半导体二极管的结构
- 格式:ppt
- 大小:2.14 MB
- 文档页数:54
半导体二极管工作原理
半导体二极管是一种基本的电子器件,其工作原理基于真空二极管的热阴极和阳极间的电子流动现象。
半导体二极管由P
型和N型半导体材料构成,形成一个PN结。
在PN结中,由于P型半导体内含有多余的空穴(正电荷载体),而N型半导体内含有多余的自由电子(负电荷载体)。
当N型半导体接触到P型半导体时,多余的自由电子和空穴
会进行扩散。
由于自由电子迁移到P区,形成负离子,而空
穴迁移到N区,形成正离子。
这就导致PN结的两侧形成了一个带有固定电荷的区域,称为耗尽层。
当外加一个电压到二极管时,如果正电压加在P区,而负电
压加在N区,这就称为正向偏置。
在正向偏置下,正电压将
加速电子和空穴的运动。
自由电子将迁移到P区,而空穴将
迁移到N区,这样当电流通过二极管时,电子就会在PN结处再次重组,产生电子空穴对,并且继续流动到外部电路。
因此,二极管在正向偏置下成为导电状态,也被称为ON(导通)状态。
相反地,如果负电压加在P区,而正电压加在N区,这称为
反向偏置。
在反向偏置下,负电压阻止了电子和空穴的运动,这使得电流无法通过PN结。
因此,二极管在反向偏置下处于
非导电状态,也被称为OFF(截止)状态。
总之,半导体二极管的工作原理基于PN结的形成和正反向偏
置下电子和空穴的运动。
这使得二极管可以用作整流、变压、开关和放大等许多电子电路中的基本组件。
面接触型管子的特点是,PN 结的结面积大,能通过较大电流,但结电容也大,适用于低频较低整流电路。
半导体二极管半导体二极管是由一个PN 结构成的二端元件。
其端钮有确定的命名,即一端叫阳极a ,一端叫阴极k 。
1.2 半导体二极管1.2.1 半导体二极管结构和类型(1)点接触型二极管(2)面接触型二极管(3)平面型二极管点接触型管子的特点是,PN 结的结面积小,因而结电容小,主要用于高频检波和开关电路。
既不能通过较大电流,也不能承受高的反向电压。
平面型管子的特点是,PN 结的结面积大时,能通过较大电流,适用于大功率整流电路;结面积较小时,结电容较小,工作频率较高,适用于开关电路。
1.结构2. 分类普通二极管特殊二极管变容二极管发光二极管光电二极管激光二极管二极管稳压二极管稳压光电转换调谐按材料的不同,常用的二极管有硅管和锗管两种;按其用途二极管分为普通二极管和特殊二极管两大类:整流、滤波、限幅、钳位、检波及开关等。
忽略正向导通压降和电阻,二极管相当短路;二极管反向截止时忽略反向饱和电流,反向电阻无穷大,二极管相当开路路。
I S uiU R 二极管是一种非线性元件,其特性就是PN 结的特性,而电流i D 与两端的电压u D 的关系近似为:1.2.2 二极管的伏安特性普通二极管是应用PN 结的饱和区、死区和导通区的特性制成的二端元件。
电路符号为:(1)伏安关系(2)理想二极管)(1-=T D V u S D e I i I S —反向饱和电流;V T —温度的电压当量,当常温(T=300K )时,V T =26mV 。
在正常工作范围内,当电源电压远大于二极管正向导通压降时,可将二极管当作理想二极管处理,其伏安特性如图示。
k a D最大整流电流又称为额定正向平均电流,是指二极管长时间使用时,允许通过的最大正向平均电流。
此值取决于PN 结的面积、材料和散热情况。
1.2.3 二极管的主要电参数1)最大整流电流I F2)最高反向工作电压U R3)最大反向电流I RM I F I RM ui U R 最大反向电流是指二极管加上最高反向工作电压时的反向电流值。
半导体分立元件半导体二极管半导体二极管是用半导体材料(主要是硅或锗的单晶)而制成,故又称为晶体二极管(俗称二极管)。
二极管的主要电性能是“单向导电性”,是一种有极性的二端元件(一种典型的非线性元件)。
二极管在电路中主要用作整流、限幅箱位、检波等,在数字电路中用作开关器件。
基本知识1、二极管。
自然界的物质按其导电能力的大小分为导体、半导体、绝缘体。
导体具有良好的导电性能,其电阻率一般小于10-6Ω·m,如铜和银;绝缘体导电能力很差或不导电,其电阻率往往在108Ω·m以上,如橡胶、陶瓷等;而半导体的导电能力介于导体与绝缘体之间,如纯净的硅在常温下的电阻率为2×103Ω·m。
半导体材料(如硅和锗)都是4价元素,其最外层的4个价电子与其相邻的原子核组成“共介键”结构,所以在温度极低时(如绝对零度时)半导体不导电,在常温下,纯净的半导体的导电能力也很弱。
2、半导体的主要特点。
半导体与导体和绝缘体相比有两个显著特点:一是其“热敏性”与“光敏性”。
例如当环境温度每升高8℃时,纯净硅的电阻率会降低一半左右(即导电能力提高一倍),且光线的照射也会明显地影响半导体的导电性能,人们利用半导体的这一性能,就可以制成各种热敏元件(如热敏电阻)、光敏元件(如光敏电阻、光电管)等;其二是半导体的“掺杂性”。
指在纯净的半导体内掺入微量的杂质,半导体的导电能力就急剧增强。
例如在单晶硅中掺入百分之一的某种杂质,其导电能力将增加一百万倍。
人们正是利用半导体的这一独特性质。
做成“杂质半导体”,从而制造出各种不同性质、不同用途的半导体器件,如半导体二极管、三极管、场效应管和集成电路等。
3、杂质半导体。
(1)N型半导体(电子型半导体)。
在纯净的半导体中掺入5价元素就得到N型半导体。
5价杂质其最外层的5个价电子除与半导体组成共价键外就多余一个电子(自由电子)。
所以N型半导体中自由电子为“多子”,空穴为“少子”。
半导体二极管引言半导体二极管是一种常见的电子元件,广泛应用于各种电路中。
作为一种离子流控制器,二极管在电子学中扮演着重要角色。
本文将介绍半导体二极管的基本原理、结构和工作方式,以及在电子设备中的应用。
一、半导体二极管的基本原理半导体二极管基于半导体材料的特性而工作。
半导体材料是一种介于导体和绝缘体之间的材料,具有在不同条件下改变电阻性质的能力。
当特定电压施加到二极管的两个端口时,会产生特定的电流流动。
这是因为半导体材料具有能够控制电子流动的能力。
二、半导体二极管的结构半导体二极管通常由一个PN结构构成。
PN结是由一段N型半导体和一段P型半导体相接而成的。
N型半导体含有过量的自由电子,而P型半导体则含有过量的空穴。
当PN结连接时,自由电子和空穴会发生迁移,形成电子流和电流。
二极管还有多种包装形式,如玻璃管、塑料封装和金属封装等。
不同的包装形式适用于不同的应用场合,如航空、军事、汽车、电脑等领域。
三、半导体二极管的工作方式半导体二极管具有单向导电性,也就是电流只能在一个方向上流动。
这是因为PN结在不同电压下会产生不同的电流分布。
当正向偏置电压施加到二极管上时,电流会通过PN结而流动。
这时,电子从N型半导体区域流向P型半导体区域,形成正向电流。
相反,当反向偏置电压施加到二极管上时,PN结会变为势垒状态,电流不会流动。
四、半导体二极管的应用半导体二极管在电子设备中有着广泛的应用。
以下是一些常见的应用场景。
1. 整流器:二极管常用于整流电路中,将交流电转化为直流电。
在电子设备中,直流电是许多电路和元件所需的。
2. 信号检测:半导体二极管可以用于信号检测和解调。
通过将信号输入到二极管中,可以检测和过滤特定频率的信号。
3. 功率放大器:二极管可以作为功率放大器的基础元件。
通过控制输入信号和电流的关系,可以实现放大和调节电流的功能。
4. 光电二极管:光电二极管是一种特殊的二极管,能够将光能转化为电能。
这种二极管常用于光电传感器和光通信等领域。
PN结主要的特性就是其具有单方向导电性,即在PN加上适当的正向电压(P 区接电源正极,N区接电源负极),PN结就会导通,产生正向电流。
若在PN结上加反向电压,则PN结将截止(不导通),正向电流消失,仅有极微弱的反向电流。
当反向电压增大至某一数值时,PN结将击穿(变为导体)损坏,使反向电流急剧增大。
(二)普通二极管1.二极管的基本结构二极管是由一个PN结构成的半导体器件,即将一个PN结加上两条电极引线做成管芯,并用管壳封装而成。
P型区的引出线称为正极或阳极,N型区的引出线称为负极或阴极,如图所示。
普通二极管有硅管和锗管两种,它们的正向导通电压(PN结电压)差别较大,锗管为0.2~0.3V,硅管为0.6~0.7V。
2.点接触型二极管如图所示,点接触型二极管是由一根根细的金属丝热压在半导体薄片上制成的。
在热压处理过程中,半导体薄片与金属丝接触面上形成了一个PN结,金属丝为正极,半导体薄片为负极。
点接触型二极管的金属丝和半导体的金属面很小,虽难以通过较大的电流,但因其结电容较小,可以在较高的频率下工作。
点接触型二极管可用于检波、变频、开关等电路及小电流的整流电路中。
3.面接触型二极管如图所示,面接触型二极管是利用扩散、多用合金及外延等掺杂质方法,实现P型半导体和N型半导体直接接触而形成PN结的。
面接触型二极管PN结的接触面积大,可以通过较大的电流,适用于大电流整流电路或在脉冲数字电路中作开关管。
因其结电容相对较大,故只能在较低的频率下工作。
二极管的分类及其主要参数一.半导体二极管的分类半导体二极管按其用途可分为:普通二极管和特殊二极管。
普通二极管包括整流二极管、检波二极管、稳压二极管、开关二极管、快速二极管等;特殊二极管包括变容二极管、发光二极管、隧道二极管、触发二极管等。
二.半导体二极管的主要参数1.反向饱和漏电流I R指在二极管两端加入反向电压时,流过二极管的电流,该电流与半导体材料和温度有关。
在常温下,硅管的IR 为纳安(10-9A)级,锗管的IR为微安(10-6A)级。
半导体二极管半导体二极管是由PN结加上引出线和管壳构成的。
一、二极管的分类1、按照所用的半导体材料:可分为锗管和硅管。
2、根据其不同用途:可分为检波二极管、整流二极管、稳压二极管、开关二极管等。
3、按照管芯结构:可分为点接触型二极管(电流小,高频应用)、面接触型二极管(电流大,用于整流)及平面型二极管。
二、二极管图形符号①整流二极管:利用单向导电性把交流电变成直流电的二极管。
②稳压二极管:利用反向击穿特性进行稳压的二极管。
③发光二极管:利用磷化镓把电能转变成光能的二极管。
④光电二极管:将光信号转变为电信号的二极管。
⑤变容二极管:利用反向偏压改变 PN 结电容量的二极管三、型号命名整流二极管——2CZ82B稳压二极管——2CW50变容二极管——2AC1 等等。
四、二极管的特性单向导电性。
正向导通反向载止。
五、二极管的参数1、最大整流电流(IF) (由于电流通过PN结,使得管子发热,电流达到一定程度,管子因过热而烧坏。
)指管子长期运行时,允许通过的最大正向平均电流。
2、反向击穿电压 (VBR)指管子反向击穿时的电压。
3、最大反向工作电压VRM在实际工作时,最大反向工作电压VRM一般只按反向击穿电压VBR的一半计算。
4、反向电流IR(由于反向电流与温度有关,所以使用二极管时注意温度的影响。
)5、正向压降VF在规定的正向电流下,二极管的正向电压降。
小电流硅二极管的正向压降在中等电流水平下,约0.6V~0.8V;锗二极管约0.1V~0.3V。
6、最高工作频率fM二极管工作的上限频率,超过该频率,结电容起作用,二极管将不能很好的体现单向导电性。
六、二极管的检测1、判别正负极性万用表:R ×100 或 R×1 k 挡;将红、黑表笔分别接二极管两端。
所测电阻小时,黑表笔接触处为正极,红表笔接触处为负极。
2、质量好坏判别万用表:R 1k。
(1)若正反向电阻均为零,二极管短路;(2)若正反向电阻非常大,二极管开路。