电子显微镜及其附属设备的结构基本原理第一部分1
- 格式:ppt
- 大小:1022.50 KB
- 文档页数:12
电子显微镜原理
电子显微镜是一种利用电子束进行观察和分析样品的仪器。
它的工作原理基于电子的波粒二象性以及它们与物质相互作用的特性。
电子显微镜使用的电子束是由电子枪产生的。
电子枪通过加热阴极,使其释放出电子,并加速这些电子使其具有足够的能量。
然后,电子束通过一系列的电子透镜来聚焦和定位。
最常用的电子透镜是环形磁铁,它利用磁场来聚焦电子束。
在磁铁处,电子束会逐渐变窄,并形成一个细小的束斑。
当电子束射到样品上时,它们会与样品中的原子和分子相互作用。
这种相互作用包括散射、吸收和透射。
通过探测不同的电子与样品相互作用的方式,可以获取关于样品中不同部分的信息。
在电子显微镜中,有两种主要的检测模式:散射模式和透射模式。
在散射模式中,电子束与样品中的原子和分子发生散射,从而产生称为散射电子的次级电子。
这些散射电子被收集并用于生成图像。
透射模式中,电子束通过样品的较薄区域,一部分电子会被样品中的原子和分子散射,另一部分则通过样品。
被透射的电子会通过一系列检测器进行收集和放大,从而形成图像。
通过控制电子束的聚焦和定位,可以实现对不同部分的样品进行观察和分析。
电子显微镜可提供高分辨率的图像,因为电子的波长比可见光的波长小得多。
因此,它可以观察到更小的结
构和更详细的样品特征。
总之,电子显微镜的原理基于利用电子束与样品相互作用并收集和放大透射或散射电子的方式来观察和分析样品。
这样的原理使得电子显微镜在科学研究和工业应用中具有广泛的应用前景。
第二章 电子显微镜(Electron Microcope)第一节 电子显微镜的基本构造和原理一、概述:电子具有波动性。
电子束在电场或磁场的作用下,可发生会聚、发散、反射、折射和偏转。
* 电镜:用电子束代替光束照射样品,而获得高分辨率的成像。
二、电子显微镜(电镜)的物理学基础(一)光学显微镜(光镜)的局限性:光镜可观察许多肉眼看不见的微小物体,但也有其局限性。
例如病毒就看不到。
* 原因:不是放大倍数的问题,而是分辨率不够。
1、分辨率:指显微镜或人眼在明视距离刚好能分辨的两质点的最小距离。
人眼的分辨率约为0.1毫米(人眼最小可分辨角约为1’)。
* 光镜分辨率不高原因:是光线衍射的影响。
质点成像时,不是形成理想的像点,而是形成一个像斑(Airy 斑)。
当两个像斑太靠近时就会分辨不清。
2、阿贝公式: 根据瑞利判据,推得分辨率(即最小可分辨距离): 其中: Z ——最小分辨距离λ ——波长n ——透镜周围的折射率u ——透镜对物点张角的一半,nsinu 称为数值孔径,用 N.A. 表示3、提高分辨率的方法:①提高N.A.数。
如油浸物镜,N.A.数可从小于1提高至1.5~1.6,但很有限。
②用波长更短的光线。
而可见光波长有限,唯有寻找比可见光波长更短的光线才能解决这个问题。
4、电子的波长:比可见光波长更短的有:1)紫外线 —— 会被物体强烈的吸收;2)X 射线 —— 无法使其会聚;3)电子波 ——根据德布罗意物质波的假设,即电子具有微粒性,也具有波动性。
电子波长 λ=h/mv 电子运动速度与其加速电压U(伏特)有关.h —— Plank 常数m —— 电子质量v ——电子速度由公式计算知电子束 :约0.1~10A0。
而可见光 :4000~8000A0。
所以,使用电子束可大大提高分辨率。
(二) 电子透镜:..61.0sin 61.0A N u n Z λλ==电子可以凭借轴对称的非均匀电场、磁场的力,使其会聚或发散,从而达到成象的目的。
扫描电子显微镜的基本原理和结构下图为扫描电子显微镜的原理结构示意图。
由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。
在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。
末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。
高能电子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。
这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。
由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。
也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。
换言之,扫描电镜是采用逐点成像的图像分解法进行的。
光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。
这种扫描方式叫做光栅扫描。
扫描电镜由电子光学系统,信号收集及显示系统,真空系统及电源系统组成。
1 电子光学系统电子光学系统由电子枪,电磁透镜,扫描线圈和样品室等部件组成。
其作用是用来获得扫描电子束,作为产生物理信号的激发源。
为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。
<1>电子枪:其作用是利用阴极与阳极灯丝间的高压产生高能量的电子束。
目前大多数扫描电镜采用热阴极电子枪。
其优点是灯丝价格较便宜,对真空度要求不高,缺点是钨丝热电子发射效率低,发射源直径较大,即使经过二级或三级聚光镜,在样品表面上的电子束斑直径也在5-7nm,因此仪器分辨率受到限制。
现在,高等级扫描电镜采用六硼化镧(LaB6)或场发射电子枪,使二次电子像的分辨率达到2nm。
但这种电子枪要求很高的真空度。
扫描电子显微镜的原理和结构示意图<2>电磁透镜其作用主要是把电子枪的束斑逐渐缩小,是原来直径约为50m m的束斑缩小成一个只有数nm的细小束斑。
实验一扫描电子显微镜的结构原理及图像衬度观察一、实验目的1.了解扫描电镜的基本结构和工作原理。
2.通过实际样品观察与分析,明确扫描电镜的用途。
二、基本结构与工作原理简介扫描电镜利用细聚电子束在样品表面逐点扫描,与样品相互作用产生各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像扫描电镜具有景深大、图像立体感强、放大倍数范围大且连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效工具。
扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。
扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整。
放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。
扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。
扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。
扫描电镜的基本结构可分为六大部分,电子光学系统、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统。
图5-1是扫描电镜主机构造示意图。
试验时将根据实际设备具体介绍。
这一部分的实验内容可参照教材内容,并结合实验室现有的扫描电镜进行,在此不作详细介绍。
三、扫描电镜图像衬度观察1.样品制备扫描电镜的优点之一是样品制备简单,对于新鲜的金属断口样品不需要做任何处理,可直接进行观察。
但在有些情况下需对样品进行必要的处理。
(1) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。
(2) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理。
清洗时可能会失去一些表面形貌特征的细节,操作过程中应该注意。
(3) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5~10nm 为宜。
实验一扫描电子显微镜的结构及原理分析.(录像)docx实验一扫描电子显微镜的结构及原理分析1.概述扫描电子显微镜具有分辨率高,焦深大,放大倍数高、范围广、连续可调等特点;因此,自投产以来,得到了极为迅速的发展。
无论在冶金、化工、还是在生物、医学、地理、农业等各行业均有广泛的用途,在材料科学研究领域,扫描电镜已经被普遍应用于产品失效分析、金相组织分析、涂层组织和形貌分析,以及磨损面、腐蚀表面、氧化膜、沉积膜、多孔薄膜的表面形貌分析。
2.实验目的(1)了解扫描电子显微镜的基本结构和工作原理;(2)了解扫描电子显微镜的主要功能和用途;(3)熟悉扫描电子显微镜使用方法及操作步骤。
3.实验装置及材料(1)扫描电子显微镜(JSM-6390A型)1台;(2)超声清洗仪(SCQ-200)1台;(3)22Cr双相不锈钢样品、粉末、氧化膜、沉积膜、多孔薄膜等样品若干;(4)吹风机1只;(5)无水酒精、药棉若干。
4.实验原理扫描电镜的基本结构可分为电子光学系统、信号检测放大系统、图像显示及记录系统、真空系统和电源及控制系统五大部分。
扫描电子显微镜的工作原理是:由电子枪发射并经过聚焦的高能电子束在样品表面逐点扫描,激发样品产生各种物理信号,包括:二次电子、背散射电子、透射电子、俄歇电子、X射线等。
这些信号经检测器接收、放大,再转换成能在荧光屏上能够显示的图像信号或数字图像信号。
从而显示样品的形貌和成分。
扫描电子显微镜具有三大功能:(1)表面形貌分析扫描电镜下样品的表面形貌是通过其二次电子信号成像衬度而显示的。
在微观状态下,样品表面都是凹凸不平的,所以,样品上各点表面的法线与入射电子束间夹角也是不同的,其夹角越大,二次电子的产额越多,信号强度越大,图像亮度越强。
反之,二次电子的产额越少,信号强度越小,图像亮度越弱。
因此,根据图像衬度变化,便可以显示样品表面形貌。
(2)元素种类及分布定性分析样品表面元素种类及分布可通过接收样品表面背散射电子信号成像来实现。