鲁教版八年级下册数学期末考试题
- 格式:doc
- 大小:493.50 KB
- 文档页数:5
(鲁教版)八年级下册期末考试数学试题及参考答案一、选择题:(将唯一正确答案代号填在括号内。
每题2分,总分值30分)1.2.方程的根是( )A. B. C.D.3.以下命题中,逆命题是假命题的是( )A.假设两个角的和为90°,那么它们互为余角B.两锐角的和为90°的三角形是直角三角形C.有一个外角是直角的三角形是直角三角形D.等边三角形是等腰三角形4.如图,平面上两棵不同高度、笔直的小树,同一时刻在太阳光线照耀下形成的影子分别是、,那么( )A.四边形是平行四边形B.四边形是梯形C.线段及线段相交D.以上三个选项均有可能5.在施掷一枚匀称的硬币的试验中,某一小组作了500次试验,当出现正面的频数是多少时,其出现正面的频率才是49.6%( )A.248 B.250 C.258D.2686.如图,在矩形中,3,4,将沿折叠,点B落在上的点E处,那么等于( )A.B.C.D.27.某果农苹果的总产量是9.3×104千克,设平均每棵苹果产千克,苹果总共有棵,那么及之间的函数关系图像大致是( )8.如图,在△中,90°,15°,点D、E分别在、上,且垂直平分,3,那么等于( )A.B.C.3D.9.四条线段的长分别是2、4、6、8,从中随意取出三条线段,能围成三角形的概率是( )A.B.C.D.10.将5个边长都为2的正方形按如下图的方法摆放,点A1,A2,A3,A4分别是正方形的中心,那么图中重叠部分(阴影部分)的面积和为( )A.82B.62C.42 D.22 11.点A()、B()、C()都在函数的图像上,那么、、的大小关系是( )A.>>B.>>C.>>D.>>12.13.如图,两个转盘分别被分成3等份和4等份,分别标有数字1、2、3和1、2、3、4,转动两个转盘各一次(假定每次都能确定指针所指的数字),两次指针所指的数字之和为3或5的概率是A.B.C.D.14.如图,梯形中,,3,E是中点,那么S△:S△为( )A.B.C.D.15.二、填空题:(将正确答案填在横线上。
一、选择题1.下列命题是假命题的是()A.三角形的外角和是360°B.线段垂直平分线上的点到线段两个端点的距离相等C.有一个角是60°的等腰三角形是等边三角形D.有两边和一个角对应相等的两个三角形全等2.小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC、BD的中点重叠并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是()A.对角线互相平分的四边形是平行四边形B.一组对边平行且相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形 D.两组对角分别相等的四边形是平行四边形3.如图,平行四边形ABCD中,AE平分∠BAD交边BC于点E,已知AD=7,CE=3,则AB的长是()A.7 B.3 C.3.5 D.44.甲乙两地相距60km,一艘轮船从甲地顺流到乙地,又从乙地立即逆流到甲地,共用8小时,已知水流速度为5km/h,若设此轮船在静水中的速度为x km/h,可列方程为()A.6060855x x+=+-B.120120855x x+=+-C.6058x+=D.6060855x x+=+-5.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个求,若摸到白球的概率为57,则盒子中原有的白球的个数为()A.10 B.15 C.18 D.206.冬季来临,为防止疫情传播,某学校决定用420元购买某种品牌的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多了20瓶,求原价每瓶多少元.设原价每瓶x元,则可列出方程为()A.420420200.5x x-=-B.420420200.5x x-=+C .420420200.5x x-=+ D .420200.5x =- 7.若22()x y A x y -+⋅=-,则代数式A 等于( ) A .x y --B .-+x yC .x y -D .x y + 8.下列因式分解正确的是( ) A .x 2+1=(x +1)2B .x 2+2x ﹣1=(x ﹣1)2C .2x 2﹣2=2(x +1)(x ﹣1)D .x 2﹣x +2=x (x ﹣1)+2 9.下列各式由左到右的变形中,属于分解因式的是( )A .x 2﹣16+6x =(x +4)(x ﹣4)+6xB .10x 2﹣5x =5x (2x ﹣1)C .a 2﹣b 2﹣c 2=(a ﹣b )(a +b )﹣c 2D .a (m +n )=am +an10.如图,已知ABC 和A B C '''关于点O 成中心对称,则下列结论错误的是( ).A .ABC ABC '''∠=∠B .AOB A OB ''∠=∠C .AB A B ''=D .OA OB '=11.已知不等式()33a x a -<-的解集是1x >-,则a 的取值范围是( )A .3a >B .3a ≥C .3a <D .3a ≤12.如图,在ABC 中,AB =AC =6,且15ABC S =△,AD ,BE 是ABC 的两条高线,P 是AD 上一动点,则PC PE +的最小值是( )A .4B .5C .6D .8二、填空题13.已知平行四边形ABCD 中,∠A 的平分线交BC 于点E ,若AB =AE ,则∠BAD =_____度.14.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为__________.15.我们知道,假分数可以化为整数与真分数的和的形式,例如:31122=+,在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;如果假分式2412+++x x x 的值为整数,则x 的负整数值为______. 16.H 7N 9病毒直径为30纳米(1纳米=10-9米),用科学记数法表示这个病毒直径的大小为________米.17.分解因式:2312ax a -=____________________.18.如图,在正方形ABCD 中,点M 是边CD 的中点,那么正方形ABCD 绕点M 至少旋转_________度与它本身重合.19.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________. 20.如图,在ABC 中,AE BC ⊥于点,E BD AC ⊥于点D .点F 是AB 的中点,连接,DF EF ,设,DFE x ACB y ∠=∠=︒︒,求y 关于x 的函数关系式_________.三、解答题21.已知:如图,在▱ABCD 中,点E 、F 分别在BC 、AD 上,且BE =DF求证:AC 、EF 互相平分.22.若甲做400个机器零件与乙做300个机器零件的时间相等,又知每小时甲比乙多做10个机器零件,求甲,乙每小时各做多少个机器零件?23.(1)因式分解:328a a -.(2)如图,//AB CD ,40A ∠=︒,45D ∠=︒,求1∠和2∠的度数.24.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (1,1)、B (5,1)、C (4,4),按下列要求作图:(1)将△ABC 向左平移5个单位得到△A 1B 1C 1,并写出点A 1的坐标;(2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,并写出点B 2的坐标;25.已知点()39,210A m m --,分别根据下列条件解决问题:(1)点A 在x 轴上,求m 的值;(2)点A 在第四象限,且m 为整数,求点A 的坐标.26.如图,已知四边形ABCD .(1)在边BC 上找一点P ,使得AP +PD 的值最小,在图①中画出点P ;(2)请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹): ①在线段AC 上找一点M ,使得BM =CM ,请在图②中作出点M ;②若AB 与CD 不平行,且AB =CD ,请在线段AC 上找一点N ,使得△ABN 和△CDN 的面积相等,请在图③中作出点N .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据三角形外角和的性质即可对A进行判断;根据垂直平分线的性质即可对B进行判断;根据等边三角形的判定即可对C进行判断;根据三角形全等的证明即可对D进行判断;【详解】A、三角形的外角和为360°,故A正确;B、垂直平分线上的点到线段两端的距离相等,故B正确;C、有一个角是60°的等腰三角形是等边三角形,故C正确;D、由两边和它们的夹角对应相等的两个三角形全等,故D错误;故选:D.【点睛】本题考查了命题与定理,命题的真假是就命题的内容而言,正确掌握定理是解题的关键.2.A解析:A【分析】根据平行四边形的判定定理解答即可.【详解】由已知可得AO=CO,BO=DO,∴四边形ABCD是平行四边形,依据是:对角线互相平分的四边形是平行四边形,故选:A.【点睛】此题考查平行四边形的判定定理,熟练掌握平行四边形的五种判定定理并运用解决问题是解题的关键.3.D解析:D【分析】先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而由EC的长求出BE即可解答.【详解】解:∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=7,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∵EC=3,∴BE=BC-EC=7-3=4,∴AB=4,故选D.本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE=∠AEB 是解决问题的关键.4.D解析:D【分析】本题关键描述语是:“共用去8小时”.等量关系为:顺流60千米用的时间+逆流60千米用的时间=5,根据等量关系列出方程即可.【详解】 解:由题意,得:6060855x x +=+-, 故选:D .【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.注意顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度. 5.D解析:D【分析】设原来有x 个白球,则白球数为(5+x )个,总数为(10+x+5)个,根据概率建立方程求解即可.【详解】设原来有x 个白球,则白球数为(5+x )个,总数为(10+x+5)个, 根据题意,得551057x x +=++, 解得x=20,且x=20是所列方程的根,故选D .【点睛】本题考查了简单概率的计算,熟练掌握概率的意义,巧妙引入未知数建立方程求解是解题的关键.6.A解析:A【分析】根据“原价买的瓶数-实际价格买的瓶数=20”列出方程即可.【详解】 解:原价买可买420x 瓶,经过还价,可买4200.5x -瓶.方程可表示为: 420420200.5x x-=-. 故选:A .考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系.本题要注意还价前后商品的单价的变化.7.A解析:A【分析】利用平方差公式将等号右边写成()()x y x y +-,即可求解.【详解】解:∵()()22()y x y A x y x y x -+=+⋅--=, ∴A x y =--,故选:A .【点睛】本题考查平方差公式,掌握平方差公式是解题的关键.8.C解析:C【分析】根据因式分解的定义及方法对各项分解得到结果,即可作出判断.【详解】解:A 、原式不能分解,不符合题意;B 、原式不能分解,不符合题意;C 、原式=2(x 2﹣1)=2(x +1)(x ﹣1),符合题意;D 、原式不能分解,不符合题意,故选:C .【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 9.B解析:B【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A 、变形的结果不是几个整式的积,不是因式分解;B 、把多项式10x 2﹣5x 变形为5x 与2x ﹣1的积,是因式分解;C 、变形的结果不是几个整式的积,不是因式分解;D 、变形的结果不是几个整式的积,不是因式分解;故选:B .【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.10.D【分析】根据三角形和中心对称的性质求解,即可得到答案.【详解】∵ABC 和A B C '''关于点O 成中心对称∴ABC A B C '''∠=∠AOB A OB ''∠=∠AB A B ''=OA OA '=OB OB '=∴OA OB '=错误,其他选项正确故选:D .【点睛】本题考查了三角形和中心对称图形的知识;解题的关键是熟练掌握三角形和中心对称图形的性质,从而完成求解.11.C解析:C【分析】根据已知解集得到a-3为负数,即可确定出a 的范围.【详解】解:不等式(a-3)x <3-a 的解集为x >-1,∴a-3<0,解得a <3.故选:C .【点睛】本题考查不等式的解集,熟练掌握不等式的基本性质是解题关键.12.B解析:B【分析】连接PB ,根据等腰三角形的性质和垂直平分线的性质计算即可;【详解】连接PB ,∵AB AC =,BD CD =,∴AD 是等腰△ABC 底边BC 边的中垂线,∴PB PC =,∴PC PE PB PE +=+,又PB PE BE +≥,∴B ,P ,E 三点共线时,PB PE +最小,即等于BE 的长,又∵△1152ABC S AC BE ==,6AC =, ∴5BE =;故答案选B .【点睛】本题主要考查了等腰三角形的性质、垂直平分线的性质,结合轴对称的性质计算是解题的关键. 二、填空题13.120【分析】由平行四边形的性质和已知条件易证△ABE 为等边三角形则∠BAE =60°进而可求出∠BAD 的度数【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BC ∴∠EAD =∠AEB ∵AE 平分∠BAD解析:120【分析】由平行四边形的性质和已知条件易证△ABE 为等边三角形,则∠BAE =60°,进而可求出∠BAD 的度数.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠EAD =∠AEB ,∵AE 平分∠BAD ,∴∠BAE =∠EAD ,∴∠BAE =∠AEB ,∴AB =EB ,∵AB=AE,∴AB=AE=BE,∴△ABE是等边三角形,∴∠BAE=60°,∴∠BAD=2∠BAE=120°,故答案为:120.【点睛】本题主要考查了平行四边形的性质、平行线的性质、角平分线的定义以及等边三角形的判定和性质,正确证明△ABE是等边三角形是解题关键.14.60°【分析】先根据平行四边形的性质得出∠A+∠B=180°∠A=∠C再由∠B=2∠A可求出∠A的度数进而可求出∠C的度数【详解】解:如下图∵四边形ABCD是平行四边形∴∠A+∠B=180°∠A=∠解析:60°【分析】先根据平行四边形的性质得出∠A+∠B=180°,∠A=∠C,再由∠B=2∠A可求出∠A的度数,进而可求出∠C的度数.【详解】解:如下图,∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∠A=∠C,∵∠B=2∠A,∴∠A+2∠A=180°,∴∠A=∠C=60°.故答案为:60°.【点睛】本题考查的是平行四边形的性质.熟知平行四边形的对角相等,邻角互补是解答此题的关键.15.【分析】先把分式化为真分式再根据分式的值为整数确定的值【详解】解:分式的值为整数或的负整数值为故答案为:【点睛】本题考查了利用分式的性质对分式进行变形解题的关键是理解真分式的定义解析:1-、3-、5-【分析】先把分式化为真分式,再根据分式的值为整数确定x 的值.【详解】 解:2412+++x x x ()223=2x x +-+ 3=22x x +-+ 分式2412+++x x x 的值为整数, 21x ∴+=±或3x =±1x ∴=-、3-、5-、1∴x 的负整数值为1x =-、3-、5-,故答案为:1-、3-、5-.【点睛】本题考查了利用分式的性质对分式进行变形,解题的关键是理解真分式的定义. 16.【分析】根据题意列得这个病毒直径为计算并用科学记数法表示即可【详解】故答案为:【点睛】此题考查实数的乘法计算科学记数法正确理解题意列式并会用科学记数法表示结果是解题的关键解析:8310-⨯【分析】根据题意列得这个病毒直径为93010-⨯,计算并用科学记数法表示即可.【详解】983010310--⨯=⨯,故答案为:8310-⨯ .【点睛】此题考查实数的乘法计算,科学记数法,正确理解题意列式并会用科学记数法表示结果是解题的关键.17.【分析】先提取公因式再用平方差公式完成因式分解【详解】故答案为:【点睛】本题考查了提公因式法与公式法的综合运用熟练掌握因式分解的方法是解本题的关键注意要分解彻底解析:()()322a x x +-【分析】先提取公因式3a ,再用平方差公式完成因式分解.【详解】2312ax a -23(4)a x =-3(2)(2)a x x =+-.故答案为:3(2)(2)a x x +-.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.注意要分解彻底.18.360【分析】根据旋转对称图形的定义即可得【详解】点M 是边CD 的中点不是正方形ABCD 的中心正方形ABCD 绕点M 至少旋转360度才能与它本身重合故答案为:360【点睛】本题考查了旋转对称图形掌握理解解析:360【分析】根据旋转对称图形的定义即可得.【详解】点M 是边CD 的中点,不是正方形ABCD 的中心,∴正方形ABCD 绕点M 至少旋转360度才能与它本身重合,故答案为:360.【点睛】本题考查了旋转对称图形,掌握理解定义是解题关键.19.0【分析】求出不等式组的解集确定出最小整数解即可【详解】不等式组整理得:不等式组的解集为:-1<x≤2最小的整数解为0故答案为:0【点睛】本题主要考查一元一次不等式组的整数解掌握一元一次不等式组的求 解析:0【分析】求出不等式组的解集,确定出最小整数解即可.【详解】不等式组整理得:21x x ≤⎧⎨>-⎩, ∴不等式组的解集为:-1<x ≤2,∴最小的整数解为0.故答案为:0.【点睛】本题主要考查一元一次不等式组的整数解,掌握一元一次不等式组的求解是解题关键. 20.y=x+90【分析】由垂直的定义得到∠ADB=∠BEA=90°根据直角三角形的性质得到AF=DFBF=EF 根据等腰三角形的性质得到∠DAF=∠ADF ∠EFB=∠BEF 于是得到结论【详解】解:∵AE ⊥解析:y=12-x+90【分析】由垂直的定义得到∠ADB=∠BEA=90°,根据直角三角形的性质得到AF=DF,BF=EF,根据等腰三角形的性质得到∠DAF=∠ADF,∠EFB=∠BEF,于是得到结论.【详解】解:∵AE⊥BC于点E,BD⊥AC于点D;∴∠ADB=∠BEA=90°,∵点F是AB的中点,∴AF=DF,BF=EF,∴∠DAF=∠ADF,∠EBF=∠BEF,∴∠AFD=180°-2∠CAB,∠BFE=180°-2∠ABC,∴x°=180°-∠AFD-∠BFE=2(∠CAB+∠CBA)-180°=2(180°-y°)-180°=180°-2y°,∴y=12-x+90,故答案为:y=12-x+90.【点睛】本题考查了直角三角形的性质,等腰三角形的性质,三角形的内角和,一次函数,正确的识别图形是解题的关键.三、解答题21.证明见解析【分析】连接AE、CF,证明四边形AECF为平行四边形即可得到AC、EF互相平分.【详解】解:连接AE、CF,∵四边形ABCD为平行四边形,∴AD∥BC,AD﹦BC,又∵DF﹦BE,∴AF﹦CE,又∵AF∥CE,∴四边形AECF为平行四边形,∴AC、EF互相平分.【点睛】本题考查平行四边形的判定与性质,正确添加辅助线是解题关键.22.甲每小时做40个机器零件,乙每小时做30个机器零件.【分析】首先设乙每小时做x 个机器零件,则甲每小时做()10x +个机器零件,再根据关键词语:“甲做400个机器零件与乙做300个机器零件的时间相等,又知每小时甲比乙多做10个机器零件,”列出方程即可.【详解】解:设乙每小时做x 个机器零件,则甲每小时做()10x +个机器零件, 由题意得40030010x x=+,解得30x =, 经检验得:30x =是原方程的解,则甲每小时做301040+=(个).答:乙每小时做30个机器零件,则甲每小时做40个机器零件.【点睛】本题考查分式方程的应用,解题的关键是正确理解题意,找出等量关系.23.(1)2(2)(2)a a a +-;(2)140∠=︒,285∠=︒.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2) 根据平行线的性质,可以得到∠1和∠A 的关系,从而可以得到∠1的度数,再根据∠2=∠1+∠D ,即可求得∠2的度数.【详解】解:(1)原式()2242(2)(2)a a a a a =-=+-. (2)//AB CD ,140A ∴∠=∠=︒,45D ∠=︒,2185D ∴∠=∠+∠=︒.【点睛】此题考查了提公因式法与公式法的综合运用,以及平行线的性质,解答第2小题的关键是明确题意,利用平行线的性质和三角形外角和内角的关系解答.24.(1)见解析;A 1(﹣4,1);(2)见解析,B 2(﹣1,5)【分析】(1)直接利用平移的性质,将A 、B 、C 三点往左平移5个单位,则A 、B 、C 各个顶点对应的横坐标分别减5即可得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案.【详解】解:(1)先把点A 、B 、C 向左平移5个单位,得到A 1、B 1、C 1,再顺次连结A 1B 1,B 1C 1,C 1A 1,如图所示:△A 1B 1C 1,即为所求,点A 1(﹣4,1)(2)连结OA ,OB ,OC ,先把点A 、B 、C 绕点O 逆时针方向旋转90,得到A 2、B 2、C 2,再顺次连结A 2B 2,B 2C 2,C 2A 2,如图所示:△A 2B 2C 2,点B 2(﹣1,5).【点睛】本题考查了平移、旋转图形的变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.25.(1)m=5;(2)()3,2A -【分析】(1)根据点A 在x 轴上可知点A 的纵坐标为0,从而可以解答本题;(2)点A 在第四象限,并且m 为整数,从而可以求得点A 的坐标;【详解】解:根据题意,∵点()39,210A m m --在x 轴上,∴2100m -=,解得:5m =;()2点()39,210A m m --在第四象限.390,2100,m m ->⎧∴⎨-<⎩①② 解不等式①得3m >,解不等式②得5m <,所以,m 的取值范围是:35m << m 为整数4m ∴=,()3,2A ∴-;【点睛】坐标与图形的性质,解题的关键是明确每一问提供的信息,能正确知道与坐标之间的关系,灵活变化,求出所求问题的答案.26.(1)见解析;(2)①见解析;②见解析.【分析】(1)作A点关于BC的对称点A′,连接DA′交BC于P点,利用PA=PA′,则PA+PD=DA′,根据两点之间线段最短可判断P点满足条件;(2)①作BC的垂直平分线交AC于M;②BA和CD的延长线相交于O点,作∠BOC的平分线交AC于N.【详解】解:(1)如图①,点P为所作;(2)①如图①,点M为所作;②如图②,点N为所作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了最短路径问题.。
鲁教版(五四学制)八年级下学期期末考试数学试卷一、选择题(本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题纸指定位置.)1.菱形具有而平行四边形不具有的性质是()A.对角线互相垂直B.对边平行C.对边相等D.对角线互相平分2.下列二次根式中,与是同类二次根式的是()A.B.C.D.3.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14B.(x﹣3)2=14C.(x+3)2=4D.(x﹣3)2=44.如图,放映幻灯片时,通过光源把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为()A.6cm B.12cm C.18cm D.24cm5.如果5x=6y,那么下列结论正确的是()A.x:6=y:5B.x:5=y:6C.x=5,y=6D.x=6,y=56.在下列图形中,不是位似图形的是()A.B.C.D.7.如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b8.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.=9.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A.B.C.D.10.宽与长的比是(约为0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:如图,作正方形ABCD,分别取AD,BC的中点E,F,连接EF,DF,作∠DFC的平分线,交AD的延长线于点H,作HG⊥BC,交BC的延长线于点G,则下列矩形是黄金矩形的是()A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH11.在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC相似的是()A.B.C.D.12.如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,AB上的两个动点,则BM+MN的最小值为()A.10B.8C.5D.6二、填空题(本题共5小题,请将结果填在答题纸指定位置)13.计算:﹣×=.14.关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是.15.古算趣题:“笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足.借问竿长多少数,谁人算出我佩服.”若设竿长为x尺,则可列方程为.16.已知,如图,△ABC中,E为AB的中点,DC∥AB,且DC=AB,请对△ABC添加一个条件:,使得四边形BCDE成为菱形.17.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD 上的点F 处,点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②S △ABG =S △FGH ;③△DEF ∽△ABG ;④AG+DF =FG . 其中正确的是 .(把所有正确结论的序号都选上)三、解答题(本大题共7小题,请将解答及证明过程写在答题纸指定位置.)18.计算: (1)7﹣(2+4) (2)(5+)(3﹣2) 19.用适当的方法解下列方程:(1)5x 2=4x(2)(x +1)(3x ﹣1)=020.如图,在矩形ABCD 中,AB =6,AD =12,点E 在AD 边上,且AE =8,EF ⊥BE 交CD 于点F . (1)求证:△ABE ∽△DEF .(2)求CF 的长.21.如图,△ABC 三个顶点的坐标分别为A (0,﹣3)、B (3,﹣2)、C (2,﹣4),在正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC 向上平移4个单位得到的△A 1B 1C 1;(2)以点C 为位似中心,在网格中画出△A 2B 2C ,使△A 2B 2C 与△ABC 位似,且△A 2B 2C 与△ABC 的位似比为2:1,并直接写出点B 2的坐标.22.2017年5月14日﹣﹣﹣5月15日.“一带一路”国际合作高峰论坛在北京成功举办,高峰论坛期间及前夕,各国政府、地方、企业等达成一系列合作共识、重要举措及务实成果.中方对其中具有代表性的一些成果进行了梳理和汇总,形成高峰论坛成果清单.清单主要涵盖政策沟通、设施联通、贸易畅通、资金融通、民心相通5大类,共76大项、270多项具体成果.我市新能源产业受这一利好因素,某企业的利润逐月提高.据统计,2017年第一季度的利润为2000万元,第三季度的利润为2880万元.(1)求该企业从第一季度到第三季度利润的平均增长率;(2)若第四季度保持前两季度利润的平均增长率不变,该企业2017年的年利润总和能否突破1亿元?23.已知关于x的方程x2﹣(2k+1)x+k2﹣2=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若方程的两个实数根x1,x2满足+=﹣,求k的值.24.已知:如图,O为正方形ABCD的中心,E为AB边上一点,F为BC边上一点,△EBF的周长等于BC的长.(1)求∠EOF的度数.(2)连接OA、OC.求证:△AOE∽△CFO.(3)若OE=OF,求的值.参考答案与试题解析一、选择题(本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题纸指定位置.)1.解;A、对角线互相垂直是菱形具有,平行四边形不具有的性质,故本选项正确;B、对边平行是菱形和平行四边形都具有的性质,故本选项错误;C、对边相等是菱形和平行四边形都具有的性质,故本选项错误;D、对角线互相平分是菱形和平行四边形都具有的性质,故本选项错误.故选:A.2.解:A、=|a|与不是同类二次根式;B、与不是同类二次根式;C、=2与是同类二次根式;D、与不是同类二次根式;故选:C.3.解:移项得:x2+6x=5,配方可得:x2+6x+9=5+9,即(x+3)2=14,故选:A.4.解:∵DE∥BC,∴△AED∽△ABC∴,设屏幕上的小树高是x,则,解得x=18cm.故选:C.5.解:∵5x=6y,∴=,故选项A正确.故选:A.6.解:对应顶点的连线相交于一点的两个相似多边形叫位似图形.根据位似图形的概念,A、B、C三个图形中的两个图形都是位似图形;D中的两个图形不符合位似图形的概念,对应顶点不能相交于一点,故不是位似图形.故选:D.7.解:对折两次后的小长方形的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴a=2b.故选:B.8.解:在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;②=;故选:C.9.解:∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故选:C.10.解:设正方形ABCD的边长为1,∵点E,F分别为AD,BC的中点,∴=,DF==,∴矩形ABFE不是黄金矩形,A错误;同理,矩形EFCD不是黄金矩形,B错误;∵FH是∠DFC的平分线,∴∠DFH=∠GFH,∵AH∥BG,∴∠DFH=∠GFH,∴∠DHF=∠GFH,∴∠DFH=∠DHF,∴DH=DF=,∴==,∴矩形EFGH是黄金矩形,C正确;==,∴矩形DCGH不是黄金矩形,D错误;故选:C.11.解:三角形纸片ABC中,AB=8,BC=4,AC=6.A、==,对应边==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;B、=,对应边==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C、==,对应边==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D、==,对应边===,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选:D.12.解:过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,AC=5,AC边上的高为==2,所以BE=4.∵△ABC∽△EFB,∴=,即=EF=8.故选:B.二、填空题(本题共5小题,请将结果填在答题纸指定位置)13.解:原式=2﹣=2﹣=.故答案为.14.解:设方程的另一根为x,∵方程x2+5x+m=0的一个根为﹣2,∴x+(﹣2)=﹣5,解得x=﹣3,即方程的另一根是﹣3,故答案为:﹣3.15.解:设竿长为x尺,由题意得,(x﹣2)2+(x﹣4)2=x2.故答案为:(x﹣2)2+(x﹣4)2=x2.16.解:添加一个条件:AB=2BC,可使得四边形BCDE成为菱形.理由如下:∵DC=AB,E为AB的中点,∴CD=BE=AE.又∵DC∥AB,∴四边形BCDE是平行四边形,∵AB=2BC,∴BE=BC,∴四边形BCDE是菱形.故答案为:AB=2BC.17.解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,∴∠EBG=∠EBF+∠FBG=∠CBF+∠ABF=∠ABC=45°,所以①正确;在Rt△ABF中,AF===8,∴DF=AD﹣AF=10﹣8=2,设AG=x,则GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,在Rt△GFH中,∵GH2+HF2=GF2,∴x2+42=(8﹣x)2,解得x=3,∴GF=5,∴AG+DF=FG=5,所以④正确;∵△BCE沿BE折叠,点C恰落在边AD上的点F处∴∠BFE=∠C=90°,∴∠EFD+∠AFB=90°,而∠AFB+∠ABF=90°,∴∠ABF=∠EFD,∴△ABF∽△DFE,∴=,∴===,而==2,∴≠,∴△DEF与△ABG不相似;所以③错误.∵S△ABG=×6×3=9,S△GHF=×3×4=6,∴S△ABG=S△FGH.所以②正确.故答案是:①②④.三、解答题(本大题共7小题,请将解答及证明过程写在答题纸指定位置.)18.解:(1)原式=7﹣﹣4=2;(2)原式=15﹣10+6﹣6=9﹣4.19.解:(1)由原方程,得x(5x﹣4)=0,则x=0或5x﹣4=0,解得x1=0,x2=;(2)(x+1)(3x﹣1)=0,x+1=0或3x﹣1=0,x1=﹣1,x2=.20.(1)证明:∵EF⊥BE,∴∠EFB=90°,∴∠DEF+∠AEB=90°.∵四边形ABCD为矩形,∴∠A=∠D=90°,∴∠AEB+∠ABE=90°,∴∠DEF=∠ABE,∴△ABE∽△DEF.(2)解:∵AD=12,AE=8,∴DE=4.∵△ABE∽△DEF,∴=,∴DF=,∴CF=CD﹣DF=6﹣=.21.解:(1)如图所示,△A1B1C1为所求的三角形;(2)如图所示,△A2B2C为所求三角形,点B2的坐标为(4,0).22.解:(1)设该企业从第一季度到第三季度利润的平均增长率为x,根据题意得:2000(1+x)2=2880,解得:x=0.2=20%或x=﹣2.2(不合题意,舍去).答:该企业从第一季度到第三季度利润的平均增长率为20%.(2)2000+2000×(1+20%)+2880+2880×(1+20%)=10736(万元),10736万元>1亿元.答:该企业2017年的年利润总和突破1亿元.23.解:(1)∵关于x的方程x2﹣(2k+1)x+k2﹣2=0有两个实数根,∴△≥0,即[﹣(2k+1)]2﹣4(k2﹣2)≥0,解得k≥﹣;(2)由根与系数的关系可得x1+x2=2k+1,x1x2=k2﹣2,由+=﹣可得:2(x1+x2)=﹣x1x2,∴2(2k+1)=﹣(k2﹣2),∴k=0或k=﹣4,∵k≥﹣,∴k=0.24.(1)解:在FC上截取FM=FE,连接OB,OM,OC.∵C=BE+EF+BF=BC,则BE+EF+BF=BF+FM+MC,△EBF的周长∴BE=MC,∵O为正方形中心,∴OB=OC,∠OBE=∠OCM=45°,在△OBE和△OCM中,,∴△OBE≌△OCM,∴∠EOB=∠MOC,OE=OM,∴∠EOB+∠BOM=∠MOC+∠BOM,即∠EOM=∠BOC=90°,在△OFE与△OFM中,,∴△OFE≌△OFM(SSS),∴∠EOF=∠MOF=∠EOM=45°.(2)证明:由(1)可知:∠EOF=45°,∴∠AOE+∠FOC=135°,∵∠EAO=45°,∴∠AOE+∠AEO=135°,∴∠FOC=∠AEO,∵∠EAO=∠OCF=45°,∴△AOE∽△CFO.(3)解:∵△AOE∽△CFO,∴===,∴AE=OC,AO=CF,∵AO=CO,∴AE=×CF=CF,∴=.。
鲁教版(五四制)八年级数学下册期末综合测试卷一、选择题(每题3分,共36分)1.【2023·济南期末】若a5=b8,则ab等于()A.85B.53C.35D.582.【2023·滨州滨城区期中】如表是代数式ax2+bx的值的情况,根据表格中的数据,可知方程ax2+bx=12的根是()x…-3 -2 -1 0 1 2 3 4 …ax2+bx…12 6 2 0 0 2 6 12 …A.x1=0,x2=1 B.x1=-1,x2=2C.x1=-2,x2=3 D.x1=-3,x2=43.【2023·滨州邹平市月考】用配方法解方程2x2+3=7x时,方程可变形为()A.(x-72)2=374B.(x-72)2=434C.(x-74)2=116D.(x-74)2=25164.【2023·德州期末】如图,将长方形和直角三角形的直角顶点重合,若∠AOE=128°,则∠COD的度数为()A.28°B.38°C.52°D.62°5.下列各式与427是同类二次根式的是()A.216 B.125 C.48 D.32 6.【2023·重庆】如图,已知△ABC∽△EDC,AC∶EC=2∶3,若AB的长度为6,则DE的长度为()A.4 B.9 C.12 D.13.5 7.【2023·东营东营区月考】表示实数a,b的点在数轴上的位置如图所示,化简a2-b2+(a-b)2的结果是()A.-2a B.-2b C.0 D.2a-2b 8.【2023·济宁邹城市期末】如图,图形甲与图形乙是位似图形,点O是位似中心,点A,B的对应点分别为点A′,B′,若OA′=2OA,则图形乙的面积是图形甲的面积的()A.2倍B.3倍C.4倍D.5倍9.【新定义题】定义运算:a☆b=ab2-ab-1,例如:3☆4=3×42-3×4-1,则方程1☆x=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根10.【2023·丽水】如图,在菱形ABCD中,AB=1,∠DAB=60°,则AC的长为()A.12B.1 C.32D. 311.【2023·泰安泰山区一模】矩形ABCD与矩形CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.23C.22D.5212.如图,在边长为4的正方形ABCD中,点E,F分别是BC,CD的中点,DE,AF交于点G,AF的中点为H,连接BG,DH.给出下列结论:①AF⊥DE;②DG=85;③HD∥BG;④△ABG与△DHF相似.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共18分)13.【2022·济宁】若二次根式x-3有意义,则x的取值范围是________.14.若x2=y3=z4,则2x-y+3zx+y-z=________.15.若关于x的一元二次方程(k-2)x2-2kx+k=6有实数根,则k的取值范围为________.16.【2023·济南历下区期末】如图,等边三角形ABC被矩形DEFG所截,EF∥BC,线段AB被截成三等份.若△ABC的面积为12 cm2,图中阴影部分的面积为________cm2.17.【2023·苏州改编】如图,在平面直角坐标系中,点A的坐标为(9,0),点C的坐标为(0,3),以OA,OC为边作矩形OAB C.动点E,F分别从点O,B同时出发,以每秒1个单位长度的速度沿OA,BC向终点A,C移动.当移动时间为4秒时,AC·EF的值为________.18.如图,边长为2的正方形ABCD中,E,F分别是边BC,CD的中点,连接AE,G是AE上的一点,∠EGF=45°,则GF=________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.计算:(1)33-(3)2+(π+3)0-27+|3-2|.(2)24+3113-54÷6×2348.20.【2023·临沂兰山区期末】解下列方程:(1)(2x-1)2=(3-x)2.(2)x2-4x-7=0.21.已知关于x的一元二次方程x2+3x+k-2=0有实根,方程的两个实数根分别为x1,x2,若(x1-1)(x2-1)=-1,求k的值.22.【2023·滨州改编】如图,在平面直角坐标系中,菱形OABC的一边OC在x轴正半轴上,顶点A的坐标为(2,23),点D是边OC上的动点,过点D作DE⊥OB交边OA于点E,作DF∥OB交边BC于点F,连接EF,设OD=x,△DEF的面积为S.(1)用x表示线段DF.(2)求S关于x的函数表达式.23.为了加快发展新能源和清洁能源,助力实现“双碳”目标,大力发展高效光伏发电关键零部件制造.青岛上合示范区某工厂生产的某种零件按供需要求分为8个档次.若生产第一档次(最低档次)的产品,一天可生产38件,每件的利润为12元,每提高一个档次,每件的利润增加3元,每天的产量将减少2件.请解答下列问题,设产品的档次(每天只生产一个档次的产品)为x,若该产品一天的总利润为756元,求这天生产产品的档次x的值.24.【2023·温州】如图,已知矩形ABCD,点E在CB的延长线上,点F在BC的延长线上,过点F作FH⊥EF交ED的延长线于点H,连接AF交EH于点G,GE=GH.(1)求证:BE=CF.(2)当ABFH=56,AD=4时,求EF的长.25.【2023·杭州】如图,在边长为1的正方形ABCD中,点E在边AD上(不与点A,D重合),射线BE与射线CD交于点F.(1)若ED=13,求DF的长.(2)求证:AE·CF=1.(3)以点B为圆心,BC长为半径画弧,交线段BE于点G.若EG=ED,求ED的长.答案一、1.D 【点拨】∵a 5=b 8,∴a b =58.2.D 【点拨】由表中数据得,当x =-3时,ax 2+bx =12;当x =4时,ax 2+bx =12,所以方程ax 2+bx =12的解为x 1=-3,x 2=4. 3.D 【点拨】∵2x 2+3=7x ,∴2x 2-7x =-3,∴x 2-72x =-32,∴x 2-72x +4916=-32+4916, ∴(x -74)2=2516.4.C 【点拨】∵将长方形和直角三角形的直角顶点O 重合,∴∠AOC =∠DOE =90°.∵∠AOE =128°,∴∠COE =∠AOE -∠AOC =128°-90°=38°, ∴∠COD =∠DOE -∠COE =90°-38°=52°. 5.C 【点拨】∵427=239,216=66,125=55,48=43,32=42,∴与427是同类二次根式的是48.6.B 【点拨】∵△ABC ∽△EDC ,AC ∶EC =2∶3,∴AB ED =AC EC =BC DC =23,∴当AB =6时,DE =9. 7.A 【点拨】由数轴可知a <0,b >0,a -b <0,∴原式=-a -b -(a -b )=-a -b -a +b =-2a .8.C 【点拨】由题意可得,甲乙两图形相似,且相似比为12,根据相似图形的面积比是相似比的平方可得,图形乙的面积是图形甲的面积的4倍. 9.A10.D 【点拨】如图,连接BD 交AC 于点O .∵四边形ABCD是菱形,∠DAB =60°,∴OA =OC ,∠BAO =12∠DAB =30°,AC ⊥BD ,∴∠AOB =90°,∴OB =12AB =12, ∴OA =AB 2-OB 2=12-⎝ ⎛⎭⎪⎫122=32,∴AC =2OA = 3.11.C 【点拨】如图,延长GH 交AD 于点P .∵四边形ABCD和四边形CEFG 都是矩形,∴∠ADC =∠ADG = ∠CGF =90°,AD =BC =2,GF =CE =1,∴AD ∥GF ,∴∠GFH =∠P AH .又∵H 是AF 的中点,∴AH =FH ,在△APH 和△FGH 中,⎩⎨⎧∠P AH =∠GFH ,AH =FH ,∠AHP =∠FHG ,∴△APH ≌△FGH (ASA),∴AP =GF =1,GH =PH =12PG ,∴PD =AD - AP =1.∵CG =2,CD =1,∴DG =1,∴GH =12PG =12×PD 2+DG 2=22. 12.B 【点拨】∵四边形ABCD 为正方形,∴∠ADC =∠BCD =90°,AD =CD .∵E 和F 分别为BC 和CD 的中点,∴DF =EC ,∴△ADF ≌△DCE (SAS), ∴∠AFD =∠DEC ,∠F AD =∠EDC .∵∠EDC +∠DEC =90°,∴∠EDC + ∠AFD =90°,∴∠DGF =90°,即DE ⊥AF ,故①正确;∵AD =4,DF = 12CD =2,∴AF =AD 2+DF 2=42+22=25,又∵S △ADF =12AD ·DF =12AF ·DG ,∴DG =AD ·DF AF =455,故②错误;∵H 为AF 的中点,∴HD =HF =12AF =5,∴∠HDF =∠HFD .∵AB ∥DC ,∴∠HDF =∠HFD =∠BAG .∵AG =AD 2-DG 2=855,AB =4,∴AB DH =455=AGDF ,∴△ABG ∽△DHF ,故④正确;由④可知∠ABG =∠DHF .∵AB ≠AG ,∴∠ABG 和∠AGB 不相等,∴∠AGB ≠∠DHF ,∴HD 与BG 不平行,故③错误.综上所述①④正确. 二、13.x ≥3 【点拨】根据题意,得x -3≥0,解得x ≥3.14.13 【点拨】设x 2=y 3=z4=k (k ≠0),则x =2k ,y =3k ,z =4k ,∴2x -y +3z x +y -z=4k -3k +12k2k +3k -4k=13.15.k ≥1.5且k ≠2 【点拨】∵关于x 的一元二次方程(k -2)x 2-2kx +k =6有实数根,∴⎩⎨⎧k -2≠0,Δ=(-2k )2-4×(k -2)×(k -6)≥0,解得k ≥1.5且k ≠2.16.4 【点拨】易知△AHM ∽△ABC .∵AH =HK =KB ,S △ABC =12 cm 2,∴S △AHMS △ABC=(AH AB )2=(13)2=19,∴S △AHM =19S △ABC =19×12=43(cm 2).又易知△AKN ∽△ABC , ∴S △AKN S △ABC=(AK AB )2=(23)2=49,∴S △AKN =49S △ABC =49×12=163(cm 2),∴S 阴影= S △AKN -S △AHM =163-43=4(cm 2),∴图中阴影部分的面积为4 cm 2. 17.30 【点拨】如图,连接AC ,EF ,则AC =OC 2+OA 2=32+92=310.∵四边形OABC 为矩形,∴B (9,3).又∵OE =BF =4,∴E (4,0),F (5,3). ∴EF =(5-4)2+32=10,∴AC ·EF =310×10=30.18.3105 【点拨】如图,连接BF ,交AE 于点H .∵四边形ABCD 是正方形,∴AB =BC =CD ,∠ABE =∠C =90°.∵点E ,F 分别是边BC ,CD 的中点,∴BE =CF ,在△ABE 与△BCF 中,⎩⎨⎧AB =BC ,∠ABE =∠BCF ,BE =CF ,∴△ABE ≌△BCF (SAS),∴∠BAE =∠CBF ,AE =BF .∵∠BAE +∠AEB =90°,∴∠AEB +∠EBH =90°.∴∠BHE =90°,∴∠GHF =90°.∵∠FGH =45°,∴△FGH 是等腰直角三角形,∵AB =BC =2,∴AE =BF =AB 2+BE 2= 5.∵S △ABE =12AB ·BE =12AE ·BH ,∴BH =AB ·BE AE =255,∴HG =HF =BF -BH =5-255=355,∴GF =GH 2+HF 2=3105.三、19.【解】(1)33-(3)2+(π+3)0-27+|3-2|=3-3+1-33+2-3=-3 3.(2)24+3113-54÷6×2348=26+23-546×23×4 3=26+23-8 3 =26-6 3.20.【解】(1)(2x -1)2=(3-x )2,(2x -1)2-(3-x )2=0,[(2x -1)+(3-x )][(2x -1)-(3-x )]=0,∴x +2=0或3x -4=0,∴x 1=-2,x 2=43.(2)x 2-4x -7=0,x 2-4x =7,x 2-4x +4=7+4,即(x -2)2=11,∴x -2=±11,∴x 1=2+11,x 2=2-11.21.【解】∵关于x 的一元二次方程x 2+3x +k -2=0有实根,∴Δ=32-4(k -2)≥0,解得k ≤174.∵方程的两个实数根分别为x 1,x 2,∴x 1+x 2=-3,x 1x 2=k -2.∵(x 1-1)(x 2-1)=-1,∴x 1x 2-(x 1+x 2)+1=-1,∴k -2+3+1=-1,解得k =-3,符合题意.故所求k 的值为-3. 22.【解】(1)如图,过点A 作AG ⊥OC 于点G ,连接AC .∵顶点A 的坐标为(2,23),∴OG =2,AG =23,∴OA =22+(23)2=4, ∴OG AO =12,∴∠OAG =30°,∴∠AOG =60°. ∵四边形OABC 是菱形,∴∠BOC =∠AOB =30°,AC ⊥BO ,AO =OC , ∴△AOC 是等边三角形,∴∠ACO =60°.∵DE ⊥OB ,∴DE ∥AC ,∴∠EDO =∠ACO =60°, ∴△EOD 是等边三角形,∴ED =OD =x .∵DF∥OB,∴△CDF∽△COB,∴DFOB=CDCO.∵A(2,23),AO=4,∴B(6,23),∴OB=62+(23)2=43,∴DF43=4-x4,∴DF=3(4-x).(2)∵DF=3(4-x),∴S=-32x2+23x(0≤x≤4).23.【解】∵该工厂生产产品的档次(每天只生产一个档次的产品)为x,∴每件产品的利润为12+3(x-1)=(9+3x)元,一天可生产38-2(x-1)=(40-2x)件产品.根据题意得(9+3x)(40-2x)=756,整理得x2-17x+66=0,解得x1=6,x2=11(不符合题意,舍去).∴这天生产产品的档次x的值为6.24.(1)【证明】∵HF⊥EF,∴∠HFE=90°.∵GE=GH,∴FG=12EH=GE=GH,∴∠E=∠GFE.∵四边形ABCD是矩形,∴AB=DC,∠ABC=∠DCB=90°,∴△ABF≌△DCE(AAS),∴BF=CE,∴BF-BC=CE-BC,即BE=CF.(2)【解】∵四边形ABCD是矩形,∴BC=AD=4.∵∠HFE=∠DCB=90°,∠HEF=∠DEC,∴△ECD∽△EFH,∴ECEF=CDFH,∴ECEF=ABFH.∵ABFH=56,∴ECEF=56.设BE=CF=x,则EC=x+4,EF=2x+4,∴x+42x+4=56,解得x=1,∴EF=6.25.(1)【解】∵四边形ABCD是正方形,∴AD∥BC,AB=AD=BC=CD=1,∴∠DEF=∠CBF,∠EDF=∠BCF,∴△DEF ∽△CBF ,∴DE BC =DF CF ,∴131=DF DF +1,∴DF =12. (2)【证明】∵AB ∥CD ,∴∠ABE =∠F .又∵∠A =∠BCD =90°,∴△ABE ∽△CFB ,∴AB CF =AE BC ,∴AE ·CF =AB ·BC =1.(3)【解】设EG =ED =x ,则AE =AD -ED =1-x ,BE =BG +GE =BC +GE =1+x .在Rt △ABE 中,AB 2+AE 2=BE 2,∴1+(1-x )2=(1+x )2,∴x =14,∴ED =14.。
2020—2021学年度第二学期期末学业水平检测八年级数学试题一、选择题(本题有12小题,每小题5分,共60分,每小题只有一个选项是正确的,不选、多选、错选,均不得分)第4题图第6题图8.如图,在平行四边形ABCD中,点E、F分别是AB及BA延长线上一点,连接CE、DF相交于点H,CE交AD于点G,下列结论错误的是A.AGDG=EGCGB.AEBE=EGCGC.FHDH=EHCHD.DGBC=CGCE第8题图第10题图第11题图9.已知实数x满足(x2-2x+1)2+4(x2-2x+1)-5=0,那么x2-2x+1的值为A.1B.-1或5C.-5或1D.510.如图,菱形ABCD∽菱形AEFG,菱形AEFG的顶点G在菱形ABCD的BC边上运动,GF与AB相交于点H,∠E=60°,若CG=3,AH=7,则菱形ABCD的边长为A.9B.8C.83D.9311.如图,在矩形AOBC中,点A的坐标是(-2,1),点C的纵坐标是4,点B的横坐标为32,则矩形AOBC的面积为A.5 B.152C.154D.312.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第2021行从左向右数第2020个数是A.2020B.2021C.220201-D.220211-二、填空题(共5小题,每小题4分,满分20分)1314.若关于x的一元二次方程(m-1)x2-4x+1=0有两个不相等的实数根,则m的取值范围为.15.如图,用一段篱笆靠墙围成一个大长方形花圃(靠墙处不用篱笆),中间用篱笆隔开分成两个小长方形区域,分别种植两种花草,篱笆总长为17米(恰好用完),围成的大长方形花圃的面积为24平方米,设垂直于墙的一段篱笆长为x米,可列出方程为.第15题图第16题图第17题图17点(∠EMB是锐角),连接EM,EM=5,过点M作MN⊥EM交BC边于点N.过点N 作NH⊥BD于H,则△HMN的面积= .三、解答题(共7小题,共70分)18.解答下列各题(2)解方程:3x2-x-4=0.19.如图,在△ABC中,点D在AB边上,∠ABC=∠ACD.(1)求证:△ABC∽△ACD;(2)若AD=4,AB=9,求AC的长.20.已知关于x的一元二次方程(m-2)x2-2x+1=0有两个实数根.(1)求m的取值范围;(2)在1,2,4三个数中,取一个合适的m值代入方程,并解这个方程.21.某商场以每件220元的价格购进一批商品,当每件商品售价为280元时,每天可售出30件,为了迎接“618购物节”,扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每天就可以多售出3件.(1)降价前商场每天销售该商品的利润是多少元?(2)要使商场每天销售这种商品的利润达到降价前每天利润的两倍,且更有利于减少库存,则每件商品应降价多少元?22.如图,在正方形ABCD中,在BC边上取中点E,连接DE,过点E做EF⊥ED交AB于点G、交AD延长线于点F.(1)求证:△ECD∽△DEF;(2)若CD=4,求AF的长.23.【阅读材料】把形如ax2+bx+c的二次三项式(或其一部分)经过适当变形配成完全平方式的方法叫配方法,配方法在因式分解、证明恒等式、利用a2≥0求代数式最值等问题中都有广泛应用.例如:利用配方法将x2-6x+8变形为a(x+m)2+n的形式,并把二次三项式分解因式.配方:x2-6x+8=x2-6x+32-32+8=(x-3)2-1分解因式:x2-6x+8=(x-3)2-1=(x-3+1)(x-3-1)=(x-2)(x-4)【解决问题】根据以上材料,解答下列问题:(1)利用配方法将多项式x2-4x-5化成a(x+m)2+n的形式.(2)利用配方法把二次三项式x2-2x-35分解因式.(3)若a、b、c分别是△ABC的三边,且a2+2b2+3c2-2ab-2b-6c+4=0,试判断△ABC 的形状,并说明理由.(4)求证:无论x,y取任何实数,代数式x2+y2+4x-6y+15的值恒为正数.24.如图,在菱形ABCD中,∠ABC=60°,M为AD的中点,连接BM,交AC于E,在CB上取一点F,使得CF=AE,连接AF,交BM于G,连接CG.(1)求∠BGF的度数;(2)求AGBG的值;(3)求证:BG⊥CG.2020——2021学年度第二学期期末考试八年级数学参考答案一、选择题:本题共12小题,每小题5分,共60分题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C A B C D C D B A A B D 二、填空题:每小题4分,共20分题号13 14 15 16 17答案22m<5且m≠1x(17-3x)=24 80136三、解答题:18.(1)解:原式=23+4×22-23×32+3×33=23+22-22+3=33.………………………………4分(2)解:∵3x2-x-4=0,∴(x+1)(3x-4)=0,则x+1=0或3x-4=0,解得x=-1或x=43.………………………8分19.(1)证明:∵∠ABC=∠ACD,∠A=∠A,∴△ABC∽△ACD;……………………4分(2)解:∵△ABC∽△ACD,∴ACAD=ABAC,即4AC=9AC,∴AC=6.…………………………………8分20.解:(1)根据题意,b2-4ac=(-2)2-4(m-2)≥0,且m-2≠0,∴m≤3,m≠2;…………………………………………5分(2)∵m≤3且m≠2,∴可取m=1,当m=1时,原方程化为-x2-2x+1=0,∴x=2442(1)±+⨯-,解得x1=-1-2,x2=-1+2.…………………………10分21.解:(1)(280-220)×30=1800 (元).∴降价前商场每天销售该商品的利润是1800元.………………………………5分(2)设每件商品应降价x元,∵AD=4,∴AF=DF-AD=10-4=6.…………………………………………………10分23.解:(1)x2-4x-5=x2-4x+22-22-5=(x-2)2-9.…………………………3分(2)x2-2x-35=x2-2x+1-1-35=(x-1)2-62=(x-1+6)(x-1-6)=(x+5)(x-7).………………………………………6分(3)△ABC为等边三角形,理由如下:∵a2+2b2+3c2-2ab-2b-6c+4=0,∴(a2-2ab+b2)+(b2-2b+1)+3(c2-2c+1)=0,∴(a-b)2+(b-1)2+3(c-1)2=0,∵(a-b)2≥0,(b-1)2≥0,3(c-1)2≥0,∴a-b=0,b-1=0,c-1=0,∴a=b,b=1,c=1,∴a=b=c,∴△ABC为等边三角形.……………………………………………………………9分(4)证明:x2+y2+4x-6y+15=x2+4x+4+y2-6y+9+2=(x+2)2+(y-3)2+2,∵(x+2)2≥0,(y-3)2≥0,∴(x+2)2+(y-3)2+2≥2,∴代数式x2+y2+4x-6y+15的值恒为正数.…………………………………………12分24.解:(1)∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠ABC=∠ADC=60°,∴△ABC,△ADC都是等边三角形,∴AB=AC,∠BAE=∠ACF=60°,八年级数学试题 第11页(共8页)∵AE =CF ,∴△BAE ≌△ACF (SAS ),∴∠ABE =∠CAF ,∴∠BGF =∠ABE +∠BAG =∠CAF +∠BAG =∠BAC =60°.……………………………4分(2)∵∠BAG +∠ABG =∠ABG +∠CBM =60°,∴∠BAG =∠CBM ,∵AD ∥CB ,∴∠AMB =∠CBM ,∴∠BAG =∠BMA ,∵∠ABG =∠ABM ,∴△BAG ∽△BMA ,∴BG AB =AG AM ,∴AG BG =AM AB, ∵AM =MD =12AD =12AB , ∴AG BG =12.…………………………………………8分 (3)连结CM .∵△ACD 是等边三角形,∴CM ⊥AD ,∴CM ⊥BC ,∴∠BCM =90°, 由(2)知△BAG ∽△BMA ,∴2BA BG BM =,∵BC =BA ,∴2BC BG BM =,∴BC BM BG BC= ∵∠CBG =∠MBC ,∴△BCG ∽△BMC ,∴∠BGC =∠BCM =90°,∴BG ⊥CG .…………………………………………12分。
一、选择题1.如图,在□ABCD 中,AB=5,BC=6,点O 是AC 的中点,OE ⊥AC 交边AD 于点E ,则△CDE 的周长为等于( )A .5.5B .8C .11D .222.把边长相等的正五边形ABCDE 和正方形ABFG ,按照如图所示的方式叠合在一起,连结AD ,则∠DAG =( )A .18°B .20°C .28°D .30° 3.平行四边形一边的长是10cm ,那么这个平行四边形的两条对角线长可以是( ) A .4cm ,6cmB .6cm ,8cmC .8cm ,12cmD .20cm ,30cm 4.化简分式2xy x x +的结果是( ) A .y x B .1y x + C .1y + D .y x x+ 5.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④6.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ay y y++=--有正整数解,则所有满足条件的整数a 的值之和是( )A .4B .5C .6D .37.设,,a b c 是三角形的三边长,且满足222a b c ab bc ca ++=++,关于此三角形的形状有以下判断:①是直角三角形; ②是等边三角形; ③是锐角三角形;④是钝角三角形,其中正确的说法的个数有( )A .1个B .2个C .3个D .4个 8.如果917255+能被n 整除,则n 的值可能是( ) A .20B .30C .35D .40 9.下列变形是分解因式的是( ) A .22632x y xy xy =B .22244(2)a ab b a b -+=-C .2(2)(1)32x x x x ++=++D .296(3)(3)6x x x x x --=+--10.如图,等边ABC 的顶点(1,1)A ,(3,1)B ,规定把等边ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,ABC 顶点C 的坐标为( )A .(2020,13)-+B .(2020,13)---C .(2019,13)-+D .(2019,13)--- 11.若关于x 的不等式组0721x m x -⎧⎨-≤⎩<的整数解有且仅有3个,则实数m 的取值范围是( ) A .56m ≤<.B .56m <<C .56m ≤≤D .56m <≤ 12.如图,CD 是ABC 的角平分线,2,7,4B A AC BC ∠=∠==,则BD 的长为( )A .2B .3C .23D .32二、填空题13.如图,平行四边形ABCD ,将四边形CDMN 沿线段MN 折叠,得到四边形QPMN ,已知68BNM ︒∠=,则AMP ∠=_______.14.如图,已知矩形ABCD ,P 、R 分别是BC 和DC 上的点,E 、F 分别是PA ,PR 的中点.如果DR=3,AD=4,则EF 的长为______.15.已知234a b c ==(0abc ≠,a b c +≠),则=+a b c a b c -+-_____. 16.对于两个不相等的实数a ,b ,我们规定符号{}min ,a b 表示a ,b 中的较小的值,如{}min 2,42=.(1){}min 2,3--=__________________.(2)方程{}3min 2,322x x x --=---的解为_________________. (3)方程131min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_________________. 17.分解因式 -2a 2+8ab-8b 2=______________.18.在 ABC 内的任意一点 ()P a b , 经过平移后的对应点为 ()1P cd ,,已知 ()32A , 在经过此次平移后对应点 1A 的坐标为 ()51-,,则 c d a b +-- 的值为________________.19.不等式组235,324,x x -≤⎧⎨-<⎩的解集是________. 20.如图,在ABC 中,DE 是AC 的垂直平分线,3cm AE =,ABD △的周长为13cm ,则ABC 的周长为___________.三、解答题21.如图1在Rt △ABC 中,∠ACB =90°,CA =CB =2,P 为AB 上一个点,将线段CP 绕点C 逆时针旋转90°得到线段CD ,连接PD ,BD .(1)判断BD 与AP 的关系,并证明你的结论.(2)如图2,设点B 关于直线CP 的对称点为E ,连接BE ,CE .① 依题意补全图2;② 证明:BE ∥CD ;③ 当四边形CDBE 为平行四边形时,求AP 的长.22.今年新冠疫情期间,某公司计划将1200 套新型防护服进行加工,分给甲乙两个工厂,甲工厂单独完成任务,比乙工厂单独完成任务多用10天,乙工厂每天加工数量是甲的1.5倍.(1)求甲乙两个工厂每天分别能加工多少套?(2)如果甲工厂每天费用200元,乙工厂每天费用350元,从经济角度考虑,选用哪个工厂较好?23.分解因式(1)22363ax axy ay -+(2)()()22162x x x ---24.如图1,已知ABC 中,1,90,AB BC ABC ==∠=︒把一块含30角的直角三角板DEF 的直角顶点D 放在AC 的中点上(直角三角板的短直角边为,DE 长直角边为DF ),将直角三角板DEE 绕D 点按逆时针方向旋转.(1)在图1中.DE 交AB 于,M DF 交BC 于N .①求证:DM DN =;②在这一过程中,直角三角板DEF 与三角形ABC 的重叠部分为四边形,DMBN 请说明四边形DMBN 的面积是否发生变化?若发生变化,请说明如何变化的;若不发生变化,请求出其面积.(2)继续旋转至如图2的位置,延长AB 交DE 于,M 延长BC 交DF 于,N DM DN =是否仍然成立?(请写出结论,不用证明.)(3)继续旋转至如图3的位置,延长FD 交BC 于N ,延长ED 交AB 于,M DM DN =是否仍然成立?(请写出结论,不用证明.)25.已知点()39,210A m m --,分别根据下列条件解决问题:(1)点A 在x 轴上,求m 的值;(2)点A 在第四象限,且m 为整数,求点A 的坐标.26.如图,在等腰ABC 中,AB AC =,045ACB ︒<∠<︒,点C 关于直线AB 的对称点为点D ,连接BD 与CA 的延长线交于点E ,在BC 上取点F ,使得BF DE =,连接AF .(1)依题意补全图形.(2)求证:AF AE =.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,继而可得△CDE的周长等于AD+CD,又由平行四边形ABCD的AB+BC=AD+CD=11.【详解】∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵AB=5,BC=6,∴AD+CD=11,∵OE⊥AC,OA=OC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=11.故选:C.【点睛】此题考查了平行四边形的性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.2.A解析:A【分析】利用多边形内角和公式求得∠E的度数,在等腰三角形AED中可求得∠EAD的度数,进而求得∠BAD的度数,再利用正方形的内角得出∠BAG=90°,进而得出∠DAG的度数.【详解】解:∵正五边形ABCDE的内角和为(5﹣2)×180°=540°,∴∠E=∠BAE=15×540°=108°,又∵EA=ED,∴∠EAD=12×(180°﹣108°)=36°,∴∠BAD=∠BAE﹣∠EAD=72°,∵正方形GABF 的内角∠BAG =90°,∴∠DAG =90°﹣72°=18°,故选:A .【点睛】本题考查正多边形的内角和,掌握多边形内角和公式是解题的关键.3.D解析:D【分析】平行四边形的这条边和两条对角线的一半构成三角形,应该满足第三边大于两边之差小于两边之和才能构成三角形.【详解】A. ∵2+3<10,不能够成三角形,故此选项错误;B. 4+3<10,不能够成三角形,故此选项错误;C. 4+6=10,不能够成三角形,故此选项错误;D. 10+10>15,能构成三角形,故此选项正确.故选D.4.B解析:B【分析】先把分子因式分解,再约分即可.【详解】 解:22(1)1xy x x y y x x x+++==. 故选:B .【点睛】本题考查了分式的约分,解题关键是先把分子因式分解,再和分母约分.5.B解析:B【分析】将原式分子分母因式分解,再利用分式的混合运算法则化简,最后根据题意求出化简后分式的取值范围,即可选择.【详解】 原式221(1)71211543(1)x x x x x x x -++=-++++ 1(3)(4)11(1)(4)3xx x x xx x x x-++=-++++1111x x x -=-++ 1x x =+ 又因为x 为正整数, 所以1121x x ≤<+, 故选B .【点睛】本题考查分式的化简及分式的混合运算,最后求出化简后的分式的取值范围是解答本题关键.6.A解析:A【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a 的值,求出之和即可.【详解】关于x 的一元一次不等式组整理得:325x a x ≤⎧⎪+⎨≥⎪⎩, ∵325x a x ≤⎧⎪+⎨≥⎪⎩恰有3个整数解, ∴2015a +<≤,即:23a -<≤, 关于y 的分式方程3133y ay y y ++=--,整理得:6y a =, ∵3133y ay y y ++=--有正整数解且63a≠, ∴满足条件的整数a 的值为:1,3∴所有满足条件的整数a 的值之和是4,故选A .【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键.7.B解析:B【分析】先将原式转化为完全平方公式,再根据非负数的性质得出a b c ==.进而判断即可.【详解】∵222a b c ab bc ca ++=++,∴222222222a b c ab bc ca ++=++,即()()()2220a b b c a c -+-+-=,∴a b c ==,∴此三角形为等边三角形,同时也是锐角三角形.故选:B .【点睛】本题考查了因式分解的应用,根据式子特点,将原式转化为完全平方公式是解题的关键. 8.B解析:B【分析】两项的底数可以进行转化,25写成5的平方,利用幂的乘方转化后,就可提取公因数进行分解即可解答.【详解】()91718171717162555555156530+=+=⨯+=⨯=⨯,917255∴+能被n 整除,则n 的值可能是30,故选B .【点睛】本题考查了分解因式在计算中的应用,将所给的式子化成积的形式,关键是将两项的底数转化成相同的.9.B解析:B【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】C 和D 不是积的形式,应排除;A 中,不是对多项式的变形,应排除.故选B .【点睛】考查了因式分解的定义,关键在于能否正确应用分解因式的定义来判断.10.D解析:D【分析】先求出点C 坐标,第一次变换,根据轴对称判断出点C 变换后在x 轴下方然后求出点C 纵坐标,再根据平移的距离求出点C 变换后的横坐标,最后写出第一次变换后点C 坐标,同理可以求出第二次变换后点C 坐标,以此类推可求出第n 次变化后点C 坐标.【详解】∵△ABC 是等边三角形AB=3-1=2∴点C 到x 轴的距离为1+212⨯=2 ∴C(2,1由题意可得:第1次变换后点C 的坐标变为(2-1,1),即(1,1-,第2次变换后点C 的坐标变为(2-21),即(0,1第3次变换后点C 的坐标变为(2-3,1),即(-1,1-第n 次变换后点C 的坐标变为(2-n ,1)(n 为奇数)或(2-n ,1为偶数), ∴连续经过2021次变换后,等边ABC 的顶点C 的坐标为(-2019,1-, 故选:D .【点睛】本题考查了利用轴对称变换(即翻折)和平移的特点求解点的坐标,在求解过程中找到规律是关键. 11.D解析:D【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围.【详解】解不等式0x m -<,得:x m <,解不等式721x -≤,得:3x ≥,则不等式组的解集为3x m ≤<,∵不等式组的整数解有且仅有3个,∴不等式组的整数解为3、4、5,则56m <≤.故答案为:D .【点睛】本题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.12.B解析:B【分析】延长CB 至点F ,使CF=CA ,连接DF ,证明△FCD ≌△ACD ,得到∠F=∠A ,结合已知得到线段的关系,从而计算BD .【详解】解:延长CB 至点F ,使CF=CA ,连接DF ,∵CD 是△ABC 的角平分线,∴∠ACD=∠FCD ,在△FCD 和△ACD 中,CF CA FCD ACD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴△FCD ≌△ACD (SAS ),∴∠F=∠A ,∴∠ABC=2∠A 且∠ABC=∠F+∠FDB ,∴∠F=∠FDB ,∴BF=BD ,∴CF=BC+BF=BC+BD ,∴AC=BD+BC ,∴BD=AC-BC=7-4=3,故选B .【点睛】本题考查了全等三角形的判定和性质,解题的关键是合理作出辅助线,构造全等三角形.二、填空题13.【分析】根据平行四边形的性质得得根据折叠的性质得根据平角的性质即可求解【详解】∵四边形ABCD 是平行四边形∴∴∵将四边形CDMN 沿线段MN 折叠得到四边形QPMN ∴∴故答案为【点睛】本题考察了平行四边 解析:44︒【分析】根据平行四边形的性质得//AD BC ,得68NMD ︒∠=,根据折叠的性质得68PMN NMD ︒∠=∠=,根据平角的性质即可求解.【详解】∵四边形ABCD 是平行四边形∴//AD BC∴68NMD BNM ︒∠=∠=∵将四边形CDMN 沿线段MN 折叠,得到四边形QPMN∴68PMN NMD ︒∠=∠=∴18044AMP PMN NMD ︒∠=︒-∠-∠=故答案为44︒.【点睛】本题考察了平行四边形的性质,平行线的性质,和利用平角求解未知角的度数;其中两直线平行,同位角相等,内错角相等,同旁内角互补.14.5【解析】试题分析:根据勾股定理求AR ;再运用中位线定理求EF 试题 解析:5【解析】试题分析:根据勾股定理求AR ;再运用中位线定理求EF .试题∵四边形ABCD 是矩形,∴△ADR 是直角三角形∵DR=3,AD=4∴∵E 、F 分别是PA ,PR 的中点∴EF=12AR=12×5=2.5. 考点:1.三角形中位线定理;2.矩形的性质.15.3【分析】设=k 用k 表示出abc 的值代入代数式计算化简即可【详解】设=k 则a=2kb=3kc=4k ∴故答案为:3【点睛】此题考查分式的化简求值设设=k 用k 表示出abc 的值是解题的关键解析:3【分析】 设234a b c ===k ,用k 表示出a 、b 、c 的值,代入代数式计算化简即可. 【详解】 设234a b c ===k ,则a=2k ,b=3k ,c=4k , ∴2343=3+234a b c k k k k a b c k k k k -+-+==-+-, 故答案为:3.【点睛】 此题考查分式的化简求值,设设234a b c ===k ,用k 表示出a 、b 、c 的值是解题的关键. 16.-3【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程求解即可;(3)根据题中的新定义化简求出分式方程的解检验即可【详解】解:(1)根据题意;(2)原方程为:去分母得解得:经检验是该解析:-3 34x =0x = 【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程,求解即可;(3)根据题中的新定义化简,求出分式方程的解,检验即可.【详解】解:(1)根据题意,{}min 2,33--=-;(2)原方程为:3322x x x-=---, 去分母得33(2)x x +=--, 解得:34x =,经检验34x =是该方程的根, 故{}3min 2,322x x x --=---的解为:34x =; (3)当1322x x <--时,x >2,方程变形得:11222x x x -=---, 去分母得:1=x-1-2x+4,解得:x=2,不符合题意; 当1322x x >--时,即x <2,方程变形得:31222x x x -=---, 解得:x=0,经检验x=0是分式方程的解,综上,所求方程的解为x=0.故答案为:-3,34x =,0x =. 【点睛】本题考查新定义的实数运算,解分式方程.能将题目新定义的运算化为一般运算是解题关键. 17.-2(a-2b)2【详解】解:-2a2+8ab-8b2=-2(a2-4ab+4b2)=-2(a-2b)2故答案为-2(a-2b)2解析:-2(a-2b)2【详解】解:-2a 2+8ab-8b 2=-2(a 2-4ab+4b 2)=-2(a-2b)2故答案为-2(a-2b)218.-1【分析】由A (32)在经过此次平移后对应点A1的坐标为(5-1)可得△ABC 的平移规律为:向右平移2个单位向下平移3个单位由此得到结论【详解】解:由A (32)在经过此次平移后对应点A1的坐标为(解析:-1【分析】由A (3,2)在经过此次平移后对应点A 1的坐标为(5,-1),可得△ABC 的平移规律为:向右平移2个单位,向下平移3个单位,由此得到结论.【详解】解:由A (3,2)在经过此次平移后对应点A 1的坐标为(5,-1)知c=a+2、d=b -3, 即c -a=2、d -b=-3,则c+d -a -b=2-3=-1,故答案为:1-.【点睛】本题考查的是坐标与图形变化——平移,牢记平面直角坐标系内点的平移规律:上加下减、右加左减是解题的关键.19.【分析】求出不等式组中两不等式的解集找出解集的公共部分即可;【详解】∵由第一个式子求得:x≥-1由第二个式子求得:x <2则不等式组的解集为-1≤x <2故答案为:-1≤x <2【点睛】本题考查了解一元一解析:12x -≤<【分析】求出不等式组中两不等式的解集,找出解集的公共部分即可;【详解】∵235324x x -≤⎧⎨-⎩< 由第一个式子求得:x ≥-1,由第二个式子求得:x <2,则不等式组的解集为-1≤x <2,故答案为:-1≤x <2【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法是解本题的关键; 20.【分析】由已知条件利用线段的垂直平分线的性质得到AD =CDAC =2AE 结合周长进行线段的等量代换可得答案【详解】解:∵DE 是AC 的垂直平分线∴AD =CDAC =2AE =6cm 又∵ABD 的周长=AB+B解析:19cm【分析】由已知条件,利用线段的垂直平分线的性质,得到AD =CD ,AC =2AE ,结合周长,进行线段的等量代换可得答案.【详解】AE ,解:∵DE是AC的垂直平分线,3cm∴AD=CD,AC=2AE=6cm,又∵ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴ABC的周长=AB+BC+AC=13+6=19cm.故答案为:19cm.【点睛】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.三、解答题21.(1)BD⊥AP,BD=AP,证明见解析;(2)①见解析;②见解析;③2【分析】(1)由旋转的性质及题意易得△ACP ≌△PCD,进而问题得证;(2)①根据题意直接作图即可;②根据轴对称的性质及题意可直接得证;③由(1)及平行四边形的性质可得AP=BD,然后根据对称可求解.【详解】解:(1)结论:BD⊥AP,BD=AP证明:∵∠ACB=90°,∠PCD=90°∴∠ACP=∠BCD ,∠A=∠ABC =45°∵AC=BC,PC=DC∴△ACP ≌△BCD∴BD=AP,∠A=∠CBD =45°∴∠ABD=∠ABC+∠CBD=90°∴BD⊥AP(2)① 如图② ∵点B关于直线CP的对称点为E∴CG⊥BE∵∠PCD=90°即CG⊥CD∴BE∥CD③∵四边形CDBE为平行四边形∴BD=CE由(1)可得AP=BD∵B、E关于直线CP的对称∴BC=CE∴AP=BC=2.【点睛】本题主要考查轴对称的性质、全等三角形的判定与性质及平行四边形的性质,熟练掌握各个知识点是解题的关键.22.(1)甲工厂每天能加工40套新型防护服,乙工厂每天能加工60套新型防护服;(2)选择甲工厂较好.【分析】(1)设甲工厂每天能加工x套新型防护服,则乙工厂每天能加工1.5x套新型防护服,根据工作时间=工作总量÷工作效率结合甲工厂单独完成任务比乙工厂单独完成任务多用10天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)利用总费用=每天需要的费用×工作时间,可分别求出选择甲、乙两工厂所需费用,比较后即可得出结论.【详解】解:(1)设甲工厂每天能加工x 套新型防护服,则乙工厂每天能加工1.5x 套新型防护服, 依题意得:12001200101.5x x-=, 解得:x=40,经检验,x=40是原方程的解且符合题意,∴1.5x=60.答:甲工厂每天能加工40套新型防护服,乙工厂每天能加工60套新型防护服. (2)选择甲工厂所需费用为200×120040=6000(元); 选择乙工厂所需费用为350×120060=7000(元). ∵6000<7000,∴从经济角度考虑,选用甲工厂较好.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 23.(1)3a (x-y )2;(2)()()()2+44x x x --【分析】(1)先提取公因式3a ,然后由完全平方公式进行因式分解;(2)直接提取公因式(x-2),进而利用平方差公式分解因式即可.【详解】解:(1)原式=3a (x 2-2xy+y 2)=3a (x-y )2;(2)()()22162x x x ---()()2=216x x --()()()=2+44x x x --【点睛】本题考查了分解因式.因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.24.(1)①见解析;②不变,14;(2)成立;(3)成立 【分析】(1)连接BD ,证明△DMB ≌△DNC .根据已知,全等条件已具备两个,再证出∠MDB=∠NDC ,用ASA 证明全等,四边形DMBN 的面积不发生变化,因为它的面积始终等于△ABC 面积的一半;(2)成立.同样利用(1)中的证明方法可以证出△DMB ≌△DNC ;(3)结论仍然成立,方法同(1).【详解】解:()1①如图,连接DB ,在Rt ABC ∆中,,,AB BC AD DC ==45,90,45A C BDC ABD CBD ∴∠=∠=︒∠=︒∠=∠=︒45,ABD C ∴∠=∠=︒,DB DC AD ∴==90,MDB BDN CDN BDN ∠+∠=∠+∠=,MDB NDC ∴∠=∠,BMD CND ∴∆≅∆DM DN ∴=;②四边形DMBN 的面积不发生变化;由①知,,BMD CND ∆≅∆BMD CND S S ∆∴∆=DBN DMB DBN DNC DMBN S S S S S ∆∆∆∆∴=+=+四边形 1111112224DBC ABC S S ∆∆===⨯⨯⨯= ()2DM = DN 仍然成立.理由如下:连接BD由(1)知BD⊥AC,BD= CD,∴∠ABD=∠ACB = 45°,∴∠ABD+∠MBD= 180°,∠ACB+∠NCD= 180°,∴∠MBD=∠NCD,∵BD⊥AC,∴∠MDB +∠MDC = 90°,又∠NDC +∠MDC = 90°,∴∠MDB=∠NDC,在△MDB和△NDC中,∵∠MBD=∠NCD,BD= CD,∠MDB= ∠NDC.∴△MDB≌△NDC (ASA)∴DM = DN,()3DM = DN成立,理由如下:连接BD,由(1) 知BD⊥AC,BD= AD,∴∠BAD=∠ABD = 45°,∴∠MBD=∠NCD= 45°,∵BD⊥AC,∴∠MDB +∠NDB = 90°,又∠NDC +∠NDB = 90°,∴∠MDB=∠NDC,在△MDB和△NDC中∵∠MBD=∠NCD,BD= CD,∠MDB= ∠NDC.∴△MDB≌△NCD (ASA),∴DM = DN.【点睛】本题考查了利用ASA 求三角形全等,还运用了全等三角形的性质,等腰直角三角形的性质,及等腰三角形三线合一定理,勾股定理和面积公式的利用等知识.25.(1)m=5;(2)()3,2A -【分析】(1)根据点A 在x 轴上可知点A 的纵坐标为0,从而可以解答本题;(2)点A 在第四象限,并且m 为整数,从而可以求得点A 的坐标;【详解】解:根据题意,∵点()39,210A m m --在x 轴上,∴2100m -=,解得:5m =;()2点()39,210A m m --在第四象限.390,2100,m m ->⎧∴⎨-<⎩①② 解不等式①得3m >,解不等式②得5m <,所以,m 的取值范围是:35m << m 为整数4m ∴=,()3,2A ∴-;【点睛】坐标与图形的性质,解题的关键是明确每一问提供的信息,能正确知道与坐标之间的关系,灵活变化,求出所求问题的答案.26.(1)见解析;(2)见解析【分析】(1)根据几何语言画出对应的几何图形;(2)利用对称的性质得AB 垂直平分CD ,则BC =BD ,AC =AD ,利用等腰三角形的性质得∠ADE =∠ACB ,再利用AB =AC 得到∠ACB =∠ABF ,AD =AB ,所以∠ABF =∠ADE ,然后证明△ABF ≌△ADE ,从而得到结论.【详解】(1)解:如图,(2)证明:连接AD ,如图,∵点C ,D 关于直线AB 对称,∴AB 垂直平分CD ,∴BC BD =,AC AD =,∴ADE ACB ∠=∠,∵AB AC =,∴ACB ABF ∠=∠,AD AB =,∴ABF ADE =∠∠,在ABF 和ADE 中,AB AD ABF ADE BF DE =⎧⎪∠=∠⎨⎪=⎩,∴()ABF ADE SAS ≅△△,∴AF AE =.【点睛】本题考查了作图-轴对称变换,等腰三角形的性质,全等三角形的判定与性质,线段垂直平分线的判定与性质,熟练掌握各知识点是解答本题的关键.。
一、选择题1.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( ) A .众数是5B .中位数是5C .平均数是6D .方差是3.62.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是20.56S =甲,20.45S =乙,20.50S =丙,20.60S =丁;则成绩最稳定的是( )A .甲B .乙C .丙D .丁3.给出下列命题:①三角形的三条高相交于一点;②如果一组数据中有一个数据变动,那么它的平均数、众数、中位数都随之变动; ③如果不等式()33m x m ->-的解集为1x <,那么3m <;④如果三角形的一个外角等于与它相邻的一个内角则这个三角形是直角三角形; 其中正确的命题有( ) A .1个B .2个C .3个D .4个4.随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学八年级六班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是( )A .20,20B .30,20C .30,30D .20,305.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( ) A .22y x =--B .22y x =-+C .27y x =--D .27y x =-+6.如图,一次函数443y x =-的图像与x 轴,y 轴分别交于点A ,点B ,过点A 作直线l 将ABO ∆分成周长相等的两部分,则直线l 的函数表达式为( )A .26y x =-B .23y x =-C .1322y x =- D .3y x =-7.下列说法正确的是( )①从开始观察时起,50天后该植物停止长高;②直线AC 的函数表达式为165y x =+ ③第40天,该植物的高度为14厘米; ④该植物最高为15厘米A .①②③B .②④C .②③D .①②③④8.直线1y x 42=-与x 轴、y 轴分别相交于A ,B 两点,若点()1,2M m m +-在AOB 内部,则m 的取值范围为( ) A .1433m <<B .17m -<<C .703m <<D .1123m <<9.如图,在平行四边形ABCD 中,100B D ︒∠+∠=,则B 等于( )A .50°B .65°C .100°D .130°10.下列计算中,正确的是( )A .235+=B .235⨯=C .2(23)=12D .633÷= 11.下列结论中,菱形具有而矩形不一定具有的性质是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .对边相等且平行12.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地 送行二步与人齐,五尺人高曾记. 仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几.”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离AB 长度为1尺.将它往前水平推送10尺时,即A C '=10尺,则此时秋千的踏板离地距离A D '就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,则绳索OA 长为( )A .13.5尺B .14尺C .14.5尺D .15尺二、填空题13.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是________.14.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如下表: 每天使用零花钱(单位:元) 1 2 3 4 5 人 数25896则这30名同学每天使用的零花钱的中位数是_____元.15.如图,矩形ABCO 的对角线AC 、OB 交于点1A ,直线AC 的解析式33y x =-+,过点1A 作11AO OC ⊥于1O ,过点1A 作11A B BC ⊥于1B ,得到第二个矩形111A B CO ,1A C 、11O B 交于点2A ,过点2A 作22A O OC ⊥于2O ,过点2A 作22A B BC ⊥于2B ,得到第三个矩形222A B CO ,…,依此类推,这样作的第n 个矩形对角线交点n A 的坐标为____________________.16.如图,直线y =﹣43x +8与x 轴、y 轴分别交于点A 、B ,∠BAO 的角平分线与y 轴交于点M ,则OM 的长为_____.17.如图,直线a 过正方形ABCD 的顶点A ,点B 、D 到直线a 的距离分别为1、3,则正方形的边长为_______.18.如图,Rt ABC △中,90,5∠=︒=B AB ,D 为AC 的中点, 6.5=BD ,则BC 的长为__________.19.26a +与33-a 可以等于___________.(写出一个即可)20.“东方之门”座落于美丽的金鸡湖畔,高度约为301.8米,是苏州的地标建筑,被评为“中国最高的空中苏式园林”.现以现代大道所在的直线为x 轴,星海街所在的直线为y 轴,建立如图所示的平面直角坐标系(1个单位长度表示的实际距离为100米),东方之门的坐标为4(6,)A -,小明所在位置的坐标为(2,2)B -,则小明与东方之门的实际距离为___________米.三、解答题21.英语老师对八年级某班级全班同学进行口语测试,并按10分制评分,将评分结果制成了如图两幅统计图(不完整).请根据图表信息,解答下列问题:(1)求该班级学生总人数,并将条形统计图补充完整.(2)求该班学生口语测试所得分数的平均数、中位数、众数.(3)若全年级共有260人,请估计得分在9分及以上的同学有多少人?22.某中学七、八年级各选10名同学参加“创全国文明城市”知识竞赛,计分10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或9分以上为优秀,这次竞赛后,七、八年级两支代表队成绩分布的条形统计图和成绩分析表如下,其中七年级代表队得6分、10分选手人数分别为a,b.队列平均分中位数方差合格率优秀率七年级 6.7m 3.4190%n八年级7.17.5 1.6980%10%(1)根据图表中的数据,求a,b的值.(2)直接写出表中的m = ,n = .(3)你是八年级学生,请你给出两条支持八年级队成绩好的理由.23.已知一次函数y kx b =+,在0x =时的值为4,在1x =-时的值为2, (1)求一次函数的表达式.(2)求图象与x 轴的交点A 的坐标,与y 轴交点B 的坐标; (3)在(2)的条件下,求出△AOB 的面积;24.正方形ABCD 中,对角线AC 、BD 交于点O ,E 为BD 上一点,延长AE 到点N ,使AE EN =,连接CN 、CE .(1)求证:CAN △为直角三角形.(2)若45AN =,正方形的边长为6,求BE 的长.25.计算:(1)113(4)2484π-⎛⎫----÷+ ⎪⎝⎭(2)42287777++⨯26.在ABC 中,AB c =,BC a =,AC b =.如图1,若90C ∠=︒时,根据勾股定理有222+=a b c .(1)如图2,当ABC 为锐角三角形时,类比勾股定理,判断22a b +与2c 的大小关系,并证明;(2)如图3,当ABC 为钝角三角形时,类比勾股定理,判断22a b +与2c 的大小关系,并证明;(3)如图4,一块四边形的试验田ABCD ,已知90B ∠=︒,80AB =米,60BC =米,90CD =米,110AD =米,求这块试验田的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可. 【详解】A 、数据中5出现2次,所以众数为5,此选项正确;B 、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C 、平均数为(7+5+3+5+10)÷5=6,此选项正确;D 、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误; 故选D . 【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.2.B解析:B 【分析】直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可. 【详解】解:∵20.56S =甲,20.45S =乙,20.50S 丙=,20.60S =丁, ∴2S 乙<2S 丙<2S 甲<2S 丁,∴成绩最稳定的是乙. 故选B . 【点睛】此题主要考查了方差,正确理解方差的意义是解题关键.3.B解析:B 【分析】根据三角形的高、平均数、众数、中位数的定义、不等式的基本性质和邻补角的定义逐一判断即可. 【详解】①钝角三角形的三条高不相交(三条高所在的直线交于一点),故错误;②如果一组数据中有一个数据变动,那么它的平均数会随之变动,但众数和中位数不一定变动,故错误;③如果不等式()33m x m ->-的解集为1x <,可得m -3<0,那么3m <,故正确;④如果三角形的一个外角等于与它相邻的一个内角,根据邻补角的定义可得这个外角和与它相邻的一个内角之和为180°, ∴三角形的这个内角为180°÷2=90° 则这个三角形是直角三角形,故正确. 综上:正确的有2个 故选B . 【点睛】此题考查的是三角形的相关性质、定义、数据的平均数、众数、中位数的定义和不等式的基本性质,掌握三角形的相关性质、定义、数据的平均数、众数、中位数的定义和不等式的基本性质是解决此题的关键.4.C解析:C 【解析】 【分析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数. 【详解】解:30元的人数为20人,最多,则众数为30, 中间两个数分别为30和30,则中位数是30, 故选:C . 【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握.5.C解析:C 【分析】可设直线l 的解析式为y=-2x+c ,由题意可得关于a 、b 、c 的一个方程组,通过方程组消去a 、b 后可以得到c 的值,从而得到直线l 的解析式. 【详解】解:设直线l 的解析式为y=-2x+c ,则由题意可得:227a c b a b -+=⎧⎨+=-⎩①②, ①+②可得:b+c=b-7, ∴c=-7,∴直线l 的解析式为y=-2x-7, 故选C . 【点睛】本题考查用待定系数法求一次函数的解析式,设定一次函数解析式后再由题意得到含有待定系数的方程或方程组并由方程或方程组得到待定系数的值是解题关键.6.D解析:D 【分析】设直线l 与y 轴交于点C ,由已知条件求出点C 的坐标后利用待定系数法可以得到直线l 的函数表达式. 【详解】解:分别令x=0和y=0可得B 、A 的坐标为(0,-4)、(3,0), ∴AB=22345+=,则三角形OAB 的周长为12 如图,设直线l 与y 轴交于点C (0,c ),则OA+OC=6,即3-c=6, ∴c=-3,即C 的坐标为(0,-3),设l 的函数表达式为y=kx+b ,由l 经过A 、C 可得:033k b b =+⎧⎨-=⎩,解之得: 13k b =⎧⎨=-⎩, ∴l 的函数表达式为:y=x-3, 故选D . 【点睛】本题考查一次函数的应用,熟练掌握一次函数的图象、勾股定理的应用及待定系数法求解析式的方法是解题关键.7.A解析:A 【分析】①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高; ②设直线AC 的解析式为y =kx +b (k ≠0),然后利用待定系数法求出直线AC 线段的解析式,③把x =40代入②的结论进行计算即可得解; ④把x =50代入②的结论进行计算即可得解. 【详解】 解:∵CD ∥x 轴,∴从第50天开始植物的高度不变, 故①的说法正确;设直线AC 的解析式为y =kx +b (k ≠0), ∵经过点A (0,6),B (30,12),∴30126k b b +=⎧⎨=⎩,解得156k b ⎧=⎪⎨⎪=⎩,所以,直线AC 的解析式为165y x =+(0≤x ≤50), 故②的结论正确; 当x =40时,14065y =⨯+=14, 即第40天,该植物的高度为14厘米; 故③的说法正确; 当x =50时,15065y =⨯+=16, 即第50天,该植物的高度为16厘米; 故④的说法错误.综上所述,正确的是①②③. 故选:A . 【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.8.D解析:D 【分析】 先求出直线1y x 42=-与x 轴、y 轴分别相交于A ,B 坐标,由点()1,2M m m +-在AOB 内部,列出不等式组0184201(1)22m m m m ⎧⎪<+<⎪-<-<⎨⎪⎪+<-⎩①②③分别解每一个不等式,在数轴上表示解集,得出不等式组的解集即可. 【详解】解:直线1y x 42=-与x 轴、y 轴分别相交于A ,B 两点, 当x=0,y=-4,B(0,-4),当y=0时,=-1x 402,x=8,A (8,0),点()1,2M m m +-在AOB 内部, 满足不等式组0184201(1)22m m m m ⎧⎪<+<⎪-<-<⎨⎪⎪+<-⎩①②③,解不等式①得:-17m <<,解不等式②得:26m <<,解不等式③得:113m <, 在数轴上表示不等式①、②、③的解集,不等式组的解集为:1123m <<. 故选择:D .【点睛】 本题考查一次函数,不等式组的解法,掌握一次函数,不等式组的解法,关键是根据点M 在△AOB 内列出不等式组是解题关键.9.A解析:A【分析】根据平行四边形的对角相等求出∠B 即可得解.【详解】解:□ABCD 中,∠B =∠D ,∵∠B +∠D =100°,∴∠B =12×100°=50°, 故选:A .【点睛】本题考查了平行四边形的性质,主要利用了平行四边形的对角相等是基础题.10.C解析:C【分析】根据二次根式加法法则、乘法法则、除法法则依次计算得到结果,即可作出判断.【详解】A、原式不能合并,不符合题意;B、原式==C、原式12=,符合题意;D、原式.故选:C.【点评】此题考查了二次根式的乘除法,以及二次根式的加减法,熟练掌握运算法则是解本题的关键.11.C解析:C【分析】根据矩形和菱形的性质即可得出答案.【详解】解:A:因为矩形的对角线相等,故此选项不符合题意;B:因为菱形和矩形的对角线都互相平分,故此选项不符合题意;C:因为对角线互相垂直是菱形具有的性质,故此选项符合题意;D:因为矩形和菱形的对边都相等且平分,故此选项不符合题意;故选:C.【点睛】本题考查矩形和菱形的性质,掌握矩形和菱形性质的区别是解题关键.12.C解析:C【分析】设绳索有x尺长,此时绳索长,向前推出的10尺,和秋千的上端为端点,垂直地面的线可构成直角三角形,根据勾股定理可求解.【详解】解:设绳索有x尺长,则102+(x+1-5)2=x2,解得:x=14.5.故绳索长14.5尺.故选:C.【点睛】本题考查勾股定理的应用,理解题意能力,关键是能构造出直角三角形,用勾股定理来解.二、填空题13.2【分析】根据方差是用来衡量一组数据波动大小的量每个数都加3所以波动不会变方差不变【详解】解:设abc的平均数是d所以方差不变故答案为:2【点睛】本题主要考查了方差的公式解题的关键是当数据都加上一个 解析:2【分析】根据方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变.【详解】解:设a 、b 、c 的平均数是d,()222211S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦ , ()222221S =33(33)(33)23a d b d c d ⎡⎤+-+++-+++-+=⎢⎥⎣⎦ , ()222221S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦, 所以方差不变.故答案为:2.【点睛】本题主要考查了方差的公式,解题的关键是当数据都加上一个数时,方差不变. 14.35【解析】分析:利用众数的定义可以确定众数在第三组由于张华随机调查了20名同学根据表格数据可以知道中位数是按从小到大排序第15个与第16个数的平均数详解:∵4出现了9次它的次数最多∴众数为4∵张华解析:3.5【解析】分析: 利用众数的定义可以确定众数在第三组,由于张华随机调查了20名同学,根据表格数据可以知道中位数是按从小到大排序,第15个与第16个数的平均数. 详解: ∵4出现了9次,它的次数最多,∴众数为4.∵张华随机调查了30名同学,∴根据表格数据可以知道中位数=(3+4)÷2=3.5,即中位数为3.5.故答案为:3.5.点睛: 本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.15.【分析】由矩形的性质和一次函数的性质先求出然后矩形的性质和三角形的中位线定理求出和根据规律即可得到和从而求出点的坐标【详解】解:根据题意∵直线的解析式为令x=0则;令y=0则∴由矩形的性质则点∴;同解析:11,22n n ⎛⎫- ⎪ ⎪⎝⎭【分析】由矩形的性质和一次函数的性质,先求出OA =1OC =,然后矩形的性质和三角形的中位线定理,求出1O C 和11A O ,根据规律,即可得到n O C 和n n A O ,从而求出点n A 的坐标.【详解】解:根据题意,∵直线AC 的解析式为y =+令x=0,则y =y=0,则1x =, ∴OA =1OC =, 由矩形的性质,则点112AC AC =,∴11122O C OC ==,1112AO AO ==同理可求:221111()242O C O C ===,2221111()22A O AO ===; ……111()22n n n O C O C -==,11()222n n n n n n A O A O ===, ∴111()122n n n n OO OC O C =-=-=-,∴点n A 的坐标为:11,22n n ⎛- ⎝⎭;故答案为:11,22n n ⎛- ⎝⎭.【点睛】本题考查了矩形的性质,一次函数的性质,三角形的中位线定理,坐标与图形的规律,解题的关键是熟练掌握所学的知识,正确的找到点的规律进行解题.16.3【分析】过点M 作MH ⊥AB 于H 利用AAS 可证△AHM ≌△AOM 则由全等三角形的性质可得AH =AOHM =OM 根据一次函数的解析式可分别求出直线y =﹣x+8与两坐标轴的交点坐标并得OAOB 的长由勾股定解析:3【分析】过点M 作MH ⊥AB 于H ,利用AAS 可证△AHM ≌△AOM ,则由全等三角形的性质可得AH =AO ,HM =OM .根据一次函数的解析式可分别求出直线y =﹣43x +8与两坐标轴的交点坐标,并得OA 、OB 的长,由勾股定理可求AB .最后在Rt △BMH 中利用勾股定理即可求解OM 的长.【详解】解:如图,过点M 作MH ⊥AB 于H ,∴∠BHM =∠AHM =90°=∠AOM .∵AM 平分∠BOA ,∴∠HAM =∠OAM .在△AHM 和△AOM 中,AHM AOM HAM OAM AM AM ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AHM ≌△AOM (AAS ).∴AH =AO ,HM =OM .将x =0代入y =﹣43x +8中,解得y =8, 将y =0代入y =﹣43x +8中,解得x =6, ∴A (6,0),B (0,8).即OA =6,OB =8.∴AB 2268+=10.∵AH =AO =6,∴BH =AB -AH =4.设HM =OM =x ,则MB =8-x ,在Rt △BMH 中,BH 2+HM 2=MB 2,即42+x 2=(8-x )2,解得x =3.∴OM =3.故答案为:3.【点睛】此题考查了一次函数的图象与性质、全等三角形的判定与性质等知识,熟练掌握一次函数的性质并能利用辅助线构造全等三角形与直角三角形模型是解本题的关键.17.【分析】先由正方形的性质可知再证明Rt △AFD ≌Rt △BEA 再由全等三角形的性质可得;最后在在Rt △BEA 中由勾股定理得:即得本题答案【详解】解:在正方形中;∵∴;∵∴;在Rt △AFD 和Rt △BEA【分析】先由正方形的性质可知DA AB =,再证明Rt △AFD ≌Rt △BEA ,再由全等三角形的性质可得3DF AE ==,1AF BE ==;最后在在Rt △BEA中,由勾股定理得:AB ==【详解】解:在正方形ABCD 中,AD AB =;∵DF AF ⊥,BE AE ⊥,∴90AFD AEB ∠=∠=︒,90ADF DAF ∠+∠=︒;∵90DAF BAE ∠+∠=︒,∴ADF BAE =∠∠;在Rt △AFD 和Rt △BEA 中,AFD AEB ADF BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴Rt △AFD ≌Rt △BEA (AAS ),∴3DF AE ==,1AF BE ==;在Rt △BEA 中,由勾股定理得:AB ===.【点睛】本题主要考查正方形的性质,三角形全等的性质与判定以及勾股定理的知识.18.12【分析】根据直角三角形斜边上的中线等于斜边的一半可求出再根据勾股定理求解即可【详解】解:∵D 为的中点∴∴故答案是:12【点睛】考查了勾股定理和直角三角形斜边上的中线熟悉相关性质是解题的关键解析:12.【分析】根据直角三角形斜边上的中线等于斜边的一半,可求出AC ,再根据勾股定理求解即可.【详解】解:∵90B ∠=︒,D 为AC 的中点, 6.5=BD∴22 6.513AC BD ==⨯=,∴BC=,12故答案是:12.【点睛】考查了勾股定理和直角三角形斜边上的中线,熟悉相关性质是解题的关键.19.3(答案不唯一)【分析】根据同类二次根式的概念列式计算即可【详解】解:∵二次根式与是同类二次根式∴可设则∴解得故答案为:3(答案不唯一)【点睛】本题考查的是同类二次根式的概念把几个二次根式化为最简二解析:3(答案不唯一)【分析】根据同类二次根式的概念列式计算即可.【详解】解:∵与-∴==a+=,∴2612a=,解得3故答案为:3(答案不唯一).【点睛】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.20.【分析】运用勾股定理可求出平面直角坐标系中AB的长度再根据个单位长度表示的实际距离为米求出结果即可【详解】解:如图AC=6-(-2)=8BC=2-(-4)=6∴∴小明与东方之门的实际距离为10×10解析:1000【分析】运用勾股定理可求出平面直角坐标系中AB的长度,再根据1个单位长度表示的实际距离为100米求出结果即可.【详解】解:如图,AC=6-(-2)=8,BC=2-(-4)=6∴2222AB BC AC=+=6+8=10∴小明与东方之门的实际距离为10×100=1000(米)故答案为:1000.【点睛】此题主要考查了勾股定理的应用,构造直角三角形运用勾股定理是解答此题的关键.三、解答题21.(1)40人,画图见解析;(2)平均数:8.9分,中位数:9分,众数:9分;(3)182人【分析】(1)用10分的人数÷10分人数所占的百分比,即可得到总人数,根据题意将条形统计图补充完整;(2)根据平均分、中位数、众数的定义即可得到结论;(3)用样本估计总体即可.【详解】÷=(人),(1)该班级学生总人数为:1230%40---=(人),补全条形统计图如下图所示.得分为9分的同学人数为:40481216(2)该班学生口语测试所得分数的平均分()1478816912108.940=⨯+⨯+⨯+⨯=(分), 一共有40人,则中位数为9992+=(分), 9分人数最多,则众数为9(分); (3)9分以上的占161274010+=,则726018210⨯=(人), 故9分以上的共有182人.【点睛】 本题考查的是条形统计图和扇形统计图的综合运用,以及用样本估计总体.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)51a b =⎧⎨=⎩;(2)6m = 20%n =;(3)详见解析. 【分析】(1)根据七年级代表队的总人数为10人以及七年级的成绩的平均分为6.7,列方程组可求出a 与b 的值;(2)根据(1)a 与b 的值,确定出m 与n 的值即可;(3)从中位数,平均数,方差等角度考虑,给出两条支持八年级队成绩好的理由即可.【详解】解:(1)由题意,得 101111 6.73167181911010a b a b +=----⎧⎪=⨯++⨯+⨯+⨯+⎨⎪⎩,即:661040a b a b +=⎧⎨+=⎩,解得:51a b =⎧⎨=⎩. (2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6; 优秀率为111=105+=20%,即n=20%; (3)答案不唯一.如:支持八年级队成绩好的理由有: ①八年级队的平均分比七年级队高,说明总成绩八年级好;②八年级队中位数是7.5,而七年级队中位数是6,说明八年级队半数以上的学生比七年级队半数以上成绩好【点睛】此题考查了条形统计图,以及中位数,平均数,以及方差,弄清概念是解题的关键.23.(1)24y x =+;(2)A (-2,0)B (0)4,;(3)4【分析】(1)把两组x 和y 值代入解析式,求出k 和b 值,即可得到结论;(2)利用函数解析式分别代入x=0和y=0的情况就可求出A 、B 两点坐标;(3)通过A 、B 两点坐标即可算出直角三角形AOB 的面积.【详解】(1)把0x =,4y =和1x =-,2y =代入y kx b =+得42b k b =⎧⎨-+=⎩解得24k b =⎧⎨=⎩所以这个一次函数的表达式为24y x =+.(2)把0y =代入24y x =+,得:2x =-则A 点坐标为(20)-,把x=0代入24y x =+,得y=4,则B 点坐标为(0)4,; (3)根据题意作函数大致图像:由图可知:2OA =,4OB =, 所以11 24422OAB S OA O B =⋅=⨯⨯=△ 【点睛】本题考查一次函数解析式求法和一次函数图象上点的坐标特点,正确求出一次函数与x 轴和y 轴的交点是解题的关键.24.(1)见解析;(2)42BE =【分析】(1)由四边形ABCD 是正方形,易证得△ABE ≌△CBE ,继而证得AE=CE ,再由AE=CE ,AE=EN ,即可证得∠ACN=90°,则可判定△CAN 为直角三角形;(2)由56,易求得CN 的长,然后由三角形中位线的性质,求得OE 的长,继而求得答案.【详解】解:(1)证明:∵四边形ABCD 是正方形,∴∠ABD=∠CBD=45°,AB=CB ,在△ABE 和△CBE 中,AB CB ABE CBE BE BE ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△CBE (SAS ),∴AE=CE ;∵AE=CE ,AE=EN ,∴∠EAC=∠ECA ,CE=EN ,∴∠ECN=∠N ,∵∠EAC+∠ECA+∠ECN+∠N=180°,∴∠ACE+∠ECN=90°,即∠ACN=90°,∴△CAN 为直角三角形;(2)∵正方形的边长为6,∴AC BD ==∵90,ACN AN ∠=︒=∴CN ==∵,OA OC AE EN ==,∴12OE CN ==∵12OB BD ==∴BE OB OE =+=【点睛】此题考查了正方形的性质、全等三角形的判定与性质、直角三角形的判定以及勾股定理等知识.注意利用勾股定理求得各线段的长是关键.25.(1)3;(2)2.【分析】(1)先计算绝对值、零指数幂、负整数指数幂、二次根式的除法,然后再计算加减运算,即可得到答案;(2)先由二次根式的性质进行化简,然后计算乘法运算和加法运算即可.【详解】解:(1)101(4)4π-⎛⎫-- ⎪⎝⎭=14=3;(2)=47772++=1172+.【点睛】本题考查了二次根式的性质,二次根式的混合运算,零指数幂,负整数指数幂,解题的关键是熟练掌握运算法则进行解题.26.(1)猜想:222a b c +> ,证明见解析;(2)猜想:222+b a c <,证明见解析;(3)四边形ABCD 的面积是()240030002+米2.【分析】(1)先作高线如图2,过点A 作AD BC ⊥于点D ,构造两个直角三角形,设CD x =,则BD a x =-,由勾股定理和AD 构造等式2222()b x c a x -=-- ,利用放缩法可得 222b a c +>(2)先作高线如图3,过点A 作AD BC ⊥,交BC 的延长线于点D ,构造两个直角三角形设CD y =,则BD a y =+,利用勾股定得2222()b y c a y -=-+,整理得,2222b a c ay +=-利用放缩法222b a c +<(3)如图4,连接AC .过点D 作DE AC ⊥于点E ,由勾股定理求出100AC = 设AE x =,则EC=100-x ,由勾股定理构造方程222211090(100)x x -=--,解方程的70x =,再求出DE ,利用分割法求面即可【详解】解:(1)猜想:222a b c +> ,证明:如图2,过点A 作AD BC ⊥于点D ,设CD x =,则BD a x =-,在Rt ACD △中,有222b x AD -=,在Rt ABD △中,有222()c a x AD --= ,∴2222()b x c a x -=-- ,解之:2222b a c ax +=+,∵a b c x ,,,均为正数,∴222b a c +> ;(2)猜想:222b a c +<证明:如图3,过点A 作AD BC ⊥,交BC 的延长线于点D ,设CD y =,则BD a y =+,在Rt ACD △中,有222b y AD -=,在Rt ABD △中,有222()c a y AD -+= , ∴2222()b y c a y -=-+,解之:2222b a c ay +=-,∵a b c y ,,,均为正数,∴222b a c +< ;(3)如图4,连接AC .在Rt ABC 中,有222AC AB BC =+,∴222806010000AC =+=,∵0AC >,∴100AC = ,过点D 作DE AC ⊥于点E ,设AE x =,则EC=100-x ,在Rt ADE 中,有222AD AE DE -=,即222110x DE -=,在Rt CDE △中,有222CD CE DE -=,即22290(100)x DE --= ,∴222211090(100)x x -=--,解之:70x =,在Rt ADE 中,有2222211070DE AD AE =-=-,∴DE=602±∴DE=602, ∴1122ABC ADC ABCD S SS AB BC AC DE =+=⨯⨯+⨯⨯四边形, =11608010060222=⨯⨯+⨯⨯ =240030002+2),∴四边形ABCD 的面积是(240030002+米2.【点睛】本题考查作高线,勾股定理,利用勾股定理推出锐角三角形,钝角三角形结论,用分割法求四边形面积,掌握高线最烦,利用勾股定理构造方程,判读锐角三角形与钝角三角形,利用分割法四边形求面是解题关键.。
鲁教版八年级下册数学期末试题一、选择题共12小题,每小题3分,满分36分1.下列说法错误的是A.42的算术平方根为4B.2的算术平方根为C. 的算术平方根是D. 的算术平方根是92.下列各数:3.14159,0,0.3131131113…相邻两个3之间1的个数逐次加1,﹣,﹣,其中无理数有A.1个B.2个C.3个D.4个3.若代数式有意义,则实数x的取值范围是A.x≥﹣1B.x≥﹣1且x≠3C.x>﹣1D.x>﹣1且x≠34.下列各组数的三个数,可作为三边长构成直角三角形的是A.1,2,3B.32,42,52C. ,,D. ,,5.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是A.AB=CD,AD=BC,AC=BDB.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BDD.∠A=∠B=90°,AC=BD6.不等式﹣4x+6≥﹣3x+5的解集在数轴上表示正确的是A. B. C. D.7.若点m,n在函数y=2x+1的图象上,则2m﹣n的值是A.2B.﹣2C.1D.﹣18.如图,函数y=2x和y=ax+4的图象相交于点Am,3,则不等式2xA.x<B.x<3C.x>D.x>39.如图所示,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=2,那么菱形ABCD的周长是A.4B.8C.12D.1610.如图是一次函数y=ax﹣b的图象,则下列判断正确的是A.a>0,b<0B.a>0,b>0C.a<0,b<0D.a<0,b>011.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为1,2,则使y1≥y2的x的取值范围为A.x≥1B.x≥2C.x≤1D.x≤212.如图,已知P为正方形ABCD外的一点,PA=1,PB=2,将△ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,则∠BP′C的度数为A.105°B.112.5°C.120°D.135°二、填空题共5小题,每小题3分,满分15分13.一个实数的两个平方根分别是m﹣5和3m+9,则这个实数是.14.通过平移把点A1,﹣3移到点A13,0,按同样的平移方式把点P2,3移到P1,则点P1的坐标是.15.顺次连接平行四边形各边中点所形成的四边形是.16.已知: +|b﹣1|=0,那么a+b2021的值为.17.如图,正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线BF交于P,则∠BPD的度数为.三、解答题共8小题,满分69分18.化简计算:1 ﹣15 + + ;2 × ﹣4 ×1﹣ 2.19.1解不等式:,并求出它的正整数解.2解不等式组: .20.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A﹣2,2,B0,5,C0,2.1将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.2平移△A BC,使点A的对应点A2坐标为﹣2,﹣6,请画出平移后对应的△A2B2C2的图形.3若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.21.如图,在矩形ABCD中,E是BC上一点,且AE=BC,DF⊥AE,垂足是F,连接DE.求证:1DF=AB;2DE是∠FDC的平分线.22.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.1求该一次函数的解析式;2判定点C4,﹣2是否在该函数图象上?说明理由;3若该一次函数的图象与x轴交于D点,求△BOD的面积.23.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张x≥9.1分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;2购买的椅子至少多少张时,到乙厂家购买更划算?24.如图,在正方形ABCD中,E是边AD上一点,将△ABE绕点A按逆时针方向旋转90°到△ADF的位置.已知AF=5,BE=131求DE的长度;2BE与DF是否垂直?说明你的理由.25.已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是它们离各自出发地的距离y千米与行驶时间x小时之间的函数图象.1求甲车离出发地的距离y甲千米与行驶时间x小时之间的函数关系式,并写出自变量的取值范围;2它们出发小时时,离各自出发地的距离相等,求乙车离出发地的距离y乙千米与行驶时间x小时之间的函数关系式,并写出自变量的取值范围;3在2的条件下,求它们在行驶的过程中相遇的时间.一、选择题共12小题,每小题3分,满分36分1.下列说法错误的是A.42的算术平方根为4B.2的算术平方根为C. 的算术平方根是D. 的算术平方根是9【考点】算术平方根.【分析】依据有理数的乘方以及算术平方根的性质求解即可.【解答】解:A、42=16,16的算术平方根是4,故A正确,与要求不符;B、2的算术平方根是,故B正确,与要求不符;C、 = =3,3的算术平方根是,故C正确,与要求不符;D、 =9,9的算术平方根是3,故D错误,与要求相符.故选:D.2.下列各数:3.14159,0,0.3131131113…相邻两个3之间1的个数逐次加1,﹣,﹣,其中无理数有A.1个B.2个C.3个D.4个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0,0.3131131113…相邻两个3之间1的个数逐次加1是无理数,故选:A.3.若代数式有意义,则实数x的取值范围是A.x≥﹣1B.x≥﹣1且x≠3C.x>﹣1D.x>﹣1且x≠3【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+1≥0且x﹣3≠0,解得:x≥﹣1且x≠3.故选:B.4.下列各组数的三个数,可作为三边长构成直角三角形的是A.1,2,3B.32,42,52C. ,,D. ,,【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.只要判断两个较小的数的平方和是否等于最大数的平方即可判断.【解答】解:A、∵12+22=5≠32,∴以这三个数为长度的线段不能构成直角三角形,故选项错误;B、∵322+422≠522 ,∴以这三个数为长度的线段不能构成直角三角形,故选项错误;C、∵ 2+ 2=5= 2,∴以这三个数为长度的线段,能构成直角三角形,故选项正确;D、∵ 2+ 2=7≠ 2,∴以这三个数为长度的线段不能构成直角三角形,故选项错误.故选:C.5.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是A.AB=CD,AD=BC,AC=BDB.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BDD.∠A=∠B=90°,AC=BD【考点】矩形的判定.【分析】由AB=CD,AD=BC,得出四边形ABCD是平行四边形,再由对角线相等即可得出A正确;由AO=CO,BO=DO,得出四边形ABCD是平行四边形,由∠A=90°即可得出B正确;由∠B+∠C=180°,得出AB∥DC,再证出AD∥BC,得出四边形ABCD是平行四边形,由对角线互相垂直得出四边形ABCD是菱形,C不正确;由∠A+∠B=180°,得出AD∥BC,由HL证明Rt△ABC≌Rt△BAD,得出BC=AD,证出四边形ABCD是平行四边形,由∠A=90°即可得出D正确.【解答】解:∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,又∵AC=BD,∴四边形ABCD是矩形,∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,又∵∠A=90°,∴四边形ABCD是矩形,∴B正确;∵∠B+∠C=180°,∴AB∥DC,∵∠A=∠C,∴∠B+∠A=180°,∴AD∥BC,∴四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形,∴C不正确;∵∠A=∠B=90°,∴∠A+∠B=180°,∴AD∥BC,如图所示:在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BADHL,∴BC=AD,∴四边形ABCD是平行四边形,又∵∠A=90°,∴四边形ABCD是矩形,故选:C.6.不等式﹣4x+6≥﹣3x+5的解集在数轴上表示正确的是A. B. C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】利用不等式的基本性质,将不等式移项合并同类项,系数化为1,再将解集在数轴上表示出来即可.【解答】解:移项得﹣4x+3x≥5﹣6,﹣x≥﹣1,x≤1.将解集在数轴上表示出来为:.故选:B.7.若点m,n在函数y=2x+1的图象上,则2m﹣n的值是A.2B.﹣2C.1D.﹣1【考点】一次函数图象上点的坐标特征.【分析】将点m,n代入函数y=2x+1,得到m和n的关系式,再代入2m﹣n即可解答.【解答】解:将点m,n代入函数y=2x+1得,n=2m+1,整理得,2m﹣n=﹣1.故选:D.8.如图,函数y=2x和y=ax+4的图象相交于点Am,3,则不等式2xA.x<B.x<3C.x>D.x>3【考点】一次函数与一元一次不等式.【分析】先根据函数y=2x和y=ax+4的图象相交于点Am,3,求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x< p="">【解答】解:∵函数y=2x和y=ax+4的图象相交于点Am,3,∴3=2m,m= ,∴点A的坐标是,3,∴不等式2x< p="">故选A.9.如图所示,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=2,那么菱形ABCD的周长是A.4B.8C.12D.16【考点】三角形中位线定理;菱形的性质.【分析】根据中位线定理求边长,再求ABCD的周长.【解答】解:由题意可知,EF是△ABC的中位线,有EF= BC.∴BC=2EF=2×2=4,那么ABCD的周长是4×4=16.故选:D.10.如图是一次函数y=ax﹣b的图象,则下列判断正确的是A.a>0,b<0B.a>0,b>0C.a<0,b<0D.a<0,b>0【考点】一次函数图象与系数的关系.【分析】根据一次函数的图象的增减性和与y轴的交点位置确定a和b的符号即可.【解答】解:观察图象知:图象呈上升趋势,且交y轴的负半轴,故a>0,﹣b>0,即:a>0,b<0,故选A.11.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为1,2,则使y1≥y2的x的取值范围为A.x≥1B.x≥2C.x≤1D.x≤2【考点】一次函数与一元一次不等式.【分析】在图中找到两函数图象的交点,根据一次函数图象的交点坐标与不等式组解集的关系即可作出判断.【解答】解:∵直线y1=k1x+a与y2=k2x+b的交点坐标为1,2,∴当x=1时,y1=y2=2;∴当y1≥y2时,x≥1.故选A.12.如图,已知P为正方形ABCD外的一点,PA=1,PB=2,将△ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,则∠BP′C的度数为A.105°B.112.5°C.120°D.135°【考点】旋转的性质.【分析】连结PP′,如图,先根据旋转的性质得BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,则可判断△PBP′为等腰直角三角形,于是有∠BPP′=45°,PP′= PB=2 ,然后根据勾股定理的逆定理证明△APP′为直角三角形,得到∠APP′=90°,所以∠BPA=∠BPP′+∠APP′=135°,则∠BP′C=135°.【解答】解:连结PP′,如图,∵四边形ABCD为正方形,∴∠ABC=90°,BA=BC,∴△ABP绕点B顺时针旋转90°得到△CBP′,∴BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,∴△PBP′为等腰直角三角形,∴∠BPP′=45°,PP′= PB=2 ,在△APP′中,∵PA=1,PP′=2 ,AP′=3,∴PA2+PP′2=AP′2,∴△APP′为直角三角形,∠APP′=90°,∴∠BPA=∠BPP′+∠APP′=45°+90°=135°,∴∠BP′C=135°.故选D.二、填空题共5小题,每小题3分,满分15分13.一个实数的两个平方根分别是m﹣5和3m+9,则这个实数是36 .【考点】平方根.【分析】先利用两个平方根的和等于零求出m的值,再求出这个数即可.【解答】解:m﹣5+3m+9=0,解得m=﹣1,所以m﹣1=﹣6,所以这个实数是﹣62=36,故答案为:36.14.通过平移把点A1,﹣3移到点A13,0,按同样的平移方式把点P2,3移到P1,则点P1的坐标是4,6 .【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:从点A到A1点的横坐标从1到3,说明是向右移动了3﹣1=2,纵坐标从﹣3到0,说明是向上移动了0﹣﹣3=3,那点P的横坐标加2,纵坐标加3即可得到点P1.则点P1的坐标是4,6.故答案填:4,6.15.顺次连接平行四边形各边中点所形成的四边形是平行四边形.【考点】中点四边形.【分析】可连接平行四边形的对角线,然后利用三角形中位线定理进行求解.【解答】解:如图;四边形ABCD是平行四边形,E、F、G、H分别是▱ABCD四边的中点.连接AC、BD;∵E、F是AB、BC的中点,∴EF是△ABC的中位线;∴EF∥AC;同理可证:GH∥AC∥EF,EH∥BD∥FG;∴四边形EFGH是平行四边形.故顺次连接平行四边形各边中点的图形为平行四边形.故答案为:平行四边形.16.已知: +|b﹣1|=0,那么a+b2021的值为 1 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质分别求出a、b的值,代入代数式计算即可.【解答】解:由题意得,a+2=0,b﹣1=0,解得,a=﹣2,b=1,则a+b2021=1,故答案为:1.17.如图,正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线BF交于P,则∠BPD的度数为112.5°.【考点】菱形的性质;正方形的性质.【分析】根据菱形的性质对角线平分每一组对角以及正方形性质得出,∠DBF=∠FBE=22.5°,进而利用三角形外角性质求出即可.【解答】解:∵正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线BF 交于P,∴∠DBC=∠BDC=45°,∠DBF=∠FBE=22.5°,∴∠BPD的度数为:∠PBC+∠BCP=90°+22.5°=112.5°.故答案为:112.5°.三、解答题共8小题,满分69分18.化简计算:1 ﹣15 + + ;2 × ﹣4 ×1﹣ 2.【考点】二次根式的混合运算.【分析】1先把各二次根式化为最简二次根式,然后合并即可;2先进行二次根式的乘法运算,然后去括号后合并即可.【解答】解:1原式=3 ﹣5 + +2= ;2原式= ﹣ 1﹣2 +2=2 ﹣3 +4=4﹣ .19.1解不等式:,并求出它的正整数解.2解不等式组: .【考点】解一元一次不等式组;解一元一次不等式;一元一次不等式的整数解.【分析】1先去分母,再去括号得到3x﹣6≤14﹣2x,接着移项、合并得5x≤20,然后把x的系数化为1得到不等式的解集,再写出解集中的正整数即可;2分别解两不等式得到x≤4和x>2,然后根据大小小大中间找确定不等式组的解集.【解答】解:1去分母得3x﹣2≤27﹣x,去括号得3x﹣6≤14﹣2x,移项得3x+2x≤14+6,合并得5x≤20,系数化为1得x≤4,所以不等式的正整数解为1、2、3、4;2 ,解①得x≤4,解②得x>2,所以不等式组的解集为2< p="">20.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A﹣2,2,B0,5,C0,2.1将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.2平移△ABC,使点A的对应点A2坐标为﹣2,﹣6,请画出平移后对应的△A2B2C2的图形.3若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.【考点】作图-旋转变换;作图-平移变换.【分析】1利用旋转的性质得出对应点坐标进而得出答案;2利用平移规律得出对应点位置,进而得出答案;3利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.【解答】解:1如图所示:△A1B1C即为所求;2如图所示:△A2B2C2即为所求;3旋转中心坐标0,﹣2.21.如图,在矩形ABCD中,E是BC上一点,且AE=BC,DF⊥AE,垂足是F,连接DE.求证:1DF=AB;2DE是∠FDC的平分线.【考点】矩形的性质;全等三角形的判定与性质;角平分线的性质.【分析】1由矩形的性质得出AD=BC,AB=DC,AD∥BC,∠B=∠C=90°,得出∠DAF=∠AEB,证出AD=AE,由AAS证明△ADF≌△EAB,即可得出结论;2由HL证明Rt△DEF≌Rt△DEC,得出对应角相等∠EDF=∠EDC,即可得出结论.【解答】证明:1∵四边形ABCD是矩形,∴AD=BC,AB=DC,AD∥BC,∠B=∠C=90°,∴∠DAF=∠AEB,∵AE=BC,∴AD=AE,∵DF⊥AE,∴∠AFD=∠DFE=90°,∴∠AFD=∠B,在△ADF和△EAB中,,∴△ADF≌△EABAAS,∴DF=AB;2∵DF=AB,AB=DC,∴DF=DC,在Rt△DEF和Rt△DEC中,,∴Rt△DEF≌Rt△DECHL,∴∠EDF=∠EDC,∴DE是∠FDC的平分线.22.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B. 1求该一次函数的解析式;2判定点C4,﹣2是否在该函数图象上?说明理由;3若该一次函数的图象与x轴交于D点,求△BOD的面积.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】1首先求得B的坐标,然后利用待定系数法即可求得函数的解析式; 2把C的坐标代入一次函数的解析式进行检验即可;3首先求得D的坐标,然后利用三角形的面积公式求解.【解答】解:1在y=2x中,令x=1,解得y=2,则B的坐标是1,2,设一次函数的解析式是y=kx+b,则,解得: .则一次函数的解析式是y=﹣x+3;2当a=4时,y=﹣1,则C4,﹣2不在函数的图象上;3一次函数的解析式y=﹣x+3中令y=0,解得:x=3,则D的坐标是3,0.则S△BOD= OD×2= ×3×2=3.23.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张x≥9.1分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;2购买的椅子至少多少张时,到乙厂家购买更划算?【考点】一元一次不等式的应用.【分析】1根据甲乙两厂家的优惠方式,可表示出购买桌椅所需的金额;2令甲厂家的花费大于乙厂家的花费,解出不等式,求解即可确定答案.【解答】解:1根据甲、乙两个厂家推出各自销售的优惠方案:甲厂家所需金额为:3×800+80x﹣9=1680+80x;乙厂家所需金额为:3×800+80x×0.8=1920+64x;2由题意,得:1680+80x≥1920+64x,解得:x≥15.答:购买的椅子至少15张时,到乙厂家购买更划算.24.如图,在正方形ABCD中,E是边AD上一点,将△ABE绕点A按逆时针方向旋转90°到△ADF的位置.已知AF=5,BE=131求DE的长度;2BE与DF是否垂直?说明你的理由.【考点】旋转的性质;正方形的性质.【分析】1根据旋转的性质得DF=BE=13,AE=AF=5,再在Rt△ADF中利用勾股定理可计算出AD=12,所以DE=AD﹣AE=7;2延长BE交DF于H,根据旋转的性质得∠ABE=∠ADF,由于∠ADF+∠F=90°,则∠ABE+∠F=90°,根据三角形内角和定理可计算出∠FHB=90°,于是可判断BH⊥DF.【解答】解:1∵△ABE绕点A按逆时针方向旋转90°得到△ADF,∴DF=BE=13,AE=AF=5,在Rt△ADF中,∵AF=3,DF=13,∴AD= =12,∴DE=AD﹣AE=12﹣5=7;2BE与DF垂直.理由如下:延长BE交DF于H,∵△ABE绕点A按逆时针方向旋转90°得到△ADF,∴∠ABE=∠ADF,∵∠ADF+∠F=90°,∴∠ABE+∠F=90°,∴∠FHB=90°,∴BH⊥DF.25.已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是它们离各自出发地的距离y千米与行驶时间x小时之间的函数图象.1求甲车离出发地的距离y甲千米与行驶时间x小时之间的函数关系式,并写出自变量的取值范围;2它们出发小时时,离各自出发地的距离相等,求乙车离出发地的距离y乙千米与行驶时间x小时之间的函数关系式,并写出自变量的取值范围;3在2的条件下,求它们在行驶的过程中相遇的时间.【考点】一次函数的应用.【分析】1由图知,该函数关系在不同的时间里表现成不同的关系,需分段表达.当行驶时间小于3时是正比例函数;当行使时间大于3小时小于小时是一次函数.可根据待定系数法列方程,求函数关系式.24.5小时大于3小时,代入一次函数关系式,计算出乙车在用了小时行使的距离.从图象可看出求乙车离出发地的距离y千米与行驶时间x小时之间是正比例函数关系,用待定系数法可求解.3两者相向而行,相遇时甲、乙两车行使的距离之和为300千米,列出方程解答,由题意有两次相遇.【解答】解:1当0≤x≤3时,是正比例函数,设为y=kx,x=3时,y=300,代入解得k=100,所以y=100x;当3代入两点3,300、,0,得解得,所以y=540﹣80x.综合以上得甲车离出发地的距离y与行驶时间x之间的函数关系式为:y= .2当x= 时,y甲=540﹣80× =180;乙车过点,180,y乙=40x.0≤x≤3由题意有两次相遇.①当0≤x≤3,100x+40x=300,解得x= ;②当3综上所述,两车第一次相遇时间为第小时,第二次相遇时间为第6小时.感谢您的阅读,祝您生活愉快。
八年级数学下册期末测试卷一、单选题(共10题;共20分)1.下列运算中正确的是( ) A. √1916=134B. (√2)2=±2C. √1+2=1+2D. √(−3)2=32.如图,在矩形ABCD 中,E ,F 分别是AD ,AB 边上的点,连接CE ,DF ,他们相交于点G ,延长CE 交BA 的延长线于点H ,则图中的相似三角形共有( )A. 5对B. 4对C. 3对D. 2对 3.将一元二次方程 x(2x −1)=1 化成一般形式,正确的是( )A. 2x 2−x +1=0B. 2x 2−x −1=0C. 2x 2−x =1D. 2x 2+x −1=04.如图1,在菱形ABCD 中,∠BAD=60°,AB=2,E 是DC 边上一个动点,F 是AB 边上一点,∠AEF=30°.设DE=x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图2所示,则这条线段可能是图中的( )A. 线段ECB. 线段AEC. 线段EFD. 线段BF5.如图,在菱形ABCD 中,AC =8,BD =6,DE ⊥AB ,垂足为E ,DE 与AC 交于点F ,则DC/FC 的值为( ) A. 34 B. 43 C. 35 D. 45 6.若式子 √x−1x−2在实数范围内有意义,则 x 的取值范围是( )A. x ≥1 且 x ≠2B. x ≤1C. x >1 且 x ≠2D. x <17.古希腊人认为,最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 √5−12( √5−12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”雕像便是如此.若某人身材大致满足黄金分割比例,且其肚脐至足底的长度为105 cm ,则此人身高大约为( )A. 160 cmB. 170 cmC. 180 cmD. 190 cm8.若方程x 2﹣8x +m =0可通过配方写成(x ﹣n )2=6的形式,则x 2+8x +m =5可配方成( ) A. (x ﹣n +5)2=1 B. (x +n )2=1 C. (x ﹣n +5)2=11 D. (x +n )2=11 9.菱形ABCD 的一条对角线的长为6,边AB 的长是方程 x 2−7x +12=0 的一个根,则菱形ABCD 的周长为( )A. 16B. 12C. 12或16D. 无法确定10.在锐角三角形ABC中,AH是BC边上的高,分别以AB,AC为一边,向外作正方形ABDE和ACFG,连接CE,BG 和EG,EG与HA的延长线交于点M,下列结论:①BG=C E;②BG⊥CE;③AM是△AEG的中线;④∠EAM=∠ABC,其中正确结论的个数是()A. 4个B. 3个C. 2个D. 1个二、填空题(共6题;共7分)11.已知1是一元二次方程x2−3x+p=0的一个根,则p=________.12.使代数式√x−1有意义的x取值范围是________.13.已知两个相似三角形的相似比为4:3,则这两个三角形的对应高的比为________.14.如图,平行四边形ABCD的对角线AC、BD相交于点O,则添加一个适当的条件:________可使其成为矩形(只填一个即可).15.(1)若(x2﹣3x﹣4)0=x2﹣3x﹣3,则x=________ ;(2)若(a2+b2﹣2)2=25,则a2+b2=________ .16.若成立,则x满足________三、计算题(共2题;共10分)17.化简:√−a3.√a4(−1a) .18.计算:√1+112+122+√1+122+132+√1+132+142+⋯+√1+120172+120182四、解答题(共4题;共20分)19.根据扬州市某风景区的旅游信息,A公司组织一批员工到该风景区旅游,支付给旅行社2800元. A公司参加这次旅游的员工有多少人?扬州市某风景区旅游信息表20. 已知 α , β 是关于x 的一元二次方程 x 2+(2m +3)x +m 2=0 的两个不相等的实数根,且满足 1α + 1β=−1 ,求m 的值.21.3.关于x 的方程 有实根.(1)若方程只有一个实根,求出这个根;(2)若方程有两个不相等的实根1x ,2x ,且 ,求k 的值.22.小刚和小亮想用测量工具和几何知识测量公园古树 AB 的高度,由于有围栏保护,他们无法到达底部 B ,如图,围栏 CD =29 米,小刚在 DC 延长线 E 点放一平面镜,镜子不动,当小刚走到点 F 时,恰好可以通过镜子看到树顶 A ,这时小刚眼睛 G 与地面的高度 FG =1.5 米, EF =2 米, EC =1 米;同时,小亮在 CD 的延长线上的 H 处安装了测倾器(测倾器的高度忽略不计),测得树顶 A 的仰角 ∠AHB =45° , DH =5 米,请根据题中提供的相关信息,求出古树 AB 的高度.五、综合题(共2题;共26分)23.如图所示,四边形 ABCD 中, AC ⊥BD 于点 O , AO =CO =12 , BO =DO =5 ,点 P 为线段 AC 上的一个动点.(1)求证: AB =BC =CD =AD .(2)过点 P 分别作 PM ⊥AD 于 M 点,作 PH ⊥DC 于 H 点。
鲁教版(五四制)八年级数学下册期末达标测试卷一、选择题(每题3分,共36分)1.若式子x-2x-3有意义,则x的取值范围是()A.x≥2 B.x≠3C.x≥2或x≠3 D.x≥2且x≠32.解一元二次方程x2-2x=4,配方后正确的是()A.(x+1)2=6 B.(x-1)2=5C.(x-1)2=4 D.(x-1)2=83.已知二次根式2a-4化为最简二次根式后与2是同类二次根式,则a的值可以是()A.5 B.6 C.7 D.84.若x=2+1,则代数式x2-2x+2的值为()A.7 B.4 C.3 D.3-2 2 5.已知m,n是一元二次方程x2+2x-5=0的两个根,则m2+mn+2m的值为() A.0 B.-10 C.3 D.106.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是() A.3 B.2 2C.10 D.47.定义新运算“a*b”:对于任意实数a,b,都有a*b=(a+b)(a-b)-1,其中等式右边是通常的加法、减法、乘法运算,例如4*3=(4+3)×(4-3)-1=7-1=6.若x*k=x(k为实数)是关于x的方程,则它的根的情况为()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根8.临沂一体彩销售中心今年开业,一月份总销售额为12 000元,三月份总销售额为14 520元,且从一月份到三月份,每月总销售额的增长率相同,则每月总销售额的增长率为()A .8%B .9%C .10%D .11%9.如图,正方形ABCD 中,E ,F 是对角线BD 上的两点,BD =6,BE =DF =4,则四边形AECF 的面积为( ) A .12B .6C .10D .21010.如图,点A ,B 都在格点上,AB 与网格线交于点C ,若BC =2133,则AC 的长为( ) A .13B .4133C .213D .31311.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,过点C 作CE ∥BD 交AB 的延长线于点E ,下列结论不一定正确的是( ) A .OB =12CE B .△ACE 是直角三角形 C .BC =12AED .BE =CE12.如图,在边长为3的正方形ABCD 中,点E 是边AB 上的点,且BE =2AE ,过点E 作DE 的垂线交正方形ABCD 的外角∠CBG 的平分线于点F ,交边BC 于点M ,连接DF 交边BC 于点N ,则MN 的长为( ) A .23B .56C .67D .1二、填空题(每题3分,共18分)13.若(2a +1)2=2a +1,则a 的取值范围是________.14.若关于x 的一元二次方程x 2-4x +m -1=0有两个不相等的实数根,则m 的取值范围是______________.15.已知x2=y3=z4≠0,则2x+2y+z3y-z=________,x+2y-3z3y-z=________.16.如图,在矩形ABCD中,E为AD的中点,连接CE,过点E作CE的垂线交AB于点F,交CD的延长线于点G,连接CF.已知AF=12,CF=5,则EF=________.17.如图,在△ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺的宽BD为________.18.如图,菱形ABCD的边长为6 cm,∠BAD=60°,将该菱形沿AC方向平移2 3 cm,得到菱形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为________cm.三、解答题(19~21题每题8分,25题12分,其余每题10分,共66分)19.计算:(1)50×328-8;(2)12-313+27.20.解方程:(1)2x2-3x-1=0;(2)(x+3)2-4(x+3)-5=0.21.如图,在平面直角坐标中,△ABC的三个顶点的坐标分别为A(-1,3),B(-1,1),C(-3,2),以点O为位似中心,在第四象限内,画出△ABC的位似图形△A1B1C1,使△ABC与△A1B1C1的相似比为1:2,并写出点A1,B1,C1的坐标.22.如图,线段DE与AF分别为△ABC的中位线与中线.(1)求证:AF与DE互相平分.(2)当线段AF与BC满足怎样的数量关系时,四边形ADFE为矩形?请说明理由.23.如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F是对角线AC上的两点,且AE=CF,连接DE,DF,BE,BF.(1)求证:△ADE≌△CBF;(2)若AB=42,AE=2,求四边形BEDF的周长.24.青岛市某茶叶专卖店销售某种茶叶,其进价为每千克240元,按每千克400元出售,平均每周可售出200千克,经过市场调查发现,每千克售价每降低10元,平均每周的销售量可增加40千克.(1)当售价定为每千克340元时,请计算平均每周的销售量和销售利润;(2)该专卖店销售这种茶叶要想平均每周获利41 600元,并尽可能让利于顾客,赢得市场,则每千克应降价多少元?25.在等腰三角形ABC中,AB=AC,D是AB的延长线上一点,E是AC上一点,DE交BC于点F.(1)如图①,若BD=CE,求证:DF=EF.(2)如图②,若BD=1n CE,试写出DF和EF之间的数量关系,并证明.(3)如图③,在(2)的条件下,若点E在CA的延长线上,那么(2)中的结论还成立吗?试证明.答案一、1.D 2.B 3.B 4.C 5.A 6.C 7.C 8.C 9.B 10.B 11.D 点拨:∵四边形ABCD 是菱形,∴AO =12AC ,AC ⊥BD . ∴∠AOB =90°.由CE ∥BD ,易得△AOB ∽△ACE .∴∠ACE =∠AOB =90°,AB AE =OB CE =AO AC =12.∴△ACE 是直角三角形,OB =12CE ,点B 是AE 的中点, ∴BC =12AE .12.B 点拨:如图,过点F 作FH ⊥BG 于点H ,作FK ⊥BC 于点K .易证得四边形BHFK 是正方形, ∴BH =HF =FK =BK . ∵DE ⊥EF ,∠EHF =90°,∴∠DEA +∠FEH =90°,∠EFH +∠FEH =90°,∴∠DEA =∠EFH . 又∵∠A =∠EHF =90°, ∴△DAE ∽△EHF .∴AD HE =AE HF .∵正方形ABCD 的边长为3,BE =2AE ,∴AE =1,BE =2. 设HF =a ,则BK =FK =BH =a , ∴32+a =1a ,解得a =1. ∴BK =FK =1.易证得△DCN ∽△FKN , ∴DC FK =CN KN .∵BC =3,BK =1, ∴CK =BC -BK =2. 设CN =b ,则KN =2-b , ∴31=b 2-b ,解得b =32,∴CN =32. 易证得△ADE ∽△BEM , ∴AD BE =AE BM , ∴32=1BM ,解得BM =23.∴MN =BC -CN -BM =3-32-23=56.故选B. 二、13.a ≥-12 14.m <515.145;-4516.102 点拨:∵四边形ABCD 是矩形,∴∠A =∠EDC =90°. ∴∠EDG =90°.∵E 是AD 的中点,∴AE =DE . 在△AEF 和△DEG 中,⎩⎨⎧∠A =∠EDG =90°,AE =DE ,∠AEF =∠DEG ,∴△AEF ≌△DEG (ASA). ∴EF =EG ,DG =AF =12. 又∵CE ⊥FG ,∴CG =CF =5. ∵∠G =∠G ,∠EDG =∠CEG =90°, ∴△EDG ∽△CEG .∴EG CG =DG EG . ∴EG 2=DG •CG =52. ∴EG =102(负值舍去).∴EF =EG =102. 17.233 cm 点拨:由题意得DE =1 cm ,BC =3 cm.在Rt △ABC 中,∠A =60°,∠ABC =90°, ∴∠ACB =30°,∴AC =2AB . 设AB =x cm ,则AC =2x cm , 由勾股定理得x 2+32=(2x )2, ∴x =3(负值舍去),即AB = 3 cm. 由DE ∥BC ,易得△ADE ∽△ABC , ∴DE BC =AD AB ,即13=3-BD 3,解得BD =233 cm.18.2 点拨:如图,连接BD 交AC 于点G ,过点E 作EF ⊥AC 于点F .∵四边形ABCD 是菱形,边长为6 cm ,∴∠DAC =12∠BAD =30°,AD =AB =6 cm ,BD ⊥AC ,DG =12BD ,AG =12AC . 又∵∠BAD =60°, ∴△ABD 是等边三角形. ∴BD =AB =6 cm. ∴DG =3 cm.∴AG =AD 2-DG 2=3 3 cm. ∴AC =6 3 cm.由题意知AA ′=2 3 cm , ∴CA ′=AC -AA ′=4 3 cm.由平移的性质知AD ∥A ′E ,∴∠EA ′F =∠DAC =30°,∠CEA ′=∠CDA . ∴△A ′CE ∽△ACD . ∴A ′E AD =CA ′AC ,∴A ′E 6=4363.∴A ′E =4 cm.在Rt △A ′EF 中,∠EA ′F =30°, ∴EF =12A ′E =2 cm. 三、19.解:(1)原式=50×328-2 2=10 2-2 2 =8 2.(2)原式=2 3-3+3 3 =4 3.20.解:(1)这里a =2,b =-3,c =-1,∵Δ=(-3)2-4×2×(-1)=17>0, ∴x =-b ±b 2-4ac 2a =3±174,∴x 1=3+174,x 2=3-174.(2)分解因式,得(x +3-5)(x +3+1)=0, ∴x -2=0或x +4=0, ∴x 1=2,x 2=-4.21.解:如图,△A 1B 1C 1即为所求.A 1(2,-6),B 1(2,-2),C 1(6,-4).22.(1)证明:∵线段DE 与AF 分别为△ABC 的中位线与中线,∴D ,E ,F 分别是AB ,AC ,BC 的中点.∴线段DF 与EF 都为△ABC 的中位线.∴DF ∥AC ,EF ∥AB .∴四边形ADFE 是平行四边形.∴AF 与DE 互相平分.(2)解:当AF =12BC 时,四边形ADFE 为矩形.理由:∵线段DE 为△ABC 的中位线,∴DE =12BC .又∵AF =12BC ,∴AF =DE .由(1)知四边形ADFE 为平行四边形,∴四边形ADFE 为矩形.23.(1)证明:∵四边形ABCD 是正方形,∴AD =BC ,AD ∥BC .∴∠DAE =∠BCF .在△ADE 和△CBF 中,⎩⎨⎧AD =BC ,∠DAE =∠BCF ,AE =CF ,∴△ADE ≌△CBF (SAS).(2)解:∵四边形ABCD 是正方形,∴AD =AB =42,AC ⊥BD ,DO =BO =12BD =12AC =OA =OC ,∠DAB =90°.∴BD =AB 2+AD 2=8,∴DO =OA =OC =4.又∵CF =AE =2,∴OE =OF =4-2=2,∴四边形BEDF 为平行四边形.又∵EF ⊥BD ,∴平行四边形BEDF 为菱形.在Rt △DOE 中,DE =DO 2+OE 2=25,∴菱形BEDF 的周长为4DE =8 5.24.解:(1)200+110×(400-340)×40=440(千克),440×(340-240)=44 000(元).答:平均每周的销售量为440千克,销售利润为44 000元.(2)设每千克应降价x 元,根据题意得(400-240-x )•⎝ ⎛⎭⎪⎫200+40x 10=41 600, 整理得x 2-110x +2 400=0,解得x 1=30,x 2=80.∵要尽可能让利于顾客,赢得市场,∴x =80.答:每千克应降价80元.25.(1)证明:过点E 作EG ∥AB 交BC 于点G ,则∠ABC =∠EGC ,∠D =∠FEG .∵AB =AC ,∴∠ABC =∠C .∴∠EGC =∠C .∴EG =CE .又∵BD =CE ,∴BD =EG .又∵∠BFD =∠GFE ,∴△BFD ≌△GFE .∴DF =EF .(2)解:DF =1n EF .证明:过点E 作EM ∥AB 交BC 于点M ,则∠D =∠FEM . 又∵∠BFD =∠EFM ,∴△BFD ∽△MFE .∴BD EM =DF EF .∵BD =1n CE ,易得EM =CE ,∴BD =1n EM .∴DF =1n EF .(3)解:成立.证明:过点E 作EN ∥AB 交CB 的延长线于点N , 易得EN =CE ,△BFD ∽△NFE ,∴BD EN =DF EF .∵BD =1n CE ,∴BD =1n EN .∴DF =1n EF .。
一、选择题:(每小题3分,满分30分)
1.反比例函数x
y 2
-=的图像位于( )
A .第一、二象限内
B .第一、三象限内
C .第二、三象限内
D .第二、四象限内 2.若关于x 的方程0232=+-m x x 的一个根是-1,则m 的值为( )
A .-5
B .-1
C .1
D .5
3.下列条件中不能确定四边形ABCD 是平行四边形的是( )
A .AB=CD ,AD ∥BC
B .AB=CD ,AB ∥CD
C .AB ∥C
D ,AD ∥BC
D .AB=CD ,AD=BC
4.如下图,△ABC 中,∠C=90°,∠B=45°,AD 是角平分线,DE ⊥AB 于E ,则下列结论不正确的是
A .AC=AE
B .CD=DE
C .CD=DB
D .AB=AC+CD 5.已知一个矩形的两条对角线夹角为60°,一条对角线的长为10cm ,则
该矩形的周长为
A .20cm
B .320cm
C .)31(20+cm
D .)31(10+cm 6.如果反比例函数x
n
y -=
3.0的图像具有下列特征:在所在的象限内,y 的值随x 值的增大而减小,那么n 的取值范围是 A .0>n
B .3.0>n
C .3.00<<n
D .3.0<n
7.如下图,在菱形ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,E ,F 分别为BC 、CD 的中点,则∠
EAF 等于
A .75°
B .60°
C .45°
D .30°
8.反比例函数y=-x
k 2
(k ≠0)的图像的两个分支分别位于
( )
A.第1,3象限 (B) 第1,2象限 (C) 第2,4象限 D) 第1,4象限 9.如下图,等腰梯形ABCD 中,AB ∥CD ,AC ⊥BC ,且AC 平分∠BAD ,
若梯形的中位线长为p ,则梯形ABCD 的周长为 A .
3
8p
B .p 3
C .
p 3
10
D .p 4
10.若0<k ,则反比例函数x
k
y =
和一次函数k kx y -=的图像大致
是( )
二、填空题:(将正确答案填在横线上,每小题3分,满分30分) 11.若2
3--=
m x
m y 是反比例函数,则=m
12.反比例函数,21k kx y -=当0>x 时,y 随x 的 而增大。
13.如下图,在□ABCD 中,E 为CD 上一点,DE ︰CE=2︰3,连
接AE 、
BE 、BD ,且AE 、BD 交于点F , 则S △DEF ︰S
△EBF
︰
S △ABF =
14.制造某种产品经两年使成本降低36%,则平均每年降低 15.若关于x 的方程012=-+x ax 有实数根,则a 的取值范围是 16.如下图,延长正方形ABCD 的AB 边至点E ,使BE=AC ,则∠BED=
度。
17.已知1x ,2x 是方程0362=++x x 的两实数根,则
2
1
12x x x x +的值为
18.考察函数x
y 3
-=的图像,当3-<x 时,y 的取值范围是
19.直角三角形两锐角的角平分线相交所成的角的度数是 20.如右图,等腰梯形ABCD 中,AB ∥CD ,AB=3cm ,CD=5cm ,对角
线AC
⊥BD ,则该梯形的面积是
cm 2。
选择题
1 2 3 4 5 6 7 8 9 10 答案
填空题答案:
11、 12、 13、 14、 15、 16、 17、 18、 19、 20、 三、解答题:
21.解一元二次方程(每题5分)
0142=+-x x 66)3)(2(=+-x x
22、(10分)已知反比例函数x
k
y =和一次函数12-=x y ,其中一次函数的图像经过点(k ,5)。
(1)求反比例函数的表达式; (2)求两函数的图像的交点A 的坐标。
四、实际应用题:
23. (10分)某商场销售一批名牌衬衫,平均每天销售20件,每件盈利40元,为了扩大销售,增加盈利减少库存,商场决定采取适当的降价措施,经调查发现,如果每件降价1元,则每天可多售2件。
(1)商场若想每天盈利1200元,每件衬衫应降价多少元
(2)问在这次活动中,平均每天能否获得1300元的利润,若能,求出每件衬衫应降多少元;若不能,请说明理由。
24(10分).某工程队接受一项开挖水渠的工程,所需天数y(天)与每天完成的工程量x(m /天)的函数关系图像如下图所示。
(1)共需开挖水渠多少米
(2)求y与x之间的函数表达式;
(3)如果为了防汛工作的紧急需要,必须在一个月内(按30天计算)完成任务,那么每天至少要完成多少米
五、探索题:(每题10分,满分20分)
25.如下图,点F是△ABC的AC边中点,过点A作BC的平行线,与∠ABC的平分线相交于点D,E 为BD的中点。
试探究:(1)AE与BD的位置关系,并给予证明;
(2)EF、AB、BC之间的数量关系,并给予证明。
26.如下图,正方形ABCD中,G是CD边上的一个动点(点G与C、D不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DE,连接BG并延长交DE于H。
(1)求证:∠BGC=∠DEC。
(2)若正方形ABCD的边长为1,试问当点G运动到什么位置时,BH垂直平分DE。