荧光显微镜的原理和荧光显微镜结构特点
- 格式:doc
- 大小:11.00 KB
- 文档页数:2
荧光显微镜的原理与应用前言荧光显微镜是一种利用荧光现象进行观察和显示样品细胞或分子结构的显微镜。
它的原理和应用使得生物学、医学、材料科学等领域的研究变得更加准确和深入。
本文将介绍荧光显微镜的原理、构成和其在不同领域的应用。
一、荧光显微镜的原理荧光显微镜的成像原理基于光的荧光现象和酵素固有荧光物质本身的特性。
1.光的荧光现象当物质受到一定波长的光照射后,能量被吸收并再次散发出去。
荧光显微镜利用激发光的波长激发标记在样品中的荧光物质,使其发出荧光信号。
这种荧光信号可以被荧光显微镜所捕获和放大,进而产生图像。
2.酵素固有荧光某些分子具有自身固有的荧光性质。
这些分子可以从基态跃迁到激发态,并在激发态上持续存在一段时间后再跃迁回基态。
通过观察这些分子的荧光信号,可以获得关于样品的信息。
二、荧光显微镜的构成荧光显微镜通常由以下几个主要部件组成:1.光源:用来提供激发样品的激发光,常用的光源有氘灯、汞灯、激光器等。
2.激发光滤镜:用于选择性地过滤或选择激发光的特定波长。
3.物镜:用来放大样品并收集由荧光物质发出的荧光信号。
4.荧光筛选器:用来选择特定的荧光波长,并阻挡其他波长的光线。
5.观察系统:包括目镜、眼镜或摄像机等设备,用于观察和记录荧光信号。
三、荧光显微镜在不同领域的应用荧光显微镜在生物学、医学、材料科学等领域有广泛的应用。
1.生物学研究荧光显微镜可以帮助研究者观察和分析生物学样本中的细胞结构和功能。
通过将特定荧光染料标记到细胞中,可以实时监测细胞的代谢状态、基因表达和蛋白质定位。
2.医学诊断荧光显微镜在医学诊断中发挥着重要作用。
例如,通过使用荧光标记剂可以检测肿瘤细胞,帮助医生进行早期诊断和治疗。
3.材料科学荧光显微镜在材料科学中的应用主要集中在材料的结构和性能测试上。
通过标记某些特定的分子或颗粒物,并观察它们在材料中的分布和运动,可以更好地了解材料的组成和特性。
4.环境监测荧光显微镜也可以应用于环境监测领域。
荧光显微镜的工作原理首先,荧光显微镜的工作原理基于荧光标记。
在样本中加入荧光染料或荧光蛋白后,当样本受到特定波长的激发光照射时,荧光染料或荧光蛋白会吸收能量并转换成较长波长的荧光发射。
这种现象被称为荧光激发和荧光发射。
荧光显微镜利用这一原理,能够观察样本中的荧光信号,从而获取样本的相关信息。
其次,荧光显微镜的核心部件包括激发光源、滤光片、物镜、目镜和荧光探测器。
激发光源通常采用紫外光或蓝光LED,能够产生足够的激发光照射样本。
滤光片用于选择特定波长的激发光进入样本,阻挡其他波长的光线。
物镜和目镜则用于放大样本中的荧光信号,并通过目镜观察。
荧光探测器能够捕获样本中的荧光信号,并将其转换成电信号。
在实际观察中,样本首先被加入荧光标记物,然后放置在荧光显微镜的载物台上。
激发光源发出特定波长的激发光,经过滤光片选择后照射到样本上。
样本中的荧光标记物吸收激发光并发出荧光信号,荧光信号经过物镜放大后,通过目镜观察。
荧光探测器捕获荧光信号并转换成电信号,最终形成荧光图像。
荧光显微镜的工作原理使其能够观察细胞器官、蛋白质分布、细胞活动等细胞和分子水平的信息。
在细胞生物学研究中,荧光显微镜被广泛应用于观察细胞器官的形态和分布、跟踪蛋白质在细胞内的运动、研究细胞凋亡等方面。
在生物医学领域,荧光显微镜能够帮助医生观察病理标本,诊断疾病,指导治疗。
总的来说,荧光显微镜通过荧光标记和荧光激发发射原理,能够观察样本中的荧光信号,为生物学、医学等领域的研究和临床诊断提供了重要的工具。
随着技术的不断进步,荧光显微镜在分辨率、灵敏度等方面也不断得到提升,将为科研人员提供更多更精确的信息。
荧光显微镜原理
荧光显微镜是一种能够通过激发样品中的荧光物质发出荧光,并通过观察和记录荧光信号来进行显微分析的仪器。
其工作原理基于荧光现象和光学成像原理。
首先,荧光显微镜需要一种能够激发荧光的光源。
常用的光源包括汞灯、钠灯和激光器等。
这些光源产生的紫外光或特定波长的光可以激发样品中的荧光物质。
其次,在荧光显微镜中,这些激发光会通过物镜进入样品。
物镜具有高放大倍数和高分辨率,可以将激发光聚焦到样品的特定区域上。
然后,样品中的荧光物质会被激发光激活,并发出荧光信号。
荧光物质吸收激发光的能量后,其激发态会发生非辐射跃迁,返回基态时释放出相应波长的荧光光子。
这些荧光光子可被荧光显微镜的物镜收集,并通过镜头系统进行光学放大和聚焦。
最后,荧光显微镜通过将荧光信号与光学检测系统结合,可以对样品中的荧光信号进行增强、捕获和记录。
典型的光学检测系统包括滤光器、物镜、接收镜和探测器等。
滤光器可以选择性地阻挡激发光而只传递荧光信号,物镜和接收镜将荧光信号聚焦到探测器上,探测器则将荧光信号转化为电信号进行记录和分析。
总之,荧光显微镜通过激发和观察样品中的荧光信号,可以实现对细胞、分子等微观结构的非损伤性显微分析。
这种原理使
得荧光显微镜在生物学、医学和材料科学等领域有着广泛的应用。
荧光显微镜的工作原理荧光显微镜是利用特定波长的光照射被检物体产生荧光进行镜检的显微光学观测技术,主要用于研究有机物和无机物等样品,一般使用荧光和磷光来检查样品的结构组织和空间分布,较适用于研究复杂且无法在传统透射光显微镜下检查的样品。
荧光显微镜与传统显微镜的区别主要有两个方面,一种是光源类型不同,另一种是使用的滤光片元件不同。
荧光的原理是某些物质会在高强度的短波长光线照射下,会发出波长稍长的发射光(荧光)。
而我们一般都是观察被激发荧光基团所发射出来的波长稍长的发射光(荧光),但是激发的光会很强,所以我们就需要把激发的光全部滤去,这样才可以看到荧光基团的发射光(荧光)。
荧光显微镜一般都用高强度的汞灯做激发光源,使用滤色片把不需要的光滤去,只留下激发荧光集团的高强度很纯的光线。
这个单色的光线通过物镜照射到样本上之后,样本会被激发出发射光(荧光),荧光和激发光都会沿着物镜光路返回,这样就需要用一个二相色镜把激发光滤去,只让我们需要看到的荧光透过。
这个荧光沿着显微镜的光路最后到达目镜下,然后进入我们的眼睛,我们就可以看到荧光基团所发出来的荧光了。
荧光显微镜可用于生物学、生物医学和材料科学,荧光显微镜有助于准确和详细地识别细胞和亚微观细胞成分。
荧光显微镜也被广泛用于组织化学领域,以检测常规显微镜无法看到的颗粒,例如神经递质胺。
它在食品化学中用于评估产品中特定食品成分的存在、结构组织和空间分布。
还有一种荧光散斑显微镜,它是一种使用荧光标记的大分子组装体(例如细胞骨架蛋白)来研究运动和周转率的技术。
荧光显微镜染色也会在矿物学领域使用,它通常用于研究煤炭、氧化石墨烯等矿物。
它还广泛用于纺织工业来分析纤维尺寸,落射荧光显微镜有助于研究基于纤维的材料(包括纸张和纺织品),不仅如此荧光显微镜的使用还可以用于荧光染料研究陶瓷孔隙率以及半导体研究领域。
荧光显微镜工作原理荧光显微镜是一种利用荧光原理观察样品的显微镜。
它通过激发样品中的荧光物质,使其发出特定的荧光信号,然后通过光学系统放大和观察这些信号。
荧光显微镜常用于生物医学研究、细胞生物学和生物化学等领域。
荧光显微镜的工作原理基于荧光现象。
在样品中加入荧光染料或标记的分子后,这些分子会在特定波长的激发光照射下吸收能量并跃迁到激发态。
随后,它们会自发地从激发态返回基态,并发出荧光信号。
这个过程称为荧光发射。
荧光显微镜的光学系统由激发光源、滤光器、物镜和目镜等组成。
激发光源通常是一个强度可调的光源,如汞灯或激光器。
它能够产生特定波长的激发光,以激发样品中的荧光物质。
为了观察样品发出的荧光信号,荧光显微镜使用了一系列滤光器。
滤光器的作用是选择性地透过特定波长的光线,同时屏蔽其他波长的光线。
通常,荧光显微镜会使用两个滤光器,一个用于选择性地透过激发光,另一个用于选择性地透过荧光发射光。
通过物镜和目镜的组合,荧光显微镜能够放大样品中的荧光信号,并将其投影到人眼或相机上。
物镜是一个高放大倍率的镜头,它能够将样品中的细微结构放大到足够大的尺寸以观察。
目镜则用于进一步放大物镜中的图像,使得观察者能够清晰地看到样品中的细节。
荧光显微镜的工作原理还涉及到荧光染料的选择和标记技术。
荧光染料的选择应根据样品中要观察的分子或结构的特性来确定。
荧光染料需要有足够的发射强度和稳定性,以及与样品中的目标分子或结构有特异性的结合能力。
标记技术则是将荧光染料与样品中的分子或结构进行特异性结合,以便在显微镜下观察到它们。
值得注意的是,荧光显微镜的工作原理还涉及到荧光现象的基本特性。
荧光发射的强度和光谱特性与荧光物质的性质有关,如激发光的波长、激发光的强度和样品中的浓度等。
通过对这些特性的研究和控制,可以进一步提高荧光显微镜的灵敏度和分辨率。
荧光显微镜的工作原理是基于荧光现象。
通过激发样品中的荧光物质,并利用光学系统放大和观察荧光信号,荧光显微镜可以实现对样品中细微结构的观察和分析。
荧光显微镜原理和应用荧光显微镜原理和应用(一)荧光显微镜的原理和结构特点:荧光显微镜是利用一个高发光效率的点光源,经过滤色系统发出一定波长的光(如紫外光3650入或紫蓝光4200入)作为激发光、激发标本内的荧光物质发射出各种不同颜色的荧光后,再通过物镜和目镜的放大进行观察。
这样在强烈的对衬背景下,即使荧光很微弱也易辨认,敏感性高,主要用于细胞结构和功能以及化学成分等的研究。
[url=/produce/fluoro.htm]荧光显微镜[/url]的基本构造是由[url=/produce/biology.htm]普通光学显微镜[/url]加上一些附件(如[url=/produce/fluoro/DFM60C.htm]荧光光源[/url] 、激发滤片、双色束分离器和[url=/produce/fluoro/DFM40C.ht m]阻断滤片[/url]等)的基础上组成的。
荧光光源——般采用超高压汞灯(50一200W),它可发出各种波长的光,但每种[url=/produce/fluoro/DFM60D.ht m]荧光物质[/url]都有一个产生最强荧光的[url=/produce/fluoro/DFM55D.htm]激发光波长[/url] ,所以需加用激发滤片(一般有紫外、紫色、蓝色和[url=/produce/fluoro.htm]绿色激发滤片[/url]),仅使一定波长的激发光透过[url=/produce/biology.htm]照射到标本[/url]上,而将其他光都吸收掉。
每种物质被激发光照射后,在极短时间内发射出较照射波长更长的[url=/produce/fluoro/DFM30C.htm]可见荧光[/url]。
荧光具有专一性,一般都比[url=/produce/fluoro.htm]激发光[/url]弱,为能观察到专一的[url=/produce/polorize.htm]荧光[/url],在物镜后面需加阻断(或压制)滤光片。
荧光显微镜的使用原理引言:荧光显微镜是一种常用于生物学、物理学和医学研究中的重要工具,它通过利用物质的荧光性质来观察和研究微观世界。
本文将介绍荧光显微镜的使用原理,包括激发荧光和检测荧光的过程,以及荧光显微镜在科学研究中的应用。
一、荧光显微镜的基本原理荧光显微镜的基本原理是利用特定波长的光来激发物质的荧光,并通过检测荧光信号来观察样品。
荧光显微镜通常由以下几个部分组成:光源、滤光片、物镜、检测器和显示器。
1. 光源:荧光显微镜通常使用高亮度的气体放电灯或激光器作为光源。
这些光源会发出特定波长的光,用于激发样品中的荧光标记物。
2. 滤光片:滤光片用于选择性地透过特定波长的光,阻挡其他波长的光。
荧光显微镜通常会使用激发滤光片和发射滤光片来实现荧光信号的选择性激发和检测。
3. 物镜:物镜是荧光显微镜中放置样品的部分,它由多个透镜组成,可以放大和聚焦光线。
物镜的放大倍数决定了荧光显微镜观察样品的分辨率和清晰度。
4. 检测器:检测器用于检测样品中发射的荧光信号。
常见的检测器包括光电二极管(photomultiplier tube, PMT)和CCD相机。
这些检测器可以将荧光信号转化为电信号,并传输到显示器上进行观察和记录。
二、荧光显微镜的工作原理荧光显微镜的工作原理可以简单地分为激发荧光和检测荧光两个步骤。
1. 激发荧光:首先,荧光显微镜通过激发滤光片选择性地透过特定波长的光,使样品中的荧光标记物吸收光能。
当荧光标记物吸收光能后,其电子会跃迁到一个较高的能级,形成激发态。
2. 检测荧光:接下来,荧光显微镜通过发射滤光片选择性地透过发射波长的光,使样品中的荧光标记物发射荧光。
发射滤光片会阻挡其他波长的光,只允许发射波长的荧光信号通过。
荧光信号经过物镜放大后,通过检测器转化为电信号,并传输到显示器上进行观察和记录。
三、荧光显微镜的应用荧光显微镜在生物学、物理学和医学研究中有着广泛的应用。
1. 细胞成像:荧光显微镜可以通过标记细胞的特定结构或分子,观察和研究细胞的结构和功能。
荧光显微镜原理特点及使用
荧光显微镜的原理和结构特点:荧光显微镜是利用一个高发光效率的点光源,经过滤色系统发出一定波长的光(如紫外光3650入或紫蓝光4200入)作为激发光、激发标本内的荧光物质发射出各种不同颜色的荧光后,再通过物镜和目镜的放大进行观察。
这样在强烈的对衬背景下,即使荧光很微弱也易辨认,敏感性高,主要用于细胞结构和功能以及化学成分等的研究。
荧光显微镜的基本构造是由普通光学显微镜加上一些附件(如荧光光源、激发滤片、双色束分离器和阻断滤片等)的基础上组成的。
荧光光源——般采用超高压汞灯(50一200W),它可发出各种波长的光,但每种荧光物质都有一个产生最强荧光的激发光波长,所以需加用激发滤片(一般有紫外、紫色、蓝色和绿色激发滤片),仅使一定波长的激发光透过照射到标本上,而将其他光都吸收掉。
每种物质被激发光照射后,在极短时间内发射出较照射波长更长的可见荧光。
荧光具有专一性,一般都比激发光弱,为能观察到专一的荧光,在物镜后面需加阻断(或压制)滤光片。
它的作用有二:一是吸收和阻挡激发光进入目镜、以免于扰荧光和损伤眼睛,二是选择并让特异的荧光透过,表现出专一的荧光色彩。
两种滤光片必须选择配合使用。
荧光显微镜就其光路来分有两种:
1.透射式荧光显微镜: 激发光源是通过聚光镜穿过标本材料来激发荧光的。
常用暗视野集光器,也可用普通集光器,调节反光镜使激发光转射和旁射到标本上.这是比较旧式的荧光显微镜。
其优点是低倍镜时荧光强,而缺。
细胞生物学实验②荧光显微镜——生物样品的荧光观察细胞生物学实验在研究细胞结构和功能时起着至关重要的作用。
其中,荧光显微镜是常用的实验工具之一,它能够使我们直观地观察到生物样品中的荧光现象。
在这篇文章中,我将介绍荧光显微镜的原理及其在细胞生物学实验中的应用。
荧光显微镜是一种特殊的显微镜,能够通过用荧光标记的物质来观察细胞和组织的结构和功能。
其原理是利用荧光物质的特殊性质,即在吸收一定波长的激发光后,能够发出较长波长的荧光。
这种荧光现象被称为荧光显微镜观察。
在进行荧光显微镜实验时,我们首先需要选择合适的荧光染料来标记我们感兴趣的生物样品。
常用的荧光染料有荧光素、荧光蛋白、荧光偶联物等。
这些染料可以与细胞或分子中的特定结构或组分反应,将其标记出来。
通过选择合适的荧光染料,我们可以在不同波长的激发光下观察到不同的标记物。
在荧光显微镜观察中,我们需要注意一些实验条件。
首先,我们需要控制好激发光的波长和强度,以最大限度地激发标记物的荧光信号。
其次,我们需要设置合适的荧光滤光片,以过滤掉激发光并选择性地传递荧光信号。
最后,我们需要使用高质量的荧光显微镜镜头和CCD相机等设备来捕捉和记录荧光图像。
荧光显微镜在细胞生物学实验中有广泛的应用。
首先,它可以用于观察细胞的结构和形态特征。
通过使用适当的荧光染料,我们可以清晰地观察到细胞核、细胞质、线粒体、高尔基体等细胞器的位置和形态。
其次,荧光显微镜可以用于研究细胞的功能和活动。
例如,我们可以使用荧光染料来标记特定的分子,如钙离子、细胞器特定的蛋白等,并通过观察其在细胞中的分布和运动来研究细胞的活动过程。
此外,荧光标记还可以用于研究细胞的生存和死亡过程,如细胞凋亡等。
此外,荧光显微镜还可以应用于细胞荧光定量分析。
通过使用荧光染料,我们可以定量地测量细胞或分子中的特定成分的含量或活性。
例如,我们可以通过测量荧光信号的强度来定量细胞中其中一种蛋白的表达水平。
总之,荧光显微镜是细胞生物学实验中重要的工具之一,它能够通过标记生物样品中的荧光物质来观察细胞的结构和功能。
单分子荧光显微镜的原理和应用单分子荧光显微镜(single molecule fluorescence microscope)是一种利用荧光标记的分子在光学显微镜下进行的单独检测的技术。
它克服了现有显微镜对大分子的限制,实现了对单个分子的高分辨率成像。
本文将对单分子荧光显微镜的原理和应用进行介绍。
一、单分子荧光显微镜原理单分子荧光显微镜基于单个分子的荧光信号来进行显微成像和探测。
其基本原理是利用染料或蛋白标记等物质的荧光信号进行分子的检测和成像。
1、荧光探针荧光探针是指一种具有荧光特性的分子,可以被特定的物质所识别并与其结合,使该物质发生荧光信号。
在单分子荧光显微镜中,荧光探针被用于标记某种特定物质,例如生物大分子的蛋白质或核酸。
2、光学显微镜单分子荧光显微镜使用一般的显微镜,但需要使用塞曼悬浮液或阿帕酚等具有高折射率的油滴作为 immersion 油,以提高显微镜解像度。
在使用光学显微镜时,必须控制光源强度并使用长波长荧光探针,以避免细胞对光的伤害和其它干扰光源。
3、检测系统检测系统是单分子荧光显微镜中最重要的部分,用于检测荧光信号并产生数字信号以记录荧光发射。
检测系统包括光学控制、光学过滤器、荧光探测器和数字信号处理器。
二、单分子荧光显微镜应用单分子荧光显微镜被广泛应用于材料物理、生物化学和生物医学等领域。
它不仅具有高分辨率成像、高灵敏度和高选择性的优点,而且由于是对单分子进行检测,具有传统显微镜无法达到的极高分辨率和高特异性。
1、生命科学单分子荧光显微镜可以用于研究单个生物大分子的相互作用和动态变化过程,如蛋白质的折叠、核酸的重组和酶的催化过程等。
此外,还可以用于接触显微镜技术,通过荧光标记的分子来探测生物大分子的相互作用。
2、材料物理单分子荧光显微镜可以用于研究材料的结构和功能,在纳米尺度下对材料进行成像。
例如,可以用于研究自组装纳米材料和生物纳米结构中单个分子的动态行为。
3、生物医学单分子荧光显微镜在生物医学中的应用逐渐增加。
荧光显微镜的原理
荧光显微镜是一种利用荧光原理观察样品的显微镜。
其基本原理是在样品中加入荧光染料或标记物,然后使用特定波长的激光或光源照射样品,荧光标记的物质吸收能量后会发出特定的荧光信号。
荧光显微镜内部包含以下主要组成部分:荧光光源、荧光滤光片、物镜、眼镜和检测系统。
荧光光源通常使用汞弧灯或氙气弧灯,产生用于激发荧光的特定波长的紫外线或可见光。
荧光滤光片的作用是选择性地过滤掉激发光源中的杂散光,使得只有特定波长的激发光能照射到样品上,以避免背景干扰。
物镜是用于放大样品的镜头,通常具有高放大倍数和高分辨率。
眼镜用于观察样品并调节焦距。
检测系统用于接收样品荧光信号并转化成可见图像,常见的检测系统有摄像机、光电倍增管等。
当激发光照射到样品上时,荧光标记物会吸收激发光的能量,使其电子跃迁到高能量态。
随后,电子会自发地从高能量态返回低能量态,在这个过程中发出荧光信号。
荧光显微镜通过特定滤光片选择性地捕捉并观察荧光信号,以获取有关样品的信息。
荧光信号通常用荧光染料的颜色表示,不同的荧光标记物对应不同的颜色。
荧光显微镜具有高灵敏度、高分辨率、高对比度和多色标记等优点,广泛应用于生命科学研究、医学诊断、物质分析等领域。
它可以实时观察和跟踪细胞、蛋白质、核酸以及其他生物分子的活动和相互作用。
同时,荧光显微镜还可与其他技术(如共
聚焦显微镜、荧光原位杂交等)相结合,提高对样品的研究和分析能力。
正置荧光显微镜原理
一、正置荧光显微镜原理
正置荧光显微镜,又称双路荧光显微镜,是一种利用双路路径来将荧光液体投射到模式投影上,通过灵敏度调节来实现显微镜显示的特殊显微镜。
因此,它可以清晰的显示目标区域的荧光特性,提高显微镜的显示效果。
正置荧光显微镜的原理是:将光源和要显示的荧光液体放入相同的容器中,当光源照射到荧光液体时,荧光液体会发出荧光,荧光从容器的一端流出,经过一段时间和一定距离后,荧光会受到一定程度的散射,使荧光变得模糊不清,而正置荧光显微镜可以通过放置一个光学滤光片前面,来减少荧光的散射,使荧光保持细节清晰可见。
正置荧光显微镜有以下两种结构:
第一种是投射结构,它是将光源与荧光液体放置在特殊的容器中,当光源照射到荧光液体时,荧光从容器的一端流出,经过一定的时间和距离,荧光会受到一定程度的散射,从而使荧光变模糊不清。
正置荧光显微镜的投射结构可以将模糊的荧光重新投射到一组滤光片上,再将投射到模型上,从而使荧光变得清晰可见。
第二种是反射结构,它是将光源与荧光液体放置在特殊的容器中,当荧光液体接收到光源的照射时,荧光从容器中反射出来,经过一定的时间和距离,荧光会受到一定程度的散射,从而使荧光变模糊不清。
正置荧光显微镜的反射结构可以将模糊的荧光重新反射到一组滤光
片上,再将反射回射向模型上,从而使荧光变得清晰可见。
正置荧光显微镜具有清晰的显示效果,可以显示出物体不同部位的荧光分布,从而为系统分析提供有价值的信息。
另外,正置荧光显微镜可以有效的降低噪声水平,提高显微镜的灵敏度,因此它经常被用于许多生物学研究中。
荧光显微镜的原理和荧光显微镜结构特点发布时间:2011-06-14
荧光显微镜的原理和荧光显微镜结构特点
荧光显微镜的原理是什么,
荧光显微镜是利用一个高发光效率的点光源,经过滤色系统发出一定波长的光(如紫外光365nm或紫蓝光420nm)作为激发光,激发检测标本内的荧光物质发射出各种不同颜色的荧光后,通过物镜和目镜系统的放大以观察标本的荧光图像的光学显微镜,是医学检验中的重要仪器之一。
在强烈的对衬背景下,即使荧光很微弱也易辨认,敏感性高,主要用于细胞结构和功能以及化学成分等的研究。
荧光显微镜的基本构造是由普通光学显微镜加上一些附件(如荧光光源、激发滤片、双色束分离器和阻断滤片等)的基础上组成的。
荧光光源——般采用超高压汞灯(50一200W),它可发出各种波长的光,但每种荧光物质都有一个产生最强荧光的激发光波长,所以需加用激发滤片(一般有紫外、紫色、蓝色和绿色激发滤片),仅使一定波长的激发光透过照射到标本上,而将其他光都吸收掉。
每种物质被激发光照射后,在极短时间内发射出较照射波长更长的可见荧光。
荧光具有专一性,一般都比激发光弱,为能观察到专一的荧光,在物镜后面需加阻断(或压制)滤光片。
它的作用有二:一是吸收和阻挡激发光进入目镜、以免于扰荧光和损伤眼睛,二是选择并让特异的荧光透过,表现出专一的荧光色彩。
两种滤光片必须选择配合使用。
萤光显微镜原理:
(1) 光源幅射出各种波长的光(以紫外至红外)。
(2) 激励滤光源:透过能使标本产生萤光的特定波长的光,同时阻挡对激发萤光无用的光。
(3) 荧光标本:一般用萤光色素染色。
(4) 阻挡滤光镜:阻挡掉没有被标本吸收的激发光有选择地透射萤光,在萤光中也有部分波长被选择透过。
以紫外线为光源,使被照射的物体发出荧光的显微镜。