数学定义定理公式
- 格式:doc
- 大小:24.00 KB
- 文档页数:2
初中数学全部定义定理公式初中数学全部定义定理公式1 过两点有且只有一条直线过两点有且只有一条直线2 两点之间线段最短两点之间线段最短3 同角或等角的补角相等同角或等角的补角相等4 同角或等角的余角相等同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理平行公理 经过直线外一点,有且只有一条直线与这条直线平行经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行同位角相等,两直线平行10 内错角相等,两直线平行内错角相等,两直线平行11 同旁内角互补,两直线平行同旁内角互补,两直线平行12两直线平行,同位角相等两直线平行,同位角相等13 两直线平行,内错角相等两直线平行,内错角相等14 两直线平行,同旁内角互补两直线平行,同旁内角互补 15 定理定理 三角形两边的和大于第三边三角形两边的和大于第三边16 推论推论 三角形两边的差小于第三边三角形两边的差小于第三边17 三角形内角和定理三角形内角和定理 三角形三个内角的和等于180180°°18 推论1 直角三角形的两个锐角互余直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等全等三角形的对应边、对应角相等22边角边公理边角边公理(SAS) (SAS) 有两边和它们的夹角对应相等的两个三角形全等有两边和它们的夹角对应相等的两个三角形全等23 角边角公理角边角公理( ASA)( ASA)有两角和它们的夹边对应相等的两个三角形全等有两角和它们的夹边对应相等的两个三角形全等有两角和它们的夹边对应相等的两个三角形全等 24 推论推论(AAS) (AAS) 有两角和其中一角的对边对应相等的两个三角形全等有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理边边边公理(SSS) (SSS) 有三边对应相等的两个三角形全等有三边对应相等的两个三角形全等26 斜边、直角边公理斜边、直角边公理(HL) (HL) 有斜边和一条直角边对应相等的两个直角三角形全等有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的性质定理 等腰三角形的两个底角相等等腰三角形的两个底角相等 ( (即等边对等角)即等边对等角)即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于6060°°34 等腰三角形的判定定理等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)角对等边)35 推论1 三个角都相等的三角形是等边三角形三个角都相等的三角形是等边三角形36 推论推论 2 2 有一个角等于有一个角等于6060°的等腰三角形是等边三角形°的等腰三角形是等边三角形°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于3030°那么它所对的直角边等于斜边的一半°那么它所对的直角边等于斜边的一半°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半直角三角形斜边上的中线等于斜边上的一半39 定理定理 线段垂直平分线上的点和这条线段两个端点的距离相等线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形关于某条直线对称的两个图形是全等形43 定理定理 2 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称线对称46勾股定理勾股定理直角三角形两直角边a 、b 的平方和、等于斜边c 的平方,即a^2+b^2=c^2 47勾股定理的逆定理勾股定理的逆定理如果三角形的三边长a 、b 、c 有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形是直角三角形48定理定理 四边形的内角和等于360360°°49四边形的外角和等于360360°°50多边形内角和定理多边形内角和定理 n n 边形的内角的和等于(边形的内角的和等于(n-2n-2n-2)×)×)×180180180°°51推论推论 任意多边的外角和等于360360°° 52平行四边形性质定理1 平行四边形的对角相等平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等平行四边形的对边相等54推论推论 夹在两条平行线间的平行线段相等夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积菱形面积==对角线乘积的一半,即S=S=((a ×b )÷)÷2 267菱形判定定理1 四边都相等的四边形是菱形四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,正方形的两条对角线相等,并且互相垂直平分,并且互相垂直平分,并且互相垂直平分,每条对角线平分一组对每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理逆定理 如果两个图形的对应点连线都经过某一点,并且被这一如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形性质定理 等腰梯形在同一底上的两个角相等等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等等腰梯形的两条对角线相等76等腰梯形判定定理等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形对角线相等的梯形是等腰梯形78平行线等分线段定理平行线等分线段定理 如果一组平行线在一条直线上截得的线段如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第经过三角形一边的中点与另一边平行的直线,必平分第三边三边 81 三角形中位线定理三角形中位线定理 三角形的中位线平行于第三边,并且等于它三角形的中位线平行于第三边,并且等于它的一半的一半82 梯形中位线定理梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的梯形的中位线平行于两底,并且等于两底和的一半一半 L= L=(a+b a+b)÷)÷)÷2 S=L 2 S=L×h 83 (1)比例的基本性质比例的基本性质比例的基本性质 如果a:b=c:d,a:b=c:d,那么那么ad=bc如果ad=bc,ad=bc,那么那么a:b=c:d84 (2)合比性质合比性质合比性质 如果a /b=c b=c//d,d,那么那么那么(a (a (a±±b)b)//b=(c b=(c±±d)d)//d85 (3)等比性质等比性质等比性质 如果a /b=c b=c//d=d=……=m =m//n(b+d+n(b+d+……+n +n≠≠0),0),那么那么那么(a+c+(a+c+……+m)+m)//(b+d+(b+d+……+n)=a +n)=a//b86 平行线分线段成比例定理平行线分线段成比例定理 三条平行线截两条直线,所得的对应三条平行线截两条直线,所得的对应线段成比例线段成比例 87 推论推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例,所得的对应线段成比例 88 定理定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例边对应成比例90 定理定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(两角对应相等,两三角形相似(ASA ASA ASA))92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(两边对应成比例且夹角相等,两三角形相似(SAS SAS SAS))94 判定定理3 三边对应成比例,两三角形相似(三边对应成比例,两三角形相似(SSS SSS SSS))95 定理定理 如果一个直角三角形的斜边和一条直角边与另一个直角三如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比相似三角形周长的比等于相似比 98 性质定理3 相似三角形面积的比等于相似比的平方相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值于它的余角的正切值101圆是定点的距离等于定长的点的集合圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆径的圆 106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线离相等的一条直线109定理定理 不在同一直线上的三点确定一个圆。
初中数学全部定义定理公式1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角〕31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等〔等角对等边〕35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于〔n-2〕×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=〔a×b〕÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=〔a+b〕÷2 S=L×h83 (1)比例的根本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边〔或两边的延长线〕,所得的对应线段成比例88 定理如果一条直线截三角形的两边〔或两边的延长线〕所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边〔或两边的延长线〕相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似〔ASA〕92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似〔SAS〕94 判定定理3 三边对应成比例,两三角形相似〔SSS〕95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
数学定义、定理、公式大全1. 数学定义1.1 数集•有限集:指元素个数有限的集合,记作A={a₁,a₂,…,an}。
•无限集:指元素个数无限的集合,记作A={a₁,a₂,…,an,…}。
•空集:不含任何元素的集合,记作∅或{}。
•子集:若集合A中的每个元素都是集合B中的元素,则称A为B的子集,记作A⊆B。
1.2 常用数系•自然数:正整数,记作N={1,2,3,4,…}。
•整数:正整数、负整数和0的集合,记作Z={…, -2,-1,0,1,2,…}。
•有理数:可以写成两个整数的比的数,记作Q。
•实数:包含有理数和无理数的数,记作R。
1.3 函数•函数:指定了集合A到集合B的一种关联规则,记作f:A→B。
•定义域:函数f中所有可能输入的集合,记作D(f)或Dom(f)。
•值域:函数f中所有可能输出的集合,记作R(f)或Ran(f)。
•逆函数:对于函数f:A→B,如果任意b∈B,都有唯一的a∈A,使得f(a)=b,则函数g:B→A称为f的逆函数,记作g=f⁻¹。
2. 数学定理2.1 代数定理•因式分解定理:每个整数都可以唯一地表示为素数的乘积。
•二次根定理:若在实数域上,对于方程ax²+bx+c=0,当b²-4ac>0时,方程有两个不相等的实根;当b²-4ac=0时,方程有两个相等的实根;当b²-4ac<0时,方程没有实根。
2.2 几何定理•勾股定理:对于直角三角形,斜边的平方等于两直角边的平方和。
•正弦定理:在任意三角形ABC中,边长a、b、c与对应的角A、B、C之间存在以下关系:a/sinA=b/sinB=c/sinC。
•余弦定理:在任意三角形ABC中,边长a、b、c与对应的角A、B、C之间存在以下关系:c²=a²+b²-2abcosC。
2.3 微积分定理•基本定理:若函数f在区间[a,b]上连续,并且F是f的任意一个原函数,则∫[a,b]f(x)dx=F(b)-F(a)。
初中数学全部定义定理公式
一、定义
1、数:由数字表示的量或标志符号,用来代替实物,并用来计算、比较和研究事物的结果或关系。
2、集合:按照其中一种特征组织起来的一系列元素的有序统一体。
3、元素:又称成员,是组成集合的基本和最小单位。
4、空集:没有任何元素的集合称为空集,表示为∅。
5、并集:两个集合的所有元素的结合体。
表示为A∪B,即A和B的“或”集合。
6、交集:两个集合的公共部分,表示为A∩B,即A和B的“且”集合。
7、补集:指一个集合中不属于另一个集合中的元素与另一个集合相对应的集合,表示为A-B。
8、差集:指两个集合A和B中不同时属于两个集合的元素的集合,表示为A\B。
9、概率:是指在一定条件下,随机事件发生的可能性的大小指标。
10、函数:在其中一变量与另一变量之间关系的函数用等号表示,叫做函数。
二、公式
1、交集的公式:A∩B={x,x∈A且x∈B}
2、并集的公式:A∪B={x,x∈A或x∈B}
3、差集的公式:A\B={x,x∈A且x∉B}
4、补集的公式:A-B={x,x∈A且x∉B}
5、阶乘的公式:n!=1×2×3×4×…×n
6、数列求和的公式:Sn=a1+a2+a3+…+an
7、有理数的乘法的公式:(m/n)×(r/s) = (mr)/(ns)
8、有理数的除法的公式:(m/n)÷(r/s) = (ms)/(nr)。
小学数学公式大全1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a +b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径?=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积=长×宽×高V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch17、圆柱的体积=底面积×高V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形C周长S面积a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒积=底面积×高V=Sh第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
送给愿意学好数学的小朋友之—————小学数学公式定理定义第一部分:概念、定义定理1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O 前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、方程式:含有未知数的等式叫方程式。
9、一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
即分母乘以这个整数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
小学数学必背定义定理公式专题一:体积和表面积1.三角形的面积=底×高÷2。
公式S= a×h÷22.正方形的面积=边长×边长公式S= a24.平行四边形的面积=底×高公式S= a×h5.梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷26.内角和:三角形的内角和=180度。
7.长方体的表面积=(长×宽+长×高+宽×高)×2 公式:S=(a×b+a×c+b×c)×28.正方体的表面积=棱长×棱长×6 公式:S=6a29.长方体的体积=长×宽×高公式:V = abh10.长方体(或正方体)的体积=底面积×高公式:V = abh11.正方体的体积=棱长×棱长×棱长公式:V = a312.圆的周长=直径×π 公式:L=πd=2πr13.圆的面积=半径×半径×π 公式:S=πr214.圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh15.圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2 16.圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh17.圆锥的体积=1/3底面×积高。
公式:V=1/3Sh专题二:算术1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b = b + a3、乘法交换律:a × b = b × a4、乘法结合律:a × b × c = a ×(b × c)5、乘法分配律:a × b + a × c = a × b + c6、除法的性质:a ÷ b ÷ c = a ÷(b × c)7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
初中数学所有公式定义性质定理数学是一门基础学科,其中包含了大量的公式、定义、性质和定理。
以下是一些初中数学中常见的公式、定义、性质和定理。
1.公式:- 一次方程:ax + b = 0,其中 a 和 b 是已知常数,x 是未知数。
- 二次方程:ax^2 + bx + c = 0,其中 a、b 和 c 是已知常数,x 是未知数。
-直角三角形勾股定理:a^2+b^2=c^2,其中a和b是直角三角形的两条直角边,c是斜边。
-等差数列前 n 项和:Sn = (a1 + an) * n / 2,其中 a1 是首项,an 是末项,n 是项数。
-等比数列前n项和:Sn=a1*(q^n-1)/(q-1),其中a1是首项,q是公比,n是项数。
-圆的面积:A=π*r^2,其中r是半径。
-三角形的面积:A=1/2*b*h,其中b是底边长,h是高。
2.定义:-等腰三角形:具有两条边相等的三角形。
-直角三角形:具有一个角为直角(90度)的三角形。
-平行四边形:具有两对对边平行的四边形。
-正方形:具有四条边相等且四个角都是直角的四边形。
-梯形:具有两对平行边的四边形。
-锐角、直角和钝角:锐角小于90度,直角等于90度,钝角大于90度。
-圆:由平面上到圆心距离相等的所有点组成的图形。
3.性质:- 两个正数的乘积等于其对数的和:a * b = c,c = loga + logb。
- 两个正数的商等于其对数的差:a / b = c,c = loga - logb。
-乘法交换律:a*b=b*a。
-加法交换律:a+b=b+a。
-乘法结合律:(a*b)*c=a*(b*c)。
-加法结合律:(a+b)+c=a+(b+c)。
4.定理:-两个相等的角的补角相等。
-相等的直角三角形的两条直角边相等。
-对角线相等的平行四边形是矩形。
-在一个等腰三角形中,等腰边的中线也是高和角平分线。
-一个三角形的内角和等于180度。
-具有相等底边和高的梯形面积相等。
初中数学全部定义定理公式
一、基本定义
1.集合:在数学中,集合是一组具有特定特征的数据的集合,以大括
号括起来表示。
2.平方根:正数的平方根指的是一个数的平方,等于原来的数。
3.负数的平方根指的是一个负数的平方,等于原来的数。
4.有理数:有理数是一种可以用十进制分数来表示的数,如:1/2、
3/4、5/6等。
5.实数:实数是指所有可以用实际数字表示的数,如整数、有理数、
虚数等。
7.直线:直线是一种带有方向的无限长的线段,由两点确定。
8.空集:空集也叫做空集合,是一种没有任何元素的集合,用符号Ø
表示。
二、平面几何定理及公式
1.正方形的面积公式:面积=a2,其中a为正方形的边长。
2.长方形的面积公式:面积=a*b,其中a和b分别为长方形的长和宽。
3.三角形的面积公式:面积=1/2*a*h,其中a为三角形的底边长,h
为三角形的高。
4.圆形的面积公式:面积=πr2,其中r为圆的半径。
5.梯形的面积公式:面积=1/2*(a+b)*h,其中a和b分别为梯形的上底和下底,h为梯形的高。
小学阶段必背数学定义定理公式三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
读懂理解会应用以下定义定理性质公式一、算术方面1、加法交换律:两数相加交换加数的位置,和不变。
a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
a+b+c=a+c+b=a+(b+c)3、乘法交换律:两数相乘,交换因数的位置,积不变。
a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
定义定理公式
三角形的面积=底×高÷2。
公式S= a×h÷2
正方形的面积=边长×边长公式S= a×a
长方形的面积=长×宽公式S= a×b
平行四边形的面积=底×高公式S= a×h
梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh
长方体(或正方体)的体积=底面积×高公式:V=abh
正方体的体积=棱长×棱长×棱长公式:V=aaa
圆的周长=直径×π公式:L=πd=2πr
圆的面积=半径×半径×π公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh
圆锥的体积=1/3底面×积高。
公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
单位换算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1吨=1000千克 1千克= 1000克= 1公斤 = 1市斤
(5)1公顷=10000平方米 1亩=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米
数量关系计算公式方面
1.单价×数量=总价
2.单产量×数量=总产量
3.速度×时间=路程
4.工效×时间=工作总量
小学数学定义定理公式(二)
一、算术方面
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第
三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×5。
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15.分数除以整数(0除外),等于分数乘以这个整数的倒数。
16.真分数:分子比分母小的分数叫做真分数。
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
18.带分数:把假分数写成整数和真分数的形式,叫做带分数。
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20.一个数除以分数,等于这个数乘以分数的倒数。
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。