垂径定理
- 格式:docx
- 大小:222.15 KB
- 文档页数:3
垂径定律1.定义垂径定理(Vertical Theorem)的通俗表达是:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
用数学语言表示,如果在一个圆中,直径DC垂直于弦AB于点E,则弦AB被点E平分(即AE=EB),且弦AB所对的两段弧AD和BD(包括优弧和劣弧)也被平分2.性质垂径定理包含多个重要的性质和推论,这些性质和推论在解决与圆相关的几何问题时非常有用。
1)基本性质:平分弦:垂直于弦的直径将弦平分为两段相等的部分。
平分弧:该直径还平分弦所对的两条弧,无论是优弧还是劣弧。
推论一:平分弦(非直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧。
这个推论是垂径定理的逆命题之一,它表明如果一条直径平分了一条非直径的弦,那么这条直径必然垂直于这条弦,并且平分弦所对的两段弧推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧。
这个推论进一步强化了垂径定理与圆的中心性质之间的联系,指出弦的垂直平分线不仅平分弦,还经过圆心,并平分弦所对的弧。
推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧。
这个推论是垂径定理的另一种逆命题形式,它说明如果一条直径平分了弦所对的一条弧,那么这条直径也垂直平分这条弦,并平分弦所对的另一条弧。
推论四:在同圆或者等圆中,两条平行弦所夹的弧相等。
这个推论虽然不直接由垂径定理推导出来,但它与垂径定理共同构成了圆内线段和弧之间关系的重要框架。
平行弦的性质与垂径定理相结合,为解决复杂的圆内几何问题提供了有力工具。
3.数学证明垂径定理的证明通常依赖于圆的基本性质,如半径相等、等腰三角形的性质等。
以下是一个简化的证明过程:设⊙O为给定的圆,DC为⊙O的直径,AB为⊙O内的一条弦,且DC⊥AB于点E。
连接OA和OB。
由于OA和OB都是⊙O的半径,所以OA=OB。
△OAB是一个等腰三角形,因为两边相等(OA=OB)。
由于AB⊥DC,根据等腰三角形的性质,等腰三角形底边上的高、中线和顶角的角平分线重合。
垂径定理知识点1. 垂径定理说啦,垂直于弦的直径平分弦!就好像你有一根绳子,我拿一根直直的杆子从中间穿过,那这根杆子是不是就把绳子给平均分成两半啦!比如说,一个圆形的蛋糕,直径把它分成相等的两半,这就是垂径定理在起作用呀,是不是很神奇?2. 嘿,垂径定理还提到,平分弦的直径垂直于弦呢!这不就像拔河比赛,中间的红绳被公平地分成两半,那和地面肯定是垂直的呀!就像一个圆形的大饼,用刀平分它,这刀肯定和饼是垂直的呀,是不是很有意思呢?3. 你想想看呀,垂径定理告诉我们,垂直于弦的直径平分弦且平分这条弦所对的两条弧!好比一把撑开的伞,伞骨垂直伞面,把伞面分成相等的部分,那同时也把下面的空间也给平分啦!比如一个圆形的池塘,中间有根柱子垂直立着,那柱子两边的水面区域就是相等的,超厉害的吧!4. 不得了哦,垂径定理里说平分弦所对的一条弧的直径,必垂直平分这条弦!就好像英雄总是和他的武器相得益彰,武器能发挥最大威力,英雄也能更厉害!像个钟的指针,钟的中心轴线平分了指针划过的弧,那必然也和指针是垂直的呀,多形象呀!5. 哇塞,垂径定理也包括平分弦所对的两条弧的直径,垂直平分弦呢!这就好像有个神奇的魔法棒,只要一挥,就能让东西变得整齐有序!比如一个摩天轮,中间的轴既能把那些车厢走过的弧平分,又能让连接车厢的杆子垂直,这就是垂径定理的魅力呀!6. 哎呀呀,垂径定理还有哦,弦的垂直平分线经过圆心!这简直就像是给圆心找到回家的路一样清楚明白呀!好比你放风筝,线的垂直平分线肯定是要经过风筝的中心呀!像个圆形的轮子,轮子上一根线的垂直平分线肯定会经过轮子中心,是不是很明了?7. 最后呢,平分弦的直径,不一定垂直于弦哦!这就好像不是所有的好人都一定是强壮的一样。
比如有根不太直的棍子平分了一根线,但它们不一定是垂直的呀。
垂径定理真的很有趣呢,我们一定要好好掌握呀!我的观点结论就是:垂径定理非常的神奇和有趣,在很多方面都有重要的应用,我们要多多去理解和运用它呀!。
CDABOE C ADOOABM 垂径定理的应用一、圆是轴对称(有无数条对称轴,过圆心的任一条直线都是对称轴);又是中心对称,对称中心是圆心. 二、垂径定理垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.符号语言:∵CD 为⊙O 的直径,AB 为⊙O 的弦,且CD ⊥AB ,垂足为E ,∴ AE =BE,推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.∵CD 为⊙O 的直径,AB 为⊙O 的弦(不是直径),且AE =BE.弦心距:圆心到弦的距离(垂线段OE ) 考点分析:垂径定理及推论的应用,证明. 典型例题分析类型1. 垂径定理及推论概念1.下面四个命题中正确的一个是( )A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2. 如图1-2,如果AB 为⊙O 直径,弦AB CD ⊥,垂足为E ,那么下列结论中错误的是……( )A .DE CE =B .C .BAD BAC ∠=∠D .AD AC >3. 如图1-3在⊙O 中,弦CD 垂直平分半径OA ,且CD =6cm , 则半径OA 的长为………( )A. cm 34B. cm 54C. cm 32D. cm 8图1-2 图1-3 图1-4 图2-14. 如图1-4,⊙O 的直径CD 与弦AB 交于点M ,添加条件:_____________(写出一个即可),就可得到M 是AB 的中点.类型2. 垂径定理的运用在垂径定理的运用中,通常的是要利用定理构建直角三角形,利用勾股定理进行运算.5.过⊙O 内一点M 的最长的弦长为cm 10,最短的弦长为cm 8,那么⊙O 的半径等于___cm ,OM 的长为___cm类型2. 垂径定理分类讨论1. 如图2-1,⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( ) A. 5OM 3≤≤ B. 5OM 4≤≤ C. 5OM 3<< D. 5OM 4<<2.已知:AB 、CD 为⊙O 的两条弦,且AB ∥CD ,⊙O 的半径为5cm ,AB =8cm ,CD =6cm ,求AB 、CD 之间的距离.3. 已知:△ABC 内接于⊙O ,AB =AC ,半径OB =5cm ,圆心O 到BC 的距离为3cm ,求AB 的长.类型3. 利用垂径定理求线段长度,角度ACBDABD C E.O1.如图3-1,在圆O中,直径AB垂直于弦CD,并且交CD于E,直径MN交CD于F,且OEFDFO2==,求COD∠.2.如图3-2,AB为⊙O的直径,且AB⊥弦CD于E,CD=16,AE=4,求OE的长.图3-23.如图3-3,在ABCRt∆中,∠C=900,AC=5cm,BC=12cm,以C为圆心、AC为半径的圆交斜边于D,求AD的长.图3-34.如图3-4,已知:AB是⊙O的直径,弦CD交AB于E点,BE=1,AE=5,∠AEC=300,求CD的长.5. 如图3-5,O 是两个同心圆的圆心,大圆的弦AB 交小圆于C 、D 两点,OE ⊥CD 于E ,若AB =2CD =4OE 求:大圆半径R 与小圆半径r 之比.类型4. 垂径定理相关证明1.如图4-1,BF ,CE 是⊙O 的直径,.求证:OCM OBN ∠=∠.图4-12.如图4-2,F 是以O 为圆心,BC 为直径的半圆上任一点,A 是的中点,AD ⊥BC 于D.求证:.21BF AD =图4-23.已知:如图4-3,⊙O 的弦AB ,CD 相交于点P ,PO 是APC ∠的平分线,点M ,N 分别是,的中点,MN 分别交AB ,CD 于点E ,F .求证:PO MN ⊥.图4-3类型5. 垂径定理的综合应用 1. 一水平放置的圆柱型水管的横截面如图5-1所示,如果水管横截面的半径是13cm ,水面宽24=AB cm ,则水管中水深是_______cm. 图5-1 2. 如图5-2,某地有一座圆弧形拱桥,桥下水面宽度为2.7米,拱顶高出水面4.2米,现有一艘宽3米,船仓顶部为方形并高出水面2米的货船要经过这里.问货船能否顺利通过这座拱桥?图5-2 3. 如图5-3,在某养殖场A 处发现高致病性禽流感,为防止禽流感蔓延,政府规定离疫点3千米范围内为捕杀区;离疫点3至5千米范围内为免疫区.现有一条笔直的公路EB 通疫区,若在捕杀区内CD =4千米,问这条公路在改免疫区内多少千米?图5-3【拓展提升】1. 如图6-1,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥ 于F .(1)求证:OEHF 是正方形.(2)若3=CH ,9=DH ,求圆心O 到弦图6-12.如图6-2,AB 是⊙O 的直径,P 是AB 上一动点,C 、D 是⊙O 的两点,有∠CPB =∠DPB.求证:PC =PD.COABE F D3. 已知:如图6-3,A,是半圆O 上的两点,CD 是⊙O 的直径,∠AOD =800,B 是中点.(1)在CD 上求作一点P ,使得AP+PB 最短;(2)若CD =4cm ,求AP+PB 的最小值.图6-34. 如图6-4,AB 是⊙O 的直径,CD 是弦,AE ⊥CD 于E ,BF ⊥CD 于F .求证: CE =DF ;OE =OF.图6-4 变式1. 如图6-5,⊙O 的直径AB 和弦CD 相交于点M ,CD AE ⊥,CD BF ⊥,垂足分别是E ,F .(1)求证:DF CE =.(2)若26=AB ,24=CD ,求BF AE -的值.图6-52:如果弦CD 是动弦,与直径AB 不相交,AE ⊥CD 于E ,BF ⊥CD 于F ,此时是否有: CE =DF ;OE =OF.如果有请证明,如果不成立,请说明.。
第07讲垂径定理(核心考点讲与练)【知识梳理】一.垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.二.垂径定理的应用垂径定理的应用很广泛,常见的有:(1)得到推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(2)垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.【核心考点精讲】一.垂径定理(共5小题)1.(2022•拱墅区一模)已知AB是⊙O的弦,半径OC⊥AB于点D.若DO=DC,AB=12,则⊙O的半径为()A.4B.4C.6D.62.(2016秋•北仑区期末)⊙O的直径AB和弦CD相交于点E,已知AE=6,EB=2,∠CEA=30°,则弦CD的长为()A.8B.4C.2D.23.(2022春•长兴县月考)如图,AB是⊙O的直径,CD⊥AB于点E,连结CO并延长,交弦AD于点F.若AB=10,BE=2,则OF的长度是()A.B.3C.D.4.(2022•博山区一模)如图,在平面直角坐标系中,半径为5的⊙E与y轴交于点A(0,﹣2),B(0,4),与x轴交于C,D,则点D的坐标为()A.B.C.D.5.(2021秋•北仑区校级期中)如图,⊙•O的直径AB=5,弦AC=3,点D是劣弧BC上的动点,CE⊥DC交AD于点E,则OE的最小值是()A.B.C.2﹣D.﹣1二.垂径定理的应用(共4小题)6.(2021秋•鹿城区校级期中)如图是一个小圆同学设计的一个鱼缸截面图,弓形ACB是由优弧AB与弦AB组成,AC是鱼缸的玻璃隔断,弓形AC部分不注水,已知CD⊥AB,且圆心O在CD上,AB=CD=80cm.注水时,当水面恰好经过圆心时,则水面宽EF为cm;注水过程中,求水面宽度EF的最大值为cm.7.(2022•旌阳区二模)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2,已知圆心O在水面上方,且⊙O被水面截得弦AB长为4米,⊙O半径长为3米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.2米C.米D.米8.(2021秋•温岭市期末)把一个球放入长方体纸盒,球的一部分露出盒外,球与纸盒内壁都刚好相切,其截面如图所示,若露出部分的高度为6cm,AF=DE=3cm,则这个球的半径是cm.9.(2021秋•诸暨市期末)一根排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=12,如果再注入一些水,当水面AB的宽变为16时,则水面AB上升的高度为.【过关检测】一.选择题(共7小题)1.(2022春•市中区校级月考)如图,在⊙O中,OC⊥AB于点C,若⊙O的半径为10,OC=5,则弦AB的长为()A.5B.10C.5D.102.(2021秋•温州期末)如图,在⊙O中,半径OC⊥AB于点D.已知OC=5,OD=4,则弦AB的长为()A.3B.4C.5D.63.(2021秋•嘉兴期末)如图,⊙O的直径AB=12,弦CD垂直AB于点P.若BP=2,则CD的长为()A.2B.4C.4D.84.(2021秋•嵊州市期末)如图,CD是⊙O的弦,直径AB⊥CD,垂足为M,连结AD.若CD=8,BM=2,则AD的长为()A.10B.5C.4D.35.(2021秋•东阳市期末)在圆柱形油槽内装有一些油,截面如图所示,已知截面⊙O半径为5cm,油面宽AB为6cm,如果再注入一些油后,油面宽变为8cm,则油面AB上升了()cm.A.1B.3C.3或4D.1或7 6.(2021秋•宁波期末)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=6cm,则球的半径为()A.3cm B.cm C.cm D.cm 7.(2021秋•拱墅区期中)如图,在⊙O中,直径AB=10,弦DE⊥AB于点C,若OC:OA=4:5,则DE的长为()A.6B.7C.8D.9二.填空题(共8小题)8.(2021秋•余姚市期末)如图1,水车又称孔明车,是我国最古老的农业灌溉工具,是珍贵的历史文化遗产.如图2,圆心O在水面上方,且⊙O被水面截得的弦AB长为8米,半径为5米,则圆心O到水面AB的距离为米.9.(2021秋•瑞安市期末)如图,AB为⊙O的直径,弦CD⊥AB于点E,CD=10,BE=3,则AE长为.10.(2021秋•拱墅区期末)如图,一个底部呈球形的烧瓶,球的半径为5cm,瓶内原有液体的最大深度CD=4cm.部分液体蒸发后,瓶内液体的最大深度下降为2cm,则截面圆中弦AB的长减少了cm(结果保留根号).11.(2021秋•温州校级月考)如图是郑州圆形“戒指桥”,其数学模型为如图所示.已知桥面跨径AB=20米,D为圆上一点,DC⊥AB于点C,且CD=BC=14米,则该圆的半径长为米.12.(2022•瑞安市开学)如图,矩形ABCD中,E,F分别是边AB,BC上的两个动点,将△BEF沿着直线EF作轴对称变换,得到△B′EF,点B′恰好在边AD上,过点D,F,B′作⊙O,连结OF.若OF⊥BC,AB′=CF=3时,则AE=.13.(2021秋•镇海区期末)⊙O的弦AB的长为8cm,弦AB的弦心距为3cm,则⊙O的半径为cm.14.(2020•金华模拟)如图,依据九上教材中的丁字尺,小明开始自制丁字尺:F、A、D、E在同一直线上,AF⊥AB,AB∥CD,AF=4cm,AD=DE=2cm.(1)现有一圆经过F、E,弧EF为劣弧,且与AB交于G,如果测得AG的长为10cm,那么圆的半径为;(2)小明在DC上制作单位刻度时不小心把尺子割断了,只余DM=1cm,此时只运用这把残破的丁字尺的已知数据(一条线段不能分段测量且不能作延长线),能计算或测量(不计误差)得到的最大半径是.15.(2022•海曙区一模)如图,圆O的半径为4,点P是直径AB上定点,AP=1,过P 的直线与圆O交于C,D两点,则△COD面积的最大值为;作弦DE∥AB,CH ⊥DE于H,则CH的最大值为.三.解答题(共5小题)16.(2021秋•西湖区校级月考)如图,CD为⊙O的直径,CD⊥AB于E,CE=8,DE=2,求AB的长.17.(2021•柯桥区模拟)如图,在⊙O中,过半径OD的中点C作AB⊥OD交⊙O于A、B两点,且AB=2.(1)求OD的长;(2)计算阴影部分的周长.18.(2021秋•玄武区校级月考)如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB 的垂线,交AB的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=EG=8,求⊙O的半径.19.(2021秋•下城区校级月考)如图,有一座圆弧形拱桥,它的跨度AB为30m,拱高PM 为9m,当洪水泛滥到跨度只有15m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有2m,即PN=2m时,试求:(1)拱桥所在的圆的半径;(2)通过计算说明是否需要采取紧急措施.20.(2020秋•永嘉县校级期末)如图,AB是⊙O的直径,四边形ABCD内接于⊙O,OD 交AC于点E,AD=CD.(1)求证:OD∥BC;(2)若AC=10,DE=4,求BC的长.。
垂径定理
1.弦心距:
(1)圆心到弦的距离叫做弦心距。
(2)圆心角、弧、弦、弦心距之间的相等关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的圆心角也相等,所对弦的弦心距也相等。
四者有一个相等,则其他三个都相等。
圆心到弦的垂线段的长度称为这条弦的弦心距。
2.垂径定理及推论:
(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
(2)平分弦(此弦不能是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(3)弦的垂直平分线过圆心,且平分弦对的两条弧。
(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦
(5)平行弦夹的弧相等。
1.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,求球的半径。
2.如图,AB是半圆的直径,O是圆心,C是半圆上一点,D是弧AC中点,OD交弦AC于E,连接BE,若AC=8,DE=2,求(1)求半圆的半径长;(2)BE的长度。
3.如图,小明将一块三角板放在⊙O上,三角板的一直角边经过圆心O,测得AC=5cm,AB=3cm,求⊙O的半径
1、(2011年北京四中中考模拟18)已知:如图1,AB是⊙O的弦,半径OC
图1
⊥AB 于点D ,且AB=8m ,OC=5m ,则DC 的长为( )
A 3cm
B 2.5cm
C 2cm
D 1cm
2、(2011年北京四中中考模拟20)如图,C 是以AB 为直径的⊙O 上一点,已
知AB=5,BC=3,则圆心O 到弦BC 的距离是( )
A 、1.5
B 、2
C 、2.5
D 、3
3、(2011年浙江杭州五模)如图,圆O 过点B、C,圆心O在等腰直角ABC
∆的内部,090,1,6BAC OA BC ∠===,则圆O 的半径为( ) A、13 B、13 C、6 D、213
A
O
B C
第3题图 4、(2011年浙江杭州六模)如图,把⊙O 1向右平移8个单位长度得⊙O 2,
两圆相交于A.B ,且O 1A ⊥O 2A ,则图中阴影部分的面积是( )
A.4π-8 B . 8π-16 C.16π-16 D. 16π-32
5.(2011年重庆江津区七校联考)如图,一条公路的转弯处是一段圆弧(图中的AB 弧),点O 是这段弧的圆心,AB =120m ,C 是AB 弧上一点,OC ⊥AB 于D ,CD =20m ,则该弯路的半径为________米
6. (2011浙江慈吉 模拟)如图,△ABC 内接于⊙O , ∠B=42°, 则∠OCA=__________.
7.(2011年杭州市西湖区)工程上常用钢珠来测量零件上小孔的宽口,假设钢珠的直径是
10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小孔的宽口AB 是 mm .
8.(2011年北京中考)一个圆形花圃的面积为300лm 2,你估计它的半径为 (误差小于0.1m )
9.(2011年北京四中中考模拟19)在平面直角坐标系中,圆心O 的坐标为(-3,4),以半径r 在坐标平面内作圆,
(1)当r 时,圆O 与坐标轴有1个交点;
C A B O
C A B
O 第4题
O C B A 第6题图 B A 8mm 第7题
D C B A O 第5题图
(2)当r 时,圆O与坐标轴有2个交点;
(3)当r 时,圆O与坐标轴有3个交点;
(4)当r 时,圆O与坐标轴有4个交点;
10.(2011年黄冈市浠水县中考调研试题)在半径为5的⊙O中,有两平行弦AB.CD,且AB
=6,CD=8,则弦AC的长为__________.AB与CD间距离为。
11.(2011年北京四中中考)一个圆弧形拱桥的跨度为6cm,桥的拱高为1cm,那么拱桥的半径是________。