人教版三年级上册数学奥数数阵图进阶课件
- 格式:pptx
- 大小:17.32 MB
- 文档页数:78
把8,9,10,11,12,14,16这7个数分别填入图中的圆圈中,使得每条直线上4个数的和都等于46.把1,2,4,5,6,8,10这7个数分别填入图中的圆圈中,使得每条直线上4个数的和都等于20.数阵图进阶第九讲第4级下·提高班·学生版第4级下·提高班·学生版把2,3,4,5,6,7,8这七个数分别填入图中的圆圈中,使两个正方形中四个数之和都等于19. 将5,9,13,14,17,21,25这7个数分别填入图中的圆圈中,使得每条直线上3个数的和都等于44.第4级下·提高班·学生版将5,6,9,11,14,15这6个数分别填入图中的圆圈里,使两个大圆上4个数的和都等于40.把1,5,9,10,16,21这6个数分别填入图中的○里,使每一个大圆上的四个数之和都等于36.第4级下·提高班·学生版1. 把5,6,7,8,9这5个数分别填在下图的内,使横行、竖列3个数的和都等于( )中的数.把1,3,4,5,6,8,11,15这8个数分别填入图中的圆圈里,使得每个大圆上5个数的和都等于33.第4级下·提高班·学生版2. 把3,5,7,9,11,13,15这7个数分别填入图中的圆圈内,使每条直线上的3个数的和都等于27.3. 把2,4,6,8,10,12,14,16,18这9个数分别填入下图的圆圈中,使得每条直线上的3个数的和都等于24.4.把2,3,4,5,6,7,8这七个数分别填入图中的圆圈内,使两个正方形中四个数之和都等于21.5.把1,2,4,5,6,11这6个数分别填入图中的○里,使每个圆圈上的四个数之和都等于22.第4级下·提高班·学生版第4级下·提高班·学生版6. 把2,5,6,8,10,12,14,22这8个数分别填入下图中,使得每个大圆上的5个数的和都等于49.思维跳板——剪指甲小华的爸爸1分钟可以剪好5个自己的指甲.那么,他在5分钟内可以剪好几个自己的指甲呢?。
三年级奥数教程 数阵图
例1、在圆圈内填入2、3、4、5、6数,使每条直线上的三个数和相等(有三种填法)。
例2
、把1、2、3、4、5、6、7这七个数字填入下图的七个圆圈内,使每个顶点上的数的和都
等与12。
例3、把
1~6六个数字分别填入图中的六个圆内,使得每个正方形顶点上的数的和都为13。
例4、将
1~6这六个数填入下图,使三角形每条边上的和都等与9。
例5、将2~9这八个数填入下图,使每条边上的和都等与15。
练习题
1、将1-9填入下图中,使横行□中所有数的和等于竖行□中所有数的和:
2、将1-8这8个数字分别填入下图中的小圆圈内,使每个五边形上的五个数字的和都等于21。
3、将1、3、5、7、9、11填入下图,,使三角形每条边上的和都等与17。
4、将1~8这八个数填入下图,使每条边上的和都等与13。
5、把1-7这7个数字分别填到下图中的圆圈里,使每条线上三个数的和与每个圆上三个数的和都等于12。
课题数阵图教授教养目的1:懂得两种类型数阵图概念;2:能按照题中具体请求填数阵图重点填图三步调:1.算出1个(或几个)重叠数的值(或和)2.经由过程重叠数的值(或和)找出重叠数3.把数阵图填写完全难点经由过程找到重叠数填数阵图专题1:数阵图在平庸的数学王国中,有一类异常有味的数学问题,它变更多端,惹人入胜,奥妙无限.它就是数阵,一座真正的数字迷宫,它对爱好探讨数字纪律的人有着极大的吸引力,以至有些人留连个中,用平生的精神来研讨它的变更,就连大数学家欧拉对它都有着浓重的兴致.那么,到底什么是数阵呢?我们先不雅察下面两个图:上面两个图就是数阵图.精确地说,数阵图是将一些数按照必定请求分列而成的某种图形,有时简称数阵.一.辐射型数阵图先从几个简略的例子开端.把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等.1.2 把1~5这五个数分离填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9.练一练:将1~9这九个数分离填入右上图中的○里(个中9已填好),使每条直线上的三个数之和都相等.还有其他填法吗?例2将1~7这七个天然数填入左下图的七个○内,使得每条边上的三个数之和都等于10.假如把例2中“每条边上的三个数之和都等于10”改为“每条边上的三个数之和都相等”,其他不变,那么模仿例1,重叠数可能等于几?如何填?练一练:将 10~20填入左下图的○内,使得每条边上的三个数字之和都相等.二、关闭性数阵例3将1~8这八个数分离填入右图的○中,使两个大圆上的五个数之和都等于21.练一练:把1~8填入下页左上图的八个○里,使每个圆圈上的五个数之和都等于20.例4 将1~6这六个天然数分离填入右图的六个○内,使得三角形每条边上的三个数之和都等于11.将2~9这八个数分离填入右图的○里,使每条边上的三个数之和都等于18.附加:把1~7分离填入左下图中的七个空块里,使每个圆圈里的四个数之和都等于13.你学会了吗1.将3~9这七个数分离填入下图的○里,使每条直线上的三个数之和等于20.2.将1~11这十一个数分离填入图的○里,使每条直线上的三个数之和相等,并且尽可能大.3.把5.6.7.8.9.10.11.12.12.14填入下图,使每个大圆圈中六个数的和是554.将1~8填入左下图的八个○中,使得每条边上的三个数之和都等于15.功课:1.将1~9这九个数分离填入右图的小方格里,使横行和竖列上五个数之和相等.(有若干种填法?)2.把1~6这六个数填入右上图的○里,使每个圆圈上的四个数之和都相等.3.将4.5.6.7.8.9六个数填鄙人图,使每条边上得三个数之和都相等,并且和为最大,和为最小呢?4.把1——7这7个数,分离填入途中,使直线和大圆上的数之和相等生涯趣题:小猫要把15条鱼分成数目不相等的4堆,问最多的一堆中最多可放几条鱼?。
三年级奥数教程第13讲数阵图例1、把1~6这六个数字分别填入图13一l的六个圈内,使得每个正方形顶点上的数的和都为13.分析从1到6这六个数的和是21.而两个正方形8个顶点上的数之和是26(=13×2),比六个数的总和大5.这是因为中间两个圈内的数,都被算了两次,所以,多出来的5就是中间两个圈内的数的和.解在1到6六个数中,两个数的和为5,只可能是1+4、2+3.当中间两个圈内填1与4时,剩下的四个数,3与5、2与6配对即可以满足条件.当中间两个圈内填2与3时,剩下的四个数无法组成和相等的两对,因而无法满足条件.所以,得到如图13—2的填法.随堂练习1将3、4、6这三个数填入图13—3的三个圆圈内,使得每条边上的三个数的和等于11.例2、将2到7这六个数,填入图13—4的圈中,使得每条线上的三个数的和相等.分析与解将三条线上的三个数都相加,中间的1被加了3次,所以三条线上三个数的和为1+2+…+6+7+1+1=30.从而每条线上的和是10(=30÷3),即每条线上剩余两个圆圈内数的和是9(=10—1).由 2+7=4+5=3+6=9.可以得到如图13—5的解.随堂练习2 将1到7这七个数填入图13—6,使得每条线上的三个数的和相等.例3、将1到9这九个数填入图13—7,使得从中心出发的每条线段上的三个数的和相等.分析与解先来确定中心的数.设这个数为a,则4条线上12个数(中心的数出现4次,其余的数各出现一次)的和1+2+…+9+a+a+a是4的倍数,即45+3×a是4的倍数.所以a只可能是1、5、9.(1)当a=1时,2与9、4与7、8与3、5与6两两搭配填入同一条线的两个圈内即可.(2)当a=5时,l与9、2与8、3与7、4与6搭配.(3)当a=9时,1与8、2与7、3与6、4与5搭配.这样得到如图13—8所示的三个解.随堂练习3 将1~8填入图13—9,使两个正方形顶点上的数的和相等,并且用斜线连接的4对数的和也都相等.例4、将1到5这五个数填入图13-10,使得圆周上四个数的和与每条直线上的三个数的和都相等.分析与解设处于中心圈内的数是a,因为竖线上的三个数的和等于圆周上的四个数的和,所以a等于它左、右两个数的和.同理,a等于它上、下两个数的和.从而a是最大的数5.其余四个数,2与3搭配,1与4搭配,写在同一条线上.得到的解如图13—11所示.随堂练习4 在图13一12中圆圈内填上7、8、10、12,使得每个圆内的四个数的和相等.例5、将1~6这六个数填入图13~13的六个圆圈内,使得每条边上的三个数的和相等.分析与解用字母a、b、c表示三个顶点上的数.如果l、6都在边上,那么a、b、c中有两个数的差是5(=6—1).这不可能.所以可设以a=1或6.如果a=1,那么由2+6=3+5.3+6=4+5.可得图13—14的(1),(2).如果a=6,同样可得图13—14的 (3),(4).随堂练习5 将l到16填入图13—15,使得每条线段上四个数的和相等,两个八边形八个顶点上的数的和也相等.例6、将1~16填入图13—16的正方形,使每行、每列、每条对角线的和都相等.图13—16分析与解本题也就是造一个四阶幻方.四阶幻方的造法很多,解也不惟一.下面介绍一种最简的做法,可以称为调整法.先将1~16依照次序先左后右,先上后下逐一填入图13—17(1)中得1234114154115144 567896712126799101112510118810115 13141516132316133216⑴⑵⑶图13—17四阶幻方中每行和、每列和、每条对角线的和都是 (1+2+…+16)÷4=(1+16)×16÷2÷4=34.现在图13—17(1)的两条对角线的和都已经是34,合乎要求.所以对角线上的数不要再动.先来调整行.将第一行的2、3分别与第四行的14、15对调,第二行的5、8分别与第三行的9、12对调,得图13—17(2),这个图中,不但每条对角线的和是34,每一行的和也都是34.再调整列.将图13—17(2)第一列的9、5分别与第四列的12、8对调,第二列的14、2分别与15、3对调,得图13—17(3),这个图就是一个合乎要求的幻方.随堂练习6 比较例6所得的幻方与随堂练习5的答案.有何联系?读一读……………………………………………………可能与必然上节末,说到一个游戏“数独”.数独怎么填呢?比如先看第一行,在上节末的图中,有6个空格,应填1、2、4、7、8、9这6个数字.每个空格填的数有6种可能,难以确定.如果看第二列,只有2个空格,应填2、7,每个空格有2种可能,但还不能惟一确定.可能性太多,需要逐个枚举讨论,比较麻烦.所以应先考虑可能较小的方格.最好能发现一些方格,只有一种填法,也就是说这些方格填什么数是必然的.将这些方格先填好,对填其他方格会有帮助.同时考虑几个方面的要求,可以得到必然的填法.比如中间的3×3的正方形,只有3个空格,应填2、6、8.再结合第四行已经有8,第六行也已经有8,所以8必须填在中央.接下去,因为第四行已经有6,所以6必须填在第六行,2填在第四行.现在再看第四行,只剩2个空格,应填9与3.第九列有9,所以第四行的9只能(必然)在第三列,3在第九列.同样,右中3×3的正方形中,9必然在第六行.第六行第一列必填2.左中3×3的正方形中,5必在第一列,7在第三列.第八列3必填在第九行,9必填在第二行.右上3×3的正方形中,7必填在第七列.右下3×3的正方形中,5必在第八行第七列,2必在第八行,1在第九列第七行,6在第七行第七列.右中3×3的正方形中,6在第九列,2在第七列.左下3×3的正方形中,2、3、8、6的填法都是必然的.左上3×3的正方形中,按行依次填2、1、4、7、6.右上3×3的正方形中,填4、8.中上3×3的正方形中填8、9、6、2、7、4.中下3×3的正方形中填9、3、6、4、1、7.填法都是必然的。
把1至6分别填入右图的各方格中,使得横行3个数的和与竖列4个数的和相等。
把10至20这11个数分别填入右图的各圆圈内,使每条线段上3个圆内所填数的和都相等。
如果中心圆内填的数相等,那么就视为同一种填法。
请写出所有可能的填法。
将1,2,3,4,5,6,7,8这8个数分别填入右图的8个空格中,使四边正好组成加、减、乘、除4个正确的等式。
如图,大三角形被分成了9个小三角形。
试将1,2,3,4,5,6,7,8,9分别填入这9个小三角形内,每个小三角形内填一个数,要求靠近大三角形3条边的每5个数相加的和相等。
问这5个数的和最大可能是多少?
数阵图
(★★)
(★★★)
(★★★)
(★★★)
(★★★★)
请在下图中的7个小圆圈内各填入一个自然数,使得图中给出的每个数都是相邻两个圆圈中所填数的差(大数减小数),并且所填的7个数之和是2011。
数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。
数阵图(一)在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。
它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。
右上图就更有意思了,1~9 九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。
上面两个图就是数阵图。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
要排出这样巧妙的数阵图,可不是一件容易的事情。
我们还是先从几个简单的例子开始。
例1 把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。
下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。
分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。
也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。
因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3 。
重叠数求出来了,其余各数就好填了(见右上图)。
试一试:练习与思考第1 题。
例2 把1~5 这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。
分析与解:与例1 不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。
所以,必须先求出这个“和”。
根据例1 的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5] ÷2=10。
学员编号:年级:课时数:学员姓名:辅导科目:学科教师:授课T (同步知识主题) C (专题方法主题)T (学法与能力主题)类型授课日期时段教学内容第十讲:数阵图.把1~6这六个数字分别填入图10 - l的六个圈内.使得每个正方形顶点上的数的和都为13.从l到6这六个数的和是21.而两个正方形8个顶点上的数之和是26(=13×2),比六个数的总和大5.这是因为中间两个圈内的数,都被算了两次,所以,多出来的5就是中间两个圈内的数的和.每个正方形,去掉这中间的两个数,剩下的两个数,和都是8(=13 -5).解在1到6六个数中,两个数的和为8,只可能足2+6、3+5.所以中间两个圈内填1与4.得到如幽10 - 2的填法.将3、4、6这二个数填入图10-3的三个圆圈内,使得每条边上的三个数的和等于11..将2到7这六个数,填入图10- 4的圈中,使得每条线上的三个数的和相等.由2+7= 4+5=3+6=9.得到如图10-5的解将l到7这七个数填入图10-6,使得每条线上的三个数的和相等..将1到9这九个数填入图10-7,使得从中心出发的每条线段上的三个数的和相等..将1到9这九个数填入图10-7,使得从中心出发的每条线段上的三个数的和相等.l+2+…+9=45去掉中心的数后,每条线上两个数的和相等.4条线上8个数的和是每条线上的和乘以4.所以中心的数只能是1、5、9,去掉中心后的8个数的和分别是44、40、36,每条线上两个数的和分别是11、10、9.即有三种情况:(1)中心填1时,2与9、4与7、8与3、5与6两两搭配填入同一条线的两个圈内即可.(2)中心填5时,1与9、2与8、3与7、4与6搭配.(3)中心填9时,1与8、2与7、3与6、4与5搭配这样得到如图10-8所示的三个解将1~8填入图10-9,使两个正方形顶点上的数的和相等,并且用斜线连接的4对数的和也都相等..将1到5这五个数填入图10 - 10,使得圆周上四个数的和与每条直线上的三个数的和都相等.设中心的数是a.因为竖线上的三个数的和等于圆周上的四个数的和,所以a等于它左、右两个数的和.同理,a等于它上、下两个数的和.从而a是最大的数5.其余四个数,2与3搭配.1与4搭配,写在同一条线上,得到的解如图10-11所示.在图10 – 12中填上7、8、10、1 2,使得每个圆内的四个数的和相等..将l~6这六个数填入图10-13的六个圆圈内,使得每条边上的三个数的和相等.如果1与6都不在顶点处,那么在图10 -14中,a+l+c=b+6+c.所以a+1=6+b但6比a大,b比1大,所以a+l与6+b不可能相等.1与6至少有一个在顶点处.设1在顶点.2、3、4、5、6中取4个数,分成和相等的2组,只有3种可能:2+6=3+5.3+6=4+5.2+5=3+4前两种可得图10-15的(1),(2).第3种不可能,因为另一行3个数的和至少是2+3+6.超过1+2+5.同样,6在顶点时,可以得到图10 - 15的(3),(4)因此,本题的答案是图10-15的(1)~(4).用7减去1在顶点的图10 - 15(1)、(2)的每一个数,便得到(3)、(4).反过来也是这样.将l到16填入图10 -16,使得每条线段上四个数的和相等,两个八边形八个顶点上的数的和也相等.将1~16填入图10 - 17的正方形,使每行、每列、每条对角线的和都相等.本题也就是造一个四阶幻方四阶幻方的造法很多,解也不唯一.下面介绍一种最简的做法,可以称为调整法.先将1~16依照次序先左后右,先上后下逐一填入图10 - 18(1)中得四阶幻方中每行和、每列和、每条对角线的和都是(1+2+…+16)÷4= (1+16)×16÷2÷4=34现在图10 - 18(1)的两条对角线的和都已经是34,合乎要求所以对角线上的数不要再动.先来调整行,将第一行的2、3分别与第四行的14,1 5对调,第二行的5、8分别与第三行的9、12对调,得图10 - 18(2),这个图中,不但每条对角线的和是34,每一行的和也都是34.再调整列.将图10 - 18(2)第一列的9、5分别与第四列的12、8对调,第二列的14、2分别与15、3对调,得图10 -18(3),这个图就是一个合乎要求的幻方.比较例6所得的幻方与巩固练习5的答案.有何联系?可能与必然上节末,说到一个游戏“数独”数独怎么填呢?比如先看第一行,在上节末的图中,有6个空格,应填1、2、4、7、8、9这6个数字,每个空格填的数有6种可能,难以确定.如果看第二列,只有2个空格,心填2、7,每个空格有2种可能,但还不能惟一确定.可能性太多,需要逐个枚举讨论,比较麻烦.所以应先考虑可能较小的方格,最好能发现一些方格,只有一种填法,也就是说这些方格填什么数是必然的.将这些方格先填好,对填其他方格会有帮助.同时考虑几个方面的要求,可以得到必然的填法,比如中间的3×3的正方形,只有3个空格,应填2、6、8.再结合第四行已经有8,第六行也已经有8,所以8必须填在中央.接下去,因为第四行已经有6,所以6必须填在第六行,2填在第四行.现在再看第四行,只剩2个空格,应填9与3.第九列有9,所以第四行的9只能(必然)在第三列,3在第九列.同样,右中3×3的正方形中,9必然在第六行,第六行第一列必填2.左中3×3的正方形中,5必在第一列,7在笫三列.第八列3必填在第九行,9必填在第二行.右上3×3的正方形中,7必填在第七列.右下3×3的正方形中,5必在第八行第七列,2必在第八行,1在第九列第七行,6在第七行第七列.右中3×3的正方形中,6在第九列,2在第七列,左下3×3的正方形中,2、3、8、6的填法郡是必然的.左上3×3的正方形中.按行依次填2、1、4、7、6.右上3×3的正方形中,填4、8.中上3×3的正方形中填8、9、6、2、7、4.中下3×3的正方形中填9、3、6、4、1、7.填法都是必然的,最后结果如图.当然,上面填数的顺序可以变更但应尽量先填只有一种可能的方格,而不要先填邮些难以确定的方格.1.如果图中每行、每列、每条对角线的和都相等,那么填入的数a、b、c、d有什么关系?2.将1到8这八个数填入下图,使得每条线上的三个数的和相等.3.将1到9这九个数填入下图,使得每条边上的四个数的和相等.4.将6到10这五个数填入下图,使得每条边上的三个数的和相等.5.将5到12填入下图,使得每条边上的四个数的和相等.6.将2到11填入下图,使得每条线段上的三个数之和相等.7.将1到10填入下图,使得每条线上的四个数的和相等.8.将l到10填入下图,使每条线段上的四个数的和相等,每个三角形三个顶点上的数的和也相等.(三角形顶点上的数的和不必与线段上的数的和相等)9.将1到8填入圈内,使得每个圆上的五个数的和相等.10.将l到8填入圈内,使每一圆周上的四个数、每条线上的四个数的和相等.11.在下面由圆分割出的9个区域中,填入1到9这九个数,使得每个圆内的数的和都等于11.12.将1到12填入下图,使每条边上的五个数的和相等.你做对了吗?答案:巩固练习6 图中的4条对角线是四阶幻方的4行,另有4组共线的点,如l、12、8、13等是幻方的4列,外面八边形的4个相邻顶点上的数16、1、6、11是幻方的一条对角线,另4个相邻顶点上的数10,7,4,13是幻方的另一条对角线。