息。
三、应用领域卫星移动通信系统在以下领域有着广泛应用:1.军事通信:卫星移动通信系统可以为军队提供实时、可靠的通信方式,方便指挥员与士兵之间的沟通和信息传递。
2.紧急救援:卫星移动通信系统可以在灾难发生时提供紧急通信服务,为救援人员提供数据和图像传输的能力,提高救援效率。
3.陆地交通:卫星移动通信系统可以为汽车、火车等交通工具提供位置定位、导航和紧急呼叫等功能,提升交通管理和安全。
4.海上通信:卫星移动通信系统可以在海上提供语音通信、数据传输和紧急报警等服务,保障船舶及其船员的安全。
5.航空通信:卫星移动通信系统可以为飞机提供通信、导航和监控等功能,提高空中交通的安全和效率。
四、发展现状目前,卫星移动通信系统已经取得了巨大的发展,并持续推进技术的创新和应用的拓展。
随着卫星通信技术的不断进步,卫星移动通信系统的覆盖范围、传输速率和通信质量将进一步提升,为人们的生活带来更多便利和可能性。
附件:本文档未涉及附件。
法律名词及注释:1.频率转换:将信号的频率从一种频率范围变换到另一种频率范围的过程。
卫星通信知识点总结一、卫星通信系统概述卫星通信是通过人造卫星作为中继器进行通信的一种通信方式,其优点是覆盖范围广,通信距离远,适用于远距离通信和偏远地区通信。
卫星通信系统由地面站、卫星和用户终端组成,地面站与用户终端间通过卫星进行数据传输。
二、卫星通信工作原理卫星通信系统工作原理主要包括地面站的发送和接收过程、卫星的中继传输过程、用户终端的接收和发送过程。
地面站发送的信号经过卫星中继后到达指定的用户终端,用户终端发送的信号也通过卫星中继后到达地面站。
三、卫星通信系统的分类卫星通信系统主要分为地球静止轨道通信卫星系统(GEO)、中低轨卫星通信系统(LEO/MEO)和其他非地球轨道卫星系统。
GEO卫星通信系统主要应用于广播电视、互联网接入等广泛覆盖通信需求,而LEO/MEO卫星通信系统主要应用于移动通信、数据传输等特定领域。
四、卫星通信系统的关键技术1. 卫星轨道技术卫星轨道技术是卫星通信系统设计的基础,根据通信需求选择合适的卫星轨道,包括地球静止轨道(GEO)、中低轨轨道(LEO/MEO)等。
2. 卫星天线技术卫星天线技术涉及卫星天线的设计、优化和部署,包括指向性天线、平面天线、阵列天线等不同类型,以满足不同的通信需求。
3. 卫星通信链接技术卫星通信链接技术主要包括上行链路、中继链路和下行链路,涉及调制解调、多址接入、信道编解码等关键技术。
4. 卫星通信网络技术卫星通信网络技术包括卫星网的设计、优化和管理,通过地面站和用户终端间的通信连接,在实现卫星覆盖范围内的各种通信需求。
5. 卫星通信安全技术卫星通信安全技术主要包括数据加密、用户认证、通信链路保护等技术,保障卫星通信系统的安全可靠运行。
五、卫星通信系统的应用卫星通信系统广泛应用于广播电视、军事通信、航空航天、海洋监测、移动通信、救援通信等领域,为人类的通信需求提供了便利。
总结:卫星通信系统是一种重要的通信方式,其应用范围广泛,技术含量高,对于地理位置偏僻,通信需求大的地区尤为重要。
1.【卫星通信系统概念】卫星通信是地球上多个地球站(包括陆地、水面和大气层)利用空中人造通信卫星作为中继站而进行的无线电通信。
卫星通信系统是由通信卫星、地球站和跟踪遥测及指令分系统和监控管理分系统。
通信卫星由若干个转发器、数副天线与位置和姿态控制、遥测和指令、电源分系统组成,其主要作用是转发各地球站信号。
地球站由天线、发射、接受、终端分系统及电源、监控和地面设备组成,主要作用是发射和接受用户信号。
跟踪遥测指令站是用来接收卫星发来的信标和各种数据,然后经过分析处理,再向卫星发出指令去控制卫星的位置、姿态及各部分工作状态。
监控管理分系统对在轨卫星的通信性能及参数进行业务开道前的监测和业务开通后的例行监测与控制,以便保证通信卫星的正常运行和工作2.卫星通信体制所谓通信体制,是指通信系统采用的信号传输方式和信号交换方式。
卫星通信系统的体制主要包括基带信号的类型及复用方式、中频(或射频)信号的调制方式、多址联接方式、信道分配方式等四个方面的内容。
其中复用方式和调制方式是无线通信中都要涉及到的,而多址联接和多址分配是卫星通信所特有的.3. 卫星通信地球站卫星通信系统中设置在地球上(包括大气层中)的通信终端站。
用户通过卫星通信地球站接入卫星通信线,进行相互间的通信。
主要业务为电话、电报、传真、电传、电视和数据传输。
卫星通信地球站按使用方式分为固定站、可搬运站和移动站(船载、车载、飞机载);按通信性能分为标准站和非标准站。
在标准站中又分为A、B、C、D 4种类型。
典型的卫星通信地球站的基本组成包括:天线系统、高功率发射系统、低噪声接收系统、信道终端系统、电源系统、监控系统。
为实现用户间通信,还需有地面接口系统、信息传输系统和信息交换中心。
近年来世界各国竞相发展便于移动、便于安装的小型卫星通信地球站,发展了一种非常小口径通信终端()地球站,具有广阔的应用前景。
4.卫星通信的线路 (sorry 设计与测试未找到资料)在一个卫星通信系统中,各地球站经过通信卫星转发器可以组成多条单跳单工或双跳单工卫星通信线路。
卫星通信系统
⼀、什么是卫星通信系统?
卫星通信系统是利⽤卫星作为中继站转发或者反射⽆线电波以此实现俩个或者多个地球站(移动远程终端站)之间通信的⽅式
⼆、卫星系统的拓扑分类:星型拓扑、⽹状拓扑、环形拓扑
三、卫星移动通信系统的分类
1、 3按照应⽤分类:海事卫星移动系统(MMSS)、航空卫星移动系统(AMSS)、陆地卫星移动系统(LMSS)
2、按照轨道分类:低轨道卫星LEO 中⾼轨道卫星MEO、椭圆轨道卫星(⾼轨道卫星HEO),静⽌卫星
3、按频率分类:L波段卫星、Ka波段卫星
4、按照服务区域划分:全球、区域、国内卫星
5、按照业务划分:公共卫星、专⽤卫星
6、按照⽤途分类:综合业务通信卫星、军事卫星、海事卫星、电视直播卫星等
四、卫星⽹络的特点:
1、覆盖⾯积⼴、通信距离远、
2、便于实现多址技术
3、通信频带宽、数据传输容量⼤
4、⽹络便捷、灵活
5、通信线路稳定、传输质量⾼
6、成本与通信距离⽆关
五、卫星⽹络的劣势:
1、⾼可靠性和寿命时间问题需要提⾼
2、发射控制技术复杂、希望⽹络技术进⾏优化
3、传输延时较⼤、有回声⼲扰问题有待提⾼
4、存在星灼和⽇凌现象
除此之外,静⽌卫星通信系统在地球的⾼纬度的通信效果不好,俩级地区存在通信盲区,地⾯微波系统与卫星通信系统存在同频⼲扰六、卫星⽹络的应⽤
应⽤于地⾯通信系统不易覆盖的领域、导航定位的发展、利⽤卫星进⾏预警、防御、适当减轻⾃然灾害等应⽤。
卫星通讯知识点总结大全一、卫星通讯的概念卫星通信是指通过卫星作为中继器,实现不同地区之间的通信传输,包括声音、数据和图像等信息的交换。
卫星通信系统包括地面站、卫星和用户终端设备,通过这些设备完成信息的发送和接收。
二、卫星通讯的原理1. 发射和接收卫星通信系统的工作原理主要包括发射和接收两个过程。
发射端将要传输的信息通过天线发射到卫星上,卫星再将信号转发到接收端,接收端通过天线接收到信号。
2. 中继卫星是作为信息传输的中继器,接收到的信号再通过卫星转发到另一个地方的接收端,从而实现远距离的通信传输。
3. 多路复用卫星通信系统通过多路复用技术将多个信号合并成一个信号进行传输,接收端再通过解复用技术将信号还原为原来的多个信号。
三、卫星通讯的分类1. 通信卫星通信卫星是专门用于通信传输的卫星,根据轨道的不同可以分为地球同步轨道卫星和非地球同步轨道卫星。
2. 导航卫星导航卫星主要用于定位和导航,目前比较知名的导航卫星系统包括美国的GPS系统、俄罗斯的GLONASS系统和中国的北斗系统。
3. 气象卫星气象卫星用于气象观测和预报,通过卫星传输气象图像和数据,帮助人们了解天气变化并进行应对。
四、卫星通讯的优势1. 覆盖范围广卫星通信可以覆盖地面上很广泛的范围,尤其是在偏远地区或海洋中,常规通信方式难以覆盖的地区。
2. 传输距离远卫星通信可以实现远距离的通信传输,无需铺设大量的通信线路,节省了成本。
3. 抗干扰能力强卫星通信系统的天线设备对外部干扰的抗干扰能力较强,通信质量相对稳定。
4. 运营成本低一些卫星通信系统可以实现空间资源共享,降低了运营成本,对于那些需要低成本的应用场景比较适合。
五、卫星通讯的技术要点1. 大功率射频通信卫星通信系统中的射频通信是其核心技术,需要大功率的发射设备和高灵敏度的接收设备,以保证通信质量。
2. 天线设计卫星通讯系统中的天线设计对于信号的传输和接收至关重要,需要考虑到方向性、增益、波束宽度等参数。
1.【卫星通信系统概念】卫星通信是地球上多个地球站(包括陆地、水面和大气层)利用空中人造通信卫星作为中继站而进行的无线电通信。
卫星通信系统是由通信卫星、地球站和跟踪遥测及指令分系统和监控管理分系统。
通信卫星由若干个转发器、数副天线与位置和姿态控制、遥测和指令、电源分系统组成,其主要作用是转发各地球站信号。
地球站由天线、发射、接受、终端分系统及电源、监控和地面设备组成,主要作用是发射和接受用户信号。
跟踪遥测指令站是用来接收卫星发来的信标和各种数据,然后经过分析处理,再向卫星发出指令去控制卫星的位置、姿态及各部分工作状态。
监控管理分系统对在轨卫星的通信性能及参数进行业务开道前的监测和业务开通后的例行监测与控制,以便保证通信卫星的正常运行和工作2.卫星通信体制所谓通信体制,是指通信系统采用的信号传输方式和信号交换方式。
卫星通信系统的体制主要包括基带信号的类型及复用方式、中频(或射频)信号的调制方式、多址联接方式、信道分配方式等四个方面的内容。
其中复用方式和调制方式是无线通信中都要涉及到的,而多址联接和多址分配是卫星通信所特有的.3. 卫星通信地球站卫星通信系统中设置在地球上(包括大气层中)的通信终端站。
用户通过卫星通信地球站接入卫星通信线,进行相互间的通信。
主要业务为电话、电报、传真、电传、电视和数据传输。
卫星通信地球站按使用方式分为固定站、可搬运站和移动站(船载、车载、飞机载);按通信性能分为标准站和非标准站。
在标准站中又分为A、B、C、D 4种类型。
典型的卫星通信地球站的基本组成包括:天线系统、高功率发射系统、低噪声接收系统、信道终端系统、电源系统、监控系统。
为实现用户间通信,还需有地面接口系统、信息传输系统和信息交换中心。
近年来世界各国竞相发展便于移动、便于安装的小型卫星通信地球站,发展了一种非常小口径通信终端(VSAT)地球站,具有广阔的应用前景。
4.卫星通信的线路 (sorry 设计与测试未找到资料)在一个卫星通信系统中,各地球站经过通信卫星转发器可以组成多条单跳单工或双跳单工卫星通信线路。
Industry Observation产业观察DCW27数字通信世界2019.05从1964年美国成立国际卫星通信组织(Intelsat ),并于次年发射第一颗商用通信卫星(“Early Bird ”)以来,卫星通信技术蓬勃发展,卫星通信作为地面通信的一种补充通信方式取得巨大的成功,卫星通信已经成为了人们生活中不可或缺的一部分。
1 V SAT 技术时代在卫星通信技术早期,甚小孔径终端(VSAT )解决了天线尺寸和成本对卫星通信发展的限制,这也决定了天线系统的基本拓扑结构是由一个大型中心站与大量小口径天线终端共同构成的一个星型网,通过中心站天线的高G/T 值来弥补小站天线因口径小所导致的链路余量不足的弱点。
早期基于VSAT 的卫星通信系统是通信频段集中于L 、S 、C 波段的窄带通信系统。
随着技术进步和人民生活水平提高,对宽带卫星通信的需求应运而生。
由于L 、S 、C 的频段带宽资源有限和日趋紧张,国外于上世纪八九十年代就开始了对Ka 频段宽带卫星通信技术的研究。
2005年,美国Wild Blue 通信公司成功发射世界第一颗Ka 频段宽带通信卫星并试点应用,此后各国的Ka 频段宽带通信卫星开始向着系统容量更大、用户终端更小、业务速率更大的高通量方向发展。
2 多波束天线技术时代由于VSAT 天线系统的灵活性不足,并且无法利用频率复用技术来提高频谱效率,卫星通信天线的发展已经转向多波束天线。
多波束天线(Multiple Beam Antenna )从2000年开始迅速发展,由于它能够实现高增益的点波束覆盖,又能在广域覆盖范围中实现频率复用,从而在卫星通信天线系统中得到广泛应用。
多波束天线与数字波束成形不同,它使用大量的点波束实现广域范围覆盖,可用带宽被分为很多个子波段,从而在大量空间独立的点波束之间可以实现每个子波段的复用,这与地面蜂窝通信网络相似,显著地增加了频谱利用率和卫星通信容量。
多波束天线技术提高了转发器的功率使用效率和频谱资源利用率,是发展大容量卫星通信系统和增强卫星通信市场竞争力的关键技术,高通量通信卫星时代随之而来。
3 窄带卫星通信VS 宽带卫星通信VS 高通量卫星通信从早期的窄带卫星通信系统实现基本的卫星通信,到Ka 宽带卫星通信以Ka 频段、大容量、提供宽带互联网接入为标志,开辟了卫星互联网接入的新业务,再到今日以多点波束和频率复用(可以在任何频段复用,目前大多采用Ka 频段)和高波束增益为标志的高通量通信卫星(HTS ,High Throughput Satellite ),通信容量通过分配频谱和频率的服用次数得到大幅度扩大,开启了卫星通信新纪元。
高通量卫星(HTS )已成为宽带卫星通信的主流,高通量通信卫星在使用相同频率资源的条件下,大幅提升了容量并降低了单位带宽成本,单颗容量可达几十Gb/s 到上百Gb/s ,通信容量比传统通信卫星高数倍甚至数十倍。
4 市场主流卫星通信系统一览卫星通信技术的发展和通信容量的需求促进了卫星通信从窄带走向宽带,又走向如今的高通量时代,卫星通信系统作为连接底层卫星天线和上层通信应用的重要环节,也在不断的发展演进,结合自己2016年和2017年两次参加中国卫星应用大会以及平常的关注,将当前市场上主流的卫星通信系统整理如下,个别系统资料不足,还需进一步完善。
4.1 C omtech 的Heights 系统2017年5月,Comtech EF Data 公布了Heights 动态网络接入(H-DNA )技术的性能优势。
通过H-DNA ,Heights 网络平台提高了卫星终端用户的体验质量。
Comtech 为Heights 网络平台的返回链路设计了H-DNA 。
它为用户、服务提供商和卫星运营商带来了很多新的好处。
新的波形、增强带宽管理算法和多级别服务质量(QoS )的应用使得该返回链路接入方案能够自动响应实时流量需求,根据客户的服务水平协议和网络策略提供最佳的解决方案。
H-DNA 提供亚秒级响应时间来改变用户需求和链接条件,而且不会带来通常与其他返回链路接入技术相关联的过度抖动和延迟。
另外,H-DNA 还采用了VersaFEC-2高性能低密度奇偶校验(LDPC )波形、自适应编码和调制、动态功率控制、互联网协议优化、较低的帧开销、多级QoS 和WAN 优化,与同类的其他解决方案相比,它提供了最多的每赫兹用户IP 数据。
H-DNA 根据网络范围的需求分配容量,并确保随着需求的变化,为网络中的用户和站点即时提供带宽,还可以按照用户需求和服务协议级别,为用户分配所有可用带宽,以确保随时使用所有容量。
4.2 C omtech 的ViperSat 系统Viper sat 系统主站由570L 、564L/562L 以及VMS 、VCS 、VNO 服务器等组成,远端站由570L 、564L/562L 组成,带有网口,可以直接传输IP 数据。
Vipersat 的网管系统由VMS 服务器(1∶1热备份)、VMS 客户端、VCS 服务器和VNO 服务器。
其出境TDM 载波,入境S-TDMA (自适应TDMA )载波,其中TDM 载波为64kb/s ,S-TDMA 载波为128kb/s 。
网络为星状网。
Vipersat 系统的业务传输采用的是dSCPC (动态SCPC )载波,modem570L 会自动检测(根据QoS 、协议等)网口收到的数据,并根据需求向主站发送业务申请。
主站收到业务申请后会通过TDM 载波发送配置参数,调整远端站(主-远端通信或者(远端-远端)的参数,建立2M 甚至以上的SCPC 通信连接。
当通信结束后,modem570L 检测到网口没有收到类似数据时,向主站发送申请,主站通过TDM 下发配置参数,断掉SCPC 链路,远端站改为发S-TDMA 载波。
Vipersat 系统中使用的570L 采用的调制编码与纠错方式是DVB-S 体制,其调制方式为:B/SK/ QPSK/8PSK16QAM 等调制方式,前向纠错编码方式为TPC 、viterb 、RS 和TCM 码。
4.3 S TE 的iDirect 系统iDi rect 系统主站为插卡式设备,主要由电源板、调制板、卫星通信系统汇总任 政,陈 霁摘要:本文综合介绍了各种卫星通信系统,阐述了卫星通信作为地面通信的一种补充通信方式取得巨大的成功,卫星通信已经成为了人们生活中不可或缺的一部分。
关键词:卫星通信系统;VSAT ;多波束;高通量doi :10.3969/J.ISSN.1672-7274.2019.05.015中图分类号:TN927+.2 文献标示码:A 文章编码:1672-7274(2019)05-0027-03观察Industry ObservationDI G I T C W 产业28DIGITCW2019.05解调板、IP 加速板、服务器板、协议处理器板等板卡组成,主站各种板卡均为1∶1热备份。
网口多,小站不是插卡式的,是标准的1U 或2U 设备。
iDirect 的网管系统由主站板卡:NMS 服务器(1∶1 热备份)、协议处理器(1∶1热备份),和NMS 客户端组成。
其出境TDM 载波,入境D-TDMA (确定性TDMA )载波,其中TDM 载波为大载波,一般为4M 或4M 以上,D-TDMA 载波为小载波,384kb/s-2Mb/s ,星状网。
iDi rect 系统的业务传输采用的是MF-TDMA (多频TDMA )载波,10个(假设)远端站公用一个TDMA 载波,当有10 0个站的时候,将有10个TDMA 载波被使用。
它可以使用TDMA 载波回传,也可以使用iSCPC 载波回传。
其iSCPC 载波为一个载波只有一个时隙的SCPC ,但是接收频率不变,还是接收主站的TDM 载波。
iDi rect 的主站设备采用的调制编码与纠错方式是DVB-S2体制,其调制方式为:QPSK/8PSK/ 16APSK ,前向纠错编码方式为LDPC 。
具有ACM (自适应编码和调制)特色。
4.4 中电科54所的Latice 系统Latice 的系统体系架构:一是卫星资源划分为网络段进行管理。
支持多星、多关口站、多波束/单波束。
二是两级网管。
支持Hub 分网管和集中网管。
三是良好的可扩展性。
支持按需增配网络段及设备,按需扩建信关站。
四是完善的冗余设计。
Latice 系统的业务传输采用的多样灵活的反向回传体质,支持MF-TDMA 、dSCPC 、SCPC 三种回传体制。
HRC dSCPC 回传技术具有多维统计复用能力,具有非常灵活的调整能力,可根据业务需求及信道条件以1秒为周期调整载波速率、功率、MODCOD ,具有良好的统计复用能力,可以提供很高的可用度;非常适合固定速率业务,局部雨衰时可以利用带宽余量选用MODCOD ,保持信息速率不变,一个公用带宽余量可在网络内共享,被各个终端统计复用;针对不同的带宽需求及共享等级可以选用不同体制;支持在NMS 远程切换终端的工作模式。
Lat ice 系统用户站支持固定站、便捷站、静中通车载站、动中通车载站和船载站,并配备不同的天线。
Latice 系统支持DVB-S2及S2X 标准。
支持7种业务类型:实时业务1、实时业务2、实时业务3、关键数据1、关键数据2、关键数据3和尽力而为业务。
采用四级整形架构分配带宽。
融合TCP 加速、数据报文压缩、HTTP 预取和业务加密的网络优化技术,支持TCP 加速和载荷压缩。
4.5 N DSatcom 的SkyWan 系统SKYWAN 5G 是德国诺达卫星通信系统有限公司(ND SatCom )为适应现代市场需求并面向未来发展而研发的最新一代的VSAT 卫星通信系统。
SKYWAN 5G 设计独特,其所有IDU 室内单元的硬件都完全相同,均为内置有MF-TDMA 调制解调器和DVB 接收机的卫星IP 路由器,能够轻松组建包括星状网、多星状网、全网状网和混合状网在内的等各种拓扑结构网络。
SKYWAN 5G 网络中的每一个站点都既可以用作中心站,也可以用作远端站,既可以组建集业务汇聚(Hub )、网络控制(Master )和网络管理(NMS )于一体的单中心站网,也可以组建可靠性、可用性、安全性和抗毁性更高的多中心站网。
SKYWAN 5G 网络的拓扑结构还能因时而化,可按需分解成为几个小型网络,或者合并成为一个大型网络。
SKYWAN 5G 站点支持IDU 室内单元级联,可同时接收更多信道。
另外作为选项,还可在SKYWAN 5G 网络中为出境业务量较重的站点增配DVB 。
该DVB 的配置与卫星通信网络的信令无关,所以 在同一SKYWAN 5G 网络中的DVB 载波可以按需进行调整,而DVB 关 口站的自动登录功能则可进一步简化网络的操作和运行。