2014年全国各地中考数学真题分类解析汇编:46与函数有关的选择题压轴题
- 格式:doc
- 大小:188.50 KB
- 文档页数:9
二次函数一、选择题1. (2014•上海,第3题4分)如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的2. (2014•四川巴中,第10题3分)已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是()A.abc<0B.﹣3a+c<0 C.b2﹣4ac≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c 考点:二次函数的图象和符号特征.分析:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0.B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y<0,即可判断;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0;D.把二次函数y=ax2+bx+c化为顶点式,再求出平移后的解析式即可判断.解答:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0,故本选项错误;B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y=a+b+c=a ﹣4a+c=﹣3a+c<0,故本选项正确;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故本选项错误;D.y=ax2+bx+c=,∵=2,∴原式=,向左平移2个单位后所得到抛物线的解析式为,故本选项错误;故选:B.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.3. (2014•山东威海,第11题3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()该抛物线的对称轴是:∴的x、y的部分对应值如下表:x=5. (2014•山东烟台,第11题3分)二次函数y=ax+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个考点:二次函数的图象与性质.解答:根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x 的增大而减小.解答:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,所以①正确;∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,所以②错误;∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b =﹣4a ,∴a +4a +c =0,即c =﹣5a ,∴8a +7b +2c =8a ﹣28a ﹣10a =﹣30a , ∵抛物线开口向下,∴a <0,∴8a +7b +2c >0,所以③正确; ∵对称轴为直线x =2, ∴当﹣1<x <2时,y 的值随x 值的增大而增大,当x >2时,y 随x 的增大而减小,所以④错误.故选B .点评:本题考查了二次函数图象与系数的关系:二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.6.(2014山东济南,第15题,3分)二次函数的图象如图,对称轴为1=x .若关于x 的一元二次方程02=-+t bx x (为实数)在41<<-x 的范围内有解,则的取值范围是A .1-≥tB .31<≤-tC .81<≤-tD .83<<t 【解析】由对称轴为1=x ,得2-=b ,再由一元二次方程022=--t x x 在41<<-x 的范围内有解,得)4()1(y t y <≤,即81<≤-t ,故选C .7. (2014•山东聊城,第12题,3分)如图是二次函数y=ax 2+bx+c (a ≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b ﹣2a=0;②4a ﹣2b+c <0;③a ﹣b+c=﹣9a ;④若(﹣3,y 1),(,y 2)是抛物线上两点,则y 1>y 2,其中正确的是( )=8.(2014年贵州黔东南9.(3分))已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D. 2015考点:抛物线与x轴的交点.分析:把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.解答:解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.点评:本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.9. (2014年贵州黔东南9.(4分))如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③ B.①②④ C.①③④ D.②③④考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=﹣1时,x=2时二次函数的值的情况进行推理,进而对所得结论进行判断.解答:解:由二次函数的图象开口向上可得a>0,根据二次函数的图象与y轴交于正半轴知:c>0,由对称轴直线x=2,可得出b与a异号,即b<0,则abc<0,故①正确;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c,由函数图象可以看出当x=﹣1时,二次函数的值为正,即a+b+c>0,则b<a+c,故②选项正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,由函数图象可以看出当x=2时,二次函数的值为负,即4a+2b+c<0,故③选项错误;由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,故④D选项正确;故选B.点评:本题考查二次函数图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=4a+2b+c,然后根据图象判断其值.12. (2014•年山东东营,第9题3分)若函数y=mx+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为()A.0 B.0或2 C.2或﹣2 D.0,2或﹣2考点:抛物线与x轴的交点.分析:分为两种情况:函数是二次函数,函数是一次函数,求出即可.解答:解:分为两种情况:①当函数是二次函数时,∵函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,∴△=(m+2)2﹣4m(m+1)=0且m≠0,解得:m=±2,②当函数时一次函数时,m=0,此时函数解析式是y=2x+1,和x轴只有一个交点,故选D.点评:本题考查了抛物线与x轴的交点,根的判别式的应用,用了分类讨论思想,题目比较好,但是也比较容易出错.13.(2014•山东临沂,第14题3分)在平面直角坐标系中,函数y=x2﹣2x(x≥0)的图象为14.(2014•山东淄博,第8题4分)如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+2考点:待定系数法求二次函数解析式;反比例函数图象上点的坐标特征.专题:计算题.分析:将A坐标代入反比例解析式求出m的值,确定出A的坐标,将A与B坐标代入二次函数解析式求出b与c的值,即可确定出二次函数解析式.解答:解:将A(m,4)代入反比例解析式得:4=﹣,即m=﹣2,∴A(﹣2,4),将A(﹣2,4),B(0,﹣2)代入二次函数解析式得:,解得:b=﹣1,c=﹣2,则二次函数解析式为y=x2﹣x﹣2.故选A.点评:此题考查l待定系数法求二次函数解析式,以及反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.15.(2014•山东淄博,第12题4分)已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A (0,2),B(8,3),则h的值可以是()A. 6 B. 5 C. 4 D. 3考点:二次函数的性质.专题:计算题.分析:根据抛物线的顶点式得到抛物线的对称轴为直线x=h,由于所给数据都是正数,所以当对称轴在y轴的右侧时,比较点A和点B都对称轴的距离可得到h<4.解答:解:∵抛物线的对称轴为直线x=h,∴当对称轴在y轴的右侧时,A(0,2)到对称轴的距离比B(8,3)到对称轴的距离小,∴x=h<4.故选D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.16.(2014•四川南充,第10题,3分)二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有()A.①②③B.②④C.②⑤D.②③⑤分析:根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣=1,得到b=﹣2a>0,即2a+b=0,由抛物线与y轴的交点位置得到c>0,所以abc<0;根据二次函数的性质得当x=1时,函数有最大值a+b+c,则当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm;根据抛物线的对称性得到抛物线与x轴的另一个交点在(﹣1,0)的右侧,则当x=﹣1时,y<0,所以a﹣b+c<0;把ax12+bx1=ax22+bx2先移项,再分解因式得到(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,则a(x1+x2)+b]=0,即x1+x2=﹣,然后把b=﹣2a代入计算得到x1+x2=2.解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为性质x=﹣=1,∴b=﹣2a>0,即2a+b=0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线对称轴为性质x=1,∴函数的最大值为a+b+c,∴当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm,所以③正确;∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为性质x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧∴当x=﹣1时,y<0,∴a﹣b+c<0,所以④错误;∵ax12+bx1=ax22+bx2,∴ax12+bx1﹣ax22﹣bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b]=0,即x1+x2=﹣,∵b=﹣2a,∴x1+x2=2,所以⑤正确.故选D.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x 轴没有交点.17.(2014•甘肃白银、临夏,第9题3分)二次函数y=x2+bx+c,若b+c=0,则它的图象一定过点()19.(2014•甘肃兰州,第11题4分)把抛物线y=﹣2x先向右平移1个单位长度,再向上平20.(2014•甘肃兰州,第14题4分)二次函数y=ax+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是(),得二、填空题1. (2014•浙江杭州,第15题,4分)设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为y=x2﹣x+2或y=﹣x2+x+2.=x=2. *(2014年河南9.(4分))已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB的长为.答案:8.解析:根据点A到对称轴x=2的距离是4,又点A、点B关于x=2对称,∴AB=8.3. (2014年湖北咸宁15.(3分))科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:温度t/℃﹣4 ﹣2 0 1 4植物高度增长量l/mm 41 49 49 46 25科学家经过猜想、推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为﹣1℃.考点:二次函数的应用.分析:首先利用待定系数法求二次函数解析式解析式,在利用二次函数最值公式求法得出即可.解答:解:设y=ax2+bx+c (a≠0),选(0,49),(1,46),(4,25)代入后得方程组,解得:,所以y与x之间的二次函数解析式为:y=﹣x2﹣2x+49,当x=﹣=﹣1时,y有最大值50,即说明最适合这种植物生长的温度是﹣1℃.故答案为:﹣1.点评:此题主要考查了二次函数的应用以及待定系数法求二次函数解析式,得出二次函数解析式是解题关键.3.4.5.6.7.8.三、解答题1. (2014•上海,第24题12分)在平面直角坐标系中(如图),已知抛物线y=x2+bx+c与x 轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.∴B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA 的度数.=×∴=,∴.,,的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;.=,∴解得∴5. (2014•山东潍坊,第24题13分)如图,抛物线y=ax+bx+c(a≠O)与y轴交于点C(O,4),与x轴交于点A和点B,其中点A的坐标为(-2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线Z与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标。
2014年中考数学压轴题精编—浙江篇1.(浙江省杭州市)在平面直角坐标系xOy 中,抛物线的解析式是y =41x2+1,点C 的坐标为(-4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上.(1)写出点M 的坐标;(2)当四边形CMQP 是以MQ ,PC 为腰的梯形时. ①求t 关于x 的函数解析式和自变量x②当梯形CMQP 的两底的长度之比为1 :2时,求t2.(浙江省台州市)如图1,Rt △ABC ≌Rt △EDF ,∠ACB =∠F =90°,∠A =∠E =30°.△EDF 绕着边AB 的中点D 旋转,DE ,DF 分别交线段..AC 于点M ,K . (1)观察:①如图2、图3,当∠CDF =0°或60°时,AM +CK _______MK (填“>”,“<”或“=”).②如图4,当∠CDF =30°时,AM +CK _______MK (只填“>”或“<”).(2)猜想:如图1,当0°<∠CDF <60°时,AM +CK _______MK ,证明你所得到的结论. (3)如果MK 2+CK 2=AM 2,请直接写出∠CDF 的度数和AM MK的值.3.(浙江省台州市)如图,Rt △ABC 中,∠C =90°,BC =6,AC =8.点P ,Q 都是斜边AB 上的动点,点P 从B 向A 运动(不与点B 重合),点Q 从A 向B 运动,BP =AQ .点D ,E 分别是点A ,B 以Q ,DB CAF EM K 图1DBC A(F ,K )EM 图2DBC A FEK图3 (M )DBCAF EM K图4P 为对称中心的对称点,HQ ⊥AB 于Q ,交AC 于点H .当点E 到达顶点A 时,P ,Q 同时停止运动.设BP 的长为x ,△HDE 的面积为y . (1)求证:△DHQ ∽△ABC ;(2)求y 关于x 的函数解析式并求y 的最大值; (3)当x 为何值时,△HDE 为等腰三角形? 4.(浙江省温州市)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,过点B 作射线BB l ∥AC .动点D 从点A 出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E 从点C 出发沿射线AC 方向以每秒3个单位的速度运动.过点D 作DH ⊥AB 于H ,过点E 作EF 上AC 交射线BB 1于F ,G 是EF 中点,连结DG .设点D 运动的时间为t 秒.(1)当t 为何值时,AD =AB ,并求出此时DE 的长度; (2)当△DEG 与△ACB 相似时,求t 的值;(3)以DH 所在直线为对称轴,线段AC 经轴对称变换后的图形为A ′C ′.①当t >53时,连结C ′C ,设四边形ACC ′A ′的面积为S , 求S 关于t 的函数关系式;②当线段A ′C ′与射线BB 1有公共点时,求t 的取值范围 (写出答案即可).5.(浙江省湖州市)如图,已知在矩形ABCD 中,AB =2,BC =3,P 是线段AD 边上的任意一点(不含端点A ,D ),连结PC ,过点P 作PE ⊥PC 交AB 于E .(1)在线段AD 上是否存在不同于P 的点Q ,使得QC ⊥QE ?若存在,求线段AP 与AQ 之间的数量D B HAEGF CB 1关系;若不存在,请说明理由;(2)当点P在AD上运动时,对应的点E也随之在AB上运动,求BE的取值范围.A P DEB C6.(浙江省湖州市)如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)连结EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.。
2014年中考数学压轴题精编—湖南篇1.(湖南省长沙市)已知:二次函数y=ax2+bx-2的图象经过点(1,0),一次函数的图象经过原点和点(1,-b),其中a>b>0且a、b为实数.(1)求一次函数表达式(用含b的式子表示);(2)试说明:这两个函数的图象交于不同的两点;(3)设(2)中的两个交点的横坐标分别为x1、x2,求|x1-x2|的范围.2.(湖南省长沙市)如图,平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=28cm,OC=8cm,现有两动点P、Q分别从Array O、C同时出发,P在线段OA上沿OA方向以每秒2cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动.设运动时间为t秒.(1)用t的式子表示△OPQ的面积S;(2)求证:四边形OPBQ 的面积是一个定值,并求出这个定值;(3)当△OPQ 与△P AB 和△QPB 相似时,抛物线y =41x2+bx +c 经过B 、P 两点,过线段BP 上一动点M作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ 分成两部分的面积之比. 3.(湖南省岳阳市)如图①、②,在平面直角坐标系中,一边长为2的等边三角板CDE 恰好与坐标系中的△OAB 重合,现将三角板CDE 绕边AB 的中点G (G 点也是DE 的中点),按顺时针方向旋转180°到△C ′ED 的位置.(1)求C ′ 点的坐标;(2)求经过O 、A 、C ′ 三点的抛物线的解析式;(3)如图③,⊙G 是以AB 为直径的圆,过B 点作⊙G 的切线与x 轴相交于点F ,求切线BF 的解析式; (4)抛物线上是否存在一点M ,使得S △AMF :S △OAB =16 :3?若存在,请求出点M 的坐标;若不存在,请说明理由.2014年中考数学压轴题精编—湖南篇34.(湖南省衡阳市)已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在△ABC 的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M 、N 分别作AB 边的垂线,与△ABC 的其它边交于P 、Q 两点,线段MN 运动的时间为t 秒. (1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积;(2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.C P QA MN5.(湖南省益阳市)如图,在平面直角坐标系中,已知A、B、C三点的坐标分别为A(-2,0),B(6,0),C(0,3).(1)求经过A、B、C三点的抛物线的解析式;(2)过C点作CD平行于x轴交抛物线于点D,写出D点的坐标,并求AD、BC的交点E的坐标;(3)若抛物线的顶点为P,连结PC、PD,判断四边形CEDP的形状,并说明理由.42014年中考数学压轴题精编—湖南篇56.(湖南省邵阳市)如图,抛物线y =-41x2+x +3与x 轴相交于点A 、B ,与y 轴相交于点C ,顶点为点D ,对称轴l 与直线BC 相交于点E ,与x 轴相交于点F . (1)求直线BC 的解析式. (2)设点P 为该抛物线上的一个动点,以点P 为圆心、r 为半径作⊙P . ①当点P 运动到点D 时,若⊙P 与直线BC 相交,求r 的取值范围;②若r =554,是否存在点P 使⊙P 与直线BC 相切,若存在,请求出点P 的坐标;若不存在,请说明理由.67.(湖南省张家界市)如图1,射线AM ∥射线BN ,∠A =∠B =90°,点D 、C 分别在AM 、BN 上运动(点D 与点A 不重合,点C 与点B 不重合),E 是AB 上的动点(点E 与A 、B 不重合),在运动过程中始终保持DE ⊥CE ,且AD +DE =AB =a .(1)当点E 为AB 边的中点时(如图2), 求证:①AD +BC =CD ;②DE 、CE 分别平分∠ADC 、∠BCD ;(2)设AE =m ,请探究:△BEC 的周长是否与m 值有关?若有关,请用含m 的代数式表示△BEC 的周长;若无关,请说明理由.A D C NB EM 图1 A D C NB E M 图22014年中考数学压轴题精编—湖南篇78.(湖南省张家界市)如图,抛物线y =x2-6x +8与x轴交于A 、B 两点(点A 在点B 的左侧),直线y =21x +2交y 轴于点C ,且过点D (8,m ).左右平移抛物线y =x2-6x +8,记平移后点A 的对应点为A ′,点B 的对应点为B ′.(1)求线段AB 、CD 的长;(2)当抛物线向右平移到某个位置时,A ′D +B ′D 最小,试确定此时抛物线的表达式; (3)是否存在某个位置,使四边形A ′B ′DC 的周长最小?若存在,求出此时抛物线的表达式和四边形A ′B ′DC 的周长最小值;若不存在,请说明理由.89.(湖南省株洲市)在平面直角坐标系中,抛物线过原点O ,且与x 轴交于另一点A ,其顶点为B .孔明同学用一把宽为3cm 带刻度的矩形直尺对抛物线进行如下测量: ①量得OA =3cm ;②把直尺的左边与抛物线的对称轴重合,使得直尺左下端点与抛物线的顶点重合(如图1),测得抛物线与直尺右边的交点C 的刻度读数为4.5.请完成下列问题:(1)写出抛物线的对称轴; (2)求抛物线的解析式;(3)将图中的直尺(足够长)沿水平方向向右平移到点A 的右边(如图2),直尺的两边交x 轴于点H 、G ,交抛物线于点E 、F .求证:S 梯形EFGH=61(EF 2-9).CBAOxy3cm1 2 3 4 5 6 E BA Oxy1 234 56 FG H2014年中考数学压轴题精编—湖南篇910.(湖南省郴州市)如图(1),抛物线y =x2+x -4与y 轴交于点A ,E (0,b )为y 轴上一动点,过点E 的直线y =x +b 与抛物线交于点B 、C .(1)求点A 的坐标;(2)当b =0时(如图(2)),△ABE 与△ACE 的面积大小关系如何?当b >-4时,上述关系还成立吗,为什么?(3)是否存在这样的b ,使得△BOC 是以BC 为斜边的直角三角形,若存在,求b 的值;若不存在,说明理由.图(1)图(2)11.(湖南省永州市)如图,在△ABC中,AB=BC=2,以AB为直径的⊙O分别交BC、AC于点D、E,且点D为边BC的中点.(1)求证:△ABC为等边三角形;(2)求DE的长;(3)在线段AB的延长线上是否存在一点P,使△PBD≌△AED,若存在,请求出PB的长;若不存在,请说明理由.102014年中考数学压轴题精编—湖南篇12.(湖南省永州市)已知二次函数的图象与x轴有且只有一个交点A(-2,0),与y轴的交点为B(0,4),且其对称轴与y轴平行.(1)求该二次函数的解析式,并在所给坐标系中画出这个二次函数的大致图象;(2)在该二次函数位于A、B两点之间的图象上取一点M,过点M分别作x轴、y轴的垂线段,垂足分别为点C、D.求矩形MCOD的周长的最小值,并求使矩形MCOD的周长最小时的点M的坐标.111213.(湖南省永州市)探究问题: (1)阅读理解: ①如图(A ),在已知△ABC 所在平面上存在一点P ,使它到三角形三顶点的距离之和最小,则称点P 为△ABC 的费马点,此时P A +PB +PC 的值为△ABC 的费马距离. ②如图(B ),若四边形ABCD 的四个顶点在同一圆上,则有AB ·CD +BC ·DA =AC ·BD ,此为托勒密定理.(2)知识迁移:①请你利用托勒密定理,解决如下问题:如图(C ),已知点P 为等边△ABC 外接圆的BC ︵上任意一点.求证:PB +PC =P A . ②根据(2)①的结论,我们有如下探寻△ABC (其中∠A 、∠B 、∠C 均小于120°)的费马点和费马距离的方法:第一步:如图(D ),在△ABC 的外部以BC 为边长作等边△BCD 及其外接圆;第二步:在BC ︵上任取一点P ′,连结P ′A 、P ′B 、P ′C 、P′D .易知P ′A +P ′B +P ′C =P ′A +(P ′B +P ′C )=P ′A +_____________;第三步:请你根据(1)①中定义,在图(D )中找出△ABC 的费马点P ,并请指出线段________的长度即为△ABC 的费马距离.C B A P(图A )C BAD(图B )P BAC(图C )D(图D )2014年中考数学压轴题精编—湖南篇13(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A 、B 、C 构成了如图(E )所示的△ABC (其中∠A 、∠B 、∠C 均小于120°),现选取一点P 打水井,使从水井P 到三村庄A 、B 、C 所铺设的输水管总长度最小,求输水管总长度的最小值. 14.(湖南省湘潭市)如图,直线y =-x +6与x 轴交于点A ,与y 轴交于点B ,以线段AB 为直径作⊙C ,抛物线y =ax2+bx +c 过A 、C 、O 三点.(1)求点C 的坐标和抛物线的解析式;(2)过点B 作直线与x 轴交于点D ,且OB 2=OA ·OD ,求证:DB 是⊙C 的切线;(3)抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为直角梯形,如果存在,求出点P 的坐标;如果不存在,请说明理由.C1415.(湖南省常德市)如图,已知抛物线y =21x2+bx +c 与x 轴交于A (-4,0)、B (1,0)两点,与y 轴交于C 点.(1)求此抛物线的解析式; (2)设E 是线段AB 上的动点,作EF ∥AC 交BC 于F ,连接CE ,当△CEF 的面积是△BEF 面积的2倍时,求E 点的坐标;(3)若P 为抛物线上A 、C 两点间的一个动点,过P 作y 轴的平行线,交AC 于Q ,当P 点运动到什么位置时,线段PQ 的值最大,并求此时P 点的坐标.2014年中考数学压轴题精编—湖南篇1516.(湖南省常德市)如图1,若四边形ABCD 和GFED 都是正方形,显然图中有AG =CE ,AG ⊥CE . (1)当正方形GFED 绕D 旋转到如图2的位置时,AG =CE 是否成立?若成立,请给出证明;若不成立,请说明理由.(2)当正方形GFED 绕D 旋转到如图3的位置时,延长CE 交AG 于H ,交AD 于M . ①求证:AG ⊥CH ; ②当AD =4,DG =2时,求CH 的长.ABD C FEG 图1ABDC F EG图2ABD CF EG 图3HM1617.(湖南省怀化市)图9是二次函数y =(x +m )2+k 的图象,其顶点坐标为M (1,-4). (1)求出图象与x 轴的交点A 、B 的坐标; (2)在二次函数的图象上是否存在点P ,使S △P AB=45S △MAB ,若存在,求出P 点的坐标;若不存在,请说明理由;(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y =x +b(b <1)与此图象有两个公共点时,b 的取值范围.18.(湖南省娄底市)已知:二次函数y =ax2+bx +c 的图象与x 轴相交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标是(-2,0),点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OC <2014年中考数学压轴题精编—湖南篇OB)是方程x2-10x+24=0的两个根.(1)求B、C两点的坐标;(2)求这个二次函数的解析式;(3)在这个二次函数的图象上是否存在点P,使△P AC是直角三角形?若存在,求出P点坐标;若不存在,请说明理由.19.(湖南省娄底市)如图,在梯形ABCD中,AB∥CD,AB=2,DC=10,AD=BC=5,点M、N分别在边AD、BC上运动,并保持MN∥AB,ME⊥DC,NF⊥DC,垂中分别为E、F.(1)求梯形ABCD的面积;17(2)探究一:四边形MNFE 的面积有无最大值?若有,请求出这个最大值;若无,请说明理由; (3)探究二:四边形MNFE 能否为正方形?若能,请求出正方形的面积;若不能,请说明理由.20.(湖南省冷水江市)如图,已知OABC 是一张放在平面直角坐标系中的矩形纸片,O 为坐标原点,点A 在x 轴上,点C 在y 轴上,且OA =5,OC =3.在AB 边上选取一点D ,将△AOD 沿OD 翻折,使点A 落在BC 边上,记为点E .(1)求直线DE 的解析式;(2)过点E 作EF ∥AB 交OD 于点F ,以F 为顶点的抛物线与直线DE 只有一个公共点,求该公共点的坐标;(3)在x 轴、y 轴上是否分别存在点M 、N ,使四边形MNED 的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.C A BD M N FE B D2014年中考数学压轴题精编—湖南篇1921.(湖南省湘西自治州)如图,已知抛物线y =ax2-4x +c 经过点A (0,-6)和B (3,-9).(1)求抛物线的解析式;(2)写出抛物线的对称轴方程及顶点坐标;(3)点P (m ,m )与点Q 均在抛物线上(其中m >0),且这两点关于抛物线的对称轴对称,求m 的值及点Q 的坐标;(4)在满足(3)的情况下,在抛物线的对称轴上寻找一点M ,使得△QMA 的周长最小.20。
1、(08广东茂名25题)(本题满分10分)如图,在平面直角坐标系中,抛物线y =-32x 2+b x +c 经过A (0,-4)、B (x 1,0)、 C (x 2,0)三点,且x 2-x 1=5.(1)求b 、c 的值;(4分)(2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对角线的菱形;(3分)(3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)解:(08广东茂名25题解析)解:(1)解法一: ∵抛物线y =-32x 2+b x +c 经过点A (0,-4), ∴c =-4 ……1分又由题意可知,x 1、x 2是方程-32x 2+b x +c =0的两个根, ∴x 1+x 2=23b , x 1x 2=-23c =6 ·························································· 2分 由已知得(x 2-x 1)2=25 又(x 2-x 1)2=(x 2+x 1)2-4x1x 2=49b 2-24 ∴49b 2-24=25 解得b =±314···························································································· 3分当b =314时,抛物线与x 轴的交点在x 轴的正半轴上,不合题意,舍去.∴b =-314. ··························································································· 4分 解法二:∵x 1、x 2是方程-32x 2+b x +c=0的两个根, 即方程2x 2-3b x +12=0的两个根.∴x =4969b 32-±b , ································································· 2分(第25题图)x∴x 2-x 1=2969b 2-=5,解得 b =±314 ·················································································· 3分 (以下与解法一相同.)(2)∵四边形BDCE 是以BC 为对角线的菱形,根据菱形的性质,点D 必在抛物线的对称轴上, ···················································································· 5分又∵y =-32x 2-314x -4=-32(x +27)2+625····························· 6分 ∴抛物线的顶点(-27,625)即为所求的点D . ································· 7分(3)∵四边形BPOH 是以OB 为对角线的菱形,点B 的坐标为(-6,0),根据菱形的性质,点P 必是直线x =-3与抛物线y =-32x 2-314x -4的交点, ···················································· 8分∴当x =-3时,y =-32×(-3)2-314×(-3)-4=4,∴在抛物线上存在一点P (-3,4),使得四边形BPOH 为菱形. ··············· 9分 四边形BPOH 不能成为正方形,因为如果四边形BPOH 为正方形,点P 的坐标只能是(-3,3),但这一点不在抛物线上. ············································· 10分 2、(08广东肇庆25题)(本小题满分10分)已知点A (a ,1y )、B (2a ,y 2)、C (3a ,y 3)都在抛物线x x y 1252+=上. (1)求抛物线与x 轴的交点坐标; (2)当a =1时,求△ABC 的面积;(3)是否存在含有1y 、y 2、y 3,且与a 无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.(08广东肇庆25题解析)(本小题满分10分)解:(1)由5x x 122+=0, ··································································· (1分)得01=x ,5122-=x . ······································································· (2分) ∴抛物线与x 轴的交点坐标为(0,0)、(512-,0). ································· (3分)(2)当a =1时,得A (1,17)、B (2,44)、C (3,81), ·························· (4分) 分别过点A 、B 、C 作x 轴的垂线,垂足分别为D 、E 、F ,则有ABC S ∆=S ADFC 梯形 -ADEB S 梯形 -BEFC S 梯形 ············································· (5分)=22)8117(⨯+-21)4417(⨯+-21)8144(⨯+ ······························· (6分)=5(个单位面积) ······························································ (7分)(3)如:)(3123y y y -=. ······························································· (8分)事实上,)3(12)3(523a a y ⨯+⨯= =45a 2+36a .3(12y y -)=3[5×(2a )2+12×2a -(5a 2+12a )] =45a 2+36a . ··········· (9分) ∴)(3123y y y -=. ········································································ (10分) 3、(08辽宁沈阳26题)(本题14分)26.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =,矩形ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,.(1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.(08辽宁沈阳26题解析)解:(1)点E 在y 轴上 ············································ 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =,2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ······························································· 3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=x第26题图∴在Rt DOM △中,12DM =,2OM =点D 在第一象限,∴点D 的坐标为12⎫⎪⎪⎝⎭, ············································································· 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ··············································································· 6分抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A ,12D ⎫⎪⎪⎝⎭,代入22y ax bx =++中得321312422a a ⎧-+=⎪⎨++=⎪⎩解得89a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线表达式为:2829y x x =-+ ················································ 9分(3)存在符合条件的点P ,点Q . ······························································ 10分 理由如下:矩形ABOC 的面积3AB BO ==∴以O B P Q ,,,为顶点的平行四边形面积为由题意可知OB 为此平行四边形一边, 又3OB =OB ∴边上的高为2 ···················································································· 11分 依题意设点P 的坐标为(2)m ,点P在抛物线2829y x x =-+上28229m ∴--+=解得,10m =,28m =-1(02)P ∴,,228P ⎛⎫- ⎪ ⎪⎝⎭以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,PQ OB == ∴当点1P 的坐标为(02),时,点Q的坐标分别为1(2)Q,2Q ; 当点2P的坐标为2⎛⎫⎪ ⎪⎝⎭时,点Q的坐标分别为32Q ⎛⎫ ⎪ ⎪⎝⎭,42Q ⎫⎪⎪⎝⎭. ········································ 14分4、(08辽宁12市26题)(本题14分)26.如图16,在平面直角坐标系中,直线y =与x 轴交于点A ,与y 轴交于点C ,抛物线2(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标; (2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由; (3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.(08辽宁12市26题解析)解:(1)直线y =与x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(0C , ············································································· 1分点A C ,都在抛物线上,03a c c⎧=++⎪∴⎨⎪=⎩3a c ⎧=⎪∴⎨⎪=⎩ ∴抛物线的解析式为2y x x =-················································· 3分x∴顶点13F ⎛- ⎝⎭, ·················································································· 4分 (2)存在 ································································································ 5分1(0P ······························································································ 7分2(2P ····························································································· 9分 (3)存在 ······························································································ 10分 理由: 解法一:延长BC 到点B ',使B C BC '=,连接B F '交直线AC 于点M ,则点M 就是所求的点. ········································································· 11分 过点B '作B H AB '⊥于点H .B点在抛物线2y x x =(30)B ∴, 在Rt BOC △中,tan OBC ∠=,30OBC ∴∠=,BC =在Rt BB H '△中,12B H BB ''==6BH H '==,3OH ∴=,(3B '∴--, ········································ 12分设直线B F '的解析式为y kx b =+3k b k b ⎧-=-+⎪∴⎨=+⎪⎩解得2k b ⎧=⎪⎪⎨⎪=-⎪⎩62y x ∴=- ·················································································· 13分62y y x ⎧=⎪∴⎨=-⎪⎩解得377x y ⎧=⎪⎪⎨⎪=-⎪⎩37M ⎛∴ ⎝⎭ ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时37M ⎛- ⎝⎭,. ·· 14分x5、(08青海西宁28题)如图14,已知半径为1的1O 与x 轴交于A B ,两点,OM 为1O 的切线,切点为M ,圆心1O 的坐标为(20),,二次函数2y x bx c =-++的图象经过A B ,两点.(1)求二次函数的解析式;(2)求切线OM 的函数解析式;(3)线段OM 上是否存在一点P ,使得以P O A ,,为顶点的三角形与1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.(08青海西宁28题解析)解:(1)圆心1O 的坐标为(20),,1O 半径为1,(10)A ∴,,(30)B ,……1分二次函数2y x bx c =-++的图象经过点A B ,,∴可得方程组10930b c b c -++=⎧⎨-++=⎩····································································· 2分解得:43b c =⎧⎨=-⎩∴二次函数解析式为243y x x =-+- ······································· 3分(2)过点M 作MF x ⊥轴,垂足为F . ······················································ 4分OM 是1O 的切线,M 为切点,1O M OM ∴⊥(圆的切线垂直于经过切点的半径). 在1Rt OO M △中,1111sin 2O M O OM OO ∠== 1O OM ∠为锐角,130O OM ∴∠= ························ 5分1cos3022OM OO ∴==⨯=, 在Rt MOF △中,3cos3032OF OM ===.1sin 3032MF OM ===. ∴点M 坐标为322⎛ ⎝⎭, ············································································· 6分图14设切线OM 的函数解析式为(0)y kx k =≠,由题意可知3322k =,33k ∴= ····· 7分 ∴切线OM 的函数解析式为33y x =··························································· 8分 (3)存在. ····························································································· 9分 ①过点A 作1AP x ⊥轴,与OM 交于点1P .可得11Rt Rt APO MO O △∽△(两角对应相等两三角形相似)113tan tan 30P A OA AOP =∠==,1313P ⎛⎫∴ ⎪ ⎪⎝⎭, ····································· 10分 ②过点A 作2AP OM ⊥,垂足为2P ,过2P 点作2P H OA ⊥,垂足为H . 可得21Rt Rt AP O O MO △∽△(两角对应相等两三角开相似) 在2Rt OP A △中,1OA =,23cos30OP OA ∴==, 在2Rt OP H △中,22333cos 224OH OP AOP =∠=⨯=, 222313sin 224P H OP AOP =∠=⨯=,23344P ⎛⎫∴ ⎪ ⎪⎝⎭, ································· 11分∴符合条件的P 点坐标有31⎛⎫ ⎪ ⎪⎝⎭,,334⎛⎫⎪ ⎪⎝⎭, ·············································· 12分6、(08山东济宁26题)(12分)ABC △中,90C ∠=,60A ∠=,2AC =cm .长为1cm 的线段MN 在ABC △的边AB 上沿AB 方向以1cm/s 的速度向点B 运动(运动前点M 与点A 重合).过M N ,分别作AB 的垂线交直角边于P Q ,两点,线段MN 运动的时间为t s .(1)若AMP △的面积为y ,写出y 与t 的函数关系式(写出自变量t 的取值范围);(2)线段MN 运动过程中,四边形MNQP 有可能成为矩形吗?若有可能,求出此时t 的值;若不可能,说明理由;(3)t 为何值时,以C P Q ,,为顶点的三角形与ABC △相似?(08山东济宁26题解析)解:(1)当点P 在AC 上时,AM t =,tg 603PM AM t ∴==.2133(01)22y tt t t ∴==≤≤. ······························································ 2分 当点P 在BC 上时,3tan 30(4)3PM BM t ==-.213(4)(13)2y t t t =-=+≤≤. ··········································· 4分(2)2AC =,4AB ∴=.413BN AB AM MN t t ∴=--=--=-.3tan 30(3)3QN BN t ∴==-. ······························································ 6分 由条件知,若四边形MNQP 为矩形,需PM QN =)3t =-, 34t ∴=. ∴当34t =s 时,四边形MNQP 为矩形.························································ 8分(3)由(2)知,当34t =s 时,四边形MNQP 为矩形,此时PQ AB ∥,PQC ABC ∴△∽△.··············································································· 9分 除此之外,当30CPQ B ∠=∠=时,QPC ABC △∽△,此时3tan 30CQ CP ==. 1cos602AM AP ==,22AP AM t ∴==.22CP t ∴=-. ························ 10分3cos302BN BQ ==,)3BQt ∴==-.又2BC =)33CQ t ∴=-=. ·································· 11分 322t ∴=-,12t =.∴当12t =s 或34s 时,以C P Q ,,为顶点的三角形与ABC △相似. ··············· 12分7、(08四川巴中30题)(12分)30.已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E .(1)写出直线BC 的解析式. (2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?(08四川巴中30题解析)解:(1)在2334y x =-+中,令0y = 23304x ∴-+=12x ∴=,22x =-(20)A ∴-,,(20)B , ········································· 1分 又点B 在34y x b =-+上 302b ∴=-+32b =BC ∴的解析式为3342y x =-+ ··································································· 2分 (2)由23343342y x y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,得11194x y =-⎧⎪⎨=⎪⎩2220x y =⎧⎨=⎩ ············································· 4分 914C ⎛⎫∴- ⎪⎝⎭,,(20)B ,xyAB CEM D P NO。
2014中考真题二次函数压轴汇编1、(2014年广东汕尾)如图,已知抛物线y=x2﹣x﹣3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.2、(2014•黄冈)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.3、(2014•长春)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点(1,﹣1),且对称轴为在线x=2,点P、Q均在抛物线上,点P位于对称轴右侧,点Q位于对称轴左侧,PA 垂直对称轴于点A,QB垂直对称轴于点B,且QB=PA+1,设点P的横坐标为m.(1)求这条抛物线所对应的函数关系式;(2)求点Q的坐标(用含m的式子表示);(3)请探究PA+QB=AB是否成立,并说明理由;(4)抛物线y=a1x2+b1x+c1(a1≠0)经过Q、B、P三点,若其对称轴把四边形PAQB分成面积为1:5的两部分,直接写出此时m的值.4、(2014江西).如图1,抛物线2(0)y ax bx c a =++>的顶点为M ,直线y=m 与x 轴平行,且与抛物线交于点A ,B ,若三角形AMB 为等腰直角三角形,我们把抛物线上A 、B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶,点M 到线段AB 的距离称为碟高。
阅读理解、图表信息一、选择题1. (2014•山东潍坊,第12题3分)如图,已知正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为( )A .(—2012,2)B .(一2012,一2) C. (—2013,—2) D. (—2013,2)考点:坐标与图形变化-对称;坐标与图形变化-平移.专题:规律型.分析:首先求出正方形对角线交点坐标分别是(2,2),然后根据题意求得第1次、2次、3次变换后的点M 的对应点的坐标,即可得规律.解答:∵正方形ABCD ,点A (1,3)、B (1,1)、C (3,1).∴M 的坐标变为(2,2)∴根据题意得:第1次变换后的点M 的对应点的坐标为(2-1,-2),即(1,-2), 第2次变换后的点M 的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M 的对应点的坐标为(2-3,-2),即(-1,-2),第2014次变换后的点M 的对应点的为坐标为(2-2014, 2),即(-2012, 2)故答案为A .点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n 次变换后的点M 的对应点的坐标为:当n 为奇数时为(2-n ,-2),当n 为偶数时为(2-n ,2)是解此题的关键.2.(2014山东济南,第14题,3分)现定义一种变换:对于一个由有限个数组成的序列0S ,将其中的每个数换成该数在0S 中出现的次数,可得到一个新序列.例如序列0S :(4,2,3,4,2),通过变换可得到新序列1S :(2,2,1,2,2).若0S 可以为任意序列,则下面的序列可以作为1S 的是A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)【解析】由于序列0S 含5个数,于是新序列中不能有3个2,所以A ,B 中所给序列不能作为1S ; 又如果1S 中有3,则1S 中应有3个3,所以C 中所给序列也不能作为1S ,故选D .二、填空题1.(2014•四川宜宾,第16题,3分)规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinx•cosy+cosx•siny.据此判断下列等式成立的是②③④(写出所有正确的序号)①cos(﹣60°)=﹣;②sin75°=;③sin2x=2sinx•cosx;④sin(x﹣y)=sinx•cosy﹣cosx•siny.=××+=三、解答题1. (2014•四川巴中,第22题5分)定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于5而小于9,求x的取值范围.考点:新定义.分析:首先根据运算的定义化简3△x,则可以得到关于x的不等式组,即可求解.解答:3△x=3x﹣3﹣x+1=2x﹣2,根据题意得:,解得:<x<.点评:本题考查了一元一次不等式组的解法,正确理解运算的定义是关键.2.(2014•湖南张家界,第23题,8分)阅读材料:解分式不等式<0解:根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①或②解①得:无解,解②得:﹣2<x<1所以原不等式的解集是﹣2<x<1请仿照上述方法解下列分式不等式:(1)≤0(2)>0.或②或②3.(2014•江西抚州,第24题,10分)【试题背景】已知:∥m∥n∥,平行线与m、m与n、n与之间的距离分别为d1、d2、d3,且d 1 =d3 = 1,d2 = 2 . 我们把四个顶点分别在、m、n、这四条平行线上的四边形称为“格线四边形”.【探究1】 ⑴ 如图1,正方形ABCD 为“格线四边形”,BE l ⊥于点E ,BE 的反向延长线交直线于点F . 求正方形ABCD 的边长.【探究2】 ⑵ 矩形ABCD 为“格线四边形”,其长 :宽 = 2 :1 ,则矩形ABCD 的宽为--------------------2. (直接写出结果即可)【探究3】 ⑶ 如图2,菱形ABCD 为“格线四边形”且∠ADC =60°,△AEF 是等边三角形,AE ⊥k 于点E , ∠AFD =90°,直线DF 分别交直线、于点G 、M . 求证:EC DF =.【拓 展】 ⑷ 如图3,∥,等边三角形ABC 的顶点A 、B 分别落在直线、上,AB ⊥k于点B ,且AB =4 ,∠A C D =90°,直线CD 分别交直线、于点G 、M ,点D 、E 分别是线段GM 、BM 上的动点,且始终保持AD =AE ,DH l ⊥于点H .猜想:DH 在什么范围内,BC ∥DE ?并说明此时BC ∥DE 的理由.解析:(1) 如图1,∵BE ⊥l , l ∥k ,∴∠AEB=∠BFC=90°,又四边形ABCD 是正方形,∴∠1+∠2=90°,AB=BC, ∵∠2+∠3=90°, ∴ ∠1=∠3,∴⊿ABE ≌⊿BCF(AAS),∴AE=BF=1 , ∵BE=d 1+d 2=3 , ∴=,.(2)如图2,3,⊿ABE ∽⊿BCF,∴BF BCAE AB ==21 或BF BCAE AB ==12∵BF=d 3=1 ,∴AE=12 或AE =2∴AB==2 或AB==∴矩形ABCD 的宽为2(注意:要分2种情况讨论)(3)如图4,连接AC ,∵四边形ABCD 是菱形,∴AD=DC,又∠ADC=60°,∴⊿ADC 是等边三角形,∴AD=AC ,∵AE ⊥k , ∠AFD=90°, ∴∠AEC=∠AFD=90°,∵⊿AEF 是等边三角形, ∴ AF=AE,∴⊿AFD ≌⊿AEC(HL), ∴EC=DF.(4)如图5,当2<DH <4时, BC ∥DE .理由如下:连接AM,∵AB ⊥k , ∠ACD=90°,∴∠ABE=∠ACD=90°,∵⊿ABC 是等边三角形,∴AB=AC ,已知AE=AD, ∴⊿ABE ≌⊿ACD(HL),∴BE=CD ;在Rt ⊿ABM 和Rt ⊿ACM 中,AB ACAM AM=⎧⎨=⎩ ,∴Rt ⊿ABM ≌Rt ⊿ACM(HL), ∴ BM=CM ;∴ME=MD,∴ME MD MB MC= , ∴ED ∥BC. 4. (2014•浙江杭州,第23题,12分)复习课中,教师给出关于x 的函数y=2kx 2﹣(4kx+1)x ﹣k+1(k 是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x >1时,不是y 随x 的增大而增大就是y 随x 的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.=﹣销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。
反比例函数一、选择题1.(2014•湖南怀化,第8题,3分)已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象大致是().2. (2014•山东聊城,第10题,3分)如图,一次函数y1=k1x+b的图象和反比例函数y2=的图象交于A(1,2),B(﹣2,﹣1)两点,若y1<y2,则x的取值范围是()3.(3分)(2014•杭州)函数的自变量x满足≤x≤2时,函数值y满足≤y≤1,则这个函数可以是()y=可得y=y=可得y=,故此选项错误;4.(4分)(2014•黔东南州)如图,正比例函数y=x与反比例函数y=的图象相交于A、B两点,BC⊥x轴于点C,则△ABC的面积为()A.1B.2C.D.考点:反比例函数系数k的几何意义.专题:计算题.分析:由于正比例函数y=x与反比例函数y=的图象相交于A、B两点,则点A与点B关于原点对称,所以S△AOC=S△BOC,根据反比例函数比例系数k的几何意义得到S△BOC=,所以△ABC的面积为1.解答:解:∵正比例函数y=x与反比例函数y=的图象相交于A、B两点,∴点A与点B关于原点对称,∴S△AOC=S△BOC,∵BC⊥x轴,∴△ABC的面积=2S△BOC=2××|1|=1.故选A.点评:本题考查了反比例函数比例系数k的几何意义:在反比例函数y=的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.5. (2014年湖北咸宁8.(3分))如图,双曲线y=与直线y=kx+b交于点M、N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x的方程=kx+b的解为()A.﹣3,1 B.﹣3,3 C.﹣1,1 D.﹣1,3考点:反比例函数与一次函数的交点问题.专题:压轴题.分析:首先把M点代入y=中,求出反比例函数解析式,再利用反比例函数解析式求出N 点坐标,求关于x的方程=kx+b的解就是看一次函数与反比例函数图象交点横坐标就是x的值.解答:解:∵M(1,3)在反比例函数图象上,∴m=1×3=3,∴反比例函数解析式为:y=,∵N也在反比例函数图象上,点N的纵坐标为﹣1.∴x=﹣3,∴N(﹣3,﹣1),∴关于x的方程=kx+b的解为:﹣3,1.故选:A.点评:此题主要考查了反比例函数与一次函数交点问题,关键掌握好利用图象求方程的解时,就是看两函数图象的交点横坐标.6. (2014•江苏盐城,第8题3分)如图,反比例函数y=(x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是()的值为7. (2014•山东潍坊,第11题3分)已知一次函数y 1=kx +b (k <O )与反比例函数y 2=xm(m ≠O )的图象相交于A 、B 两点,其横坐标分别是-1和3,当y 1>y 2时,实数x 的取值范围是( ) A .x <-l 或O <x <3 B .一1<x <O 或O <x <3 C .一1<x <O 或x >3 D .O <x <3 考点:反比例函数与一次函数的交点问题. 分析:画出函数图象,取反比例函数图象位于一次函数图象下方时对应的x 的取值范围即可. 解答:一次函数y 1=kx +b 与反比例函数y 2=xm的图象相交于A 、B 两点,且A ,B 两点的横坐标分别为-1,3,故满足y 2<y 1的x 的取值范围是x <-1或0<x <3. 故选A . 点评:本题主要考查了反比例函数与一次函数的交点问题的知识点,熟练掌握反比例的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.8.(2014•四川泸州,第8题,3分)已知抛物线y =x 2﹣2x +m +1与x 轴有两个不同的交点,则函数y =的大致图象是( )C D9.(2014•四川凉山州,第11题,4分)函数y=mx+n与y=,其中m≠0,n≠0,那么它图象经过第二、四象限.图象经过第二、四象限.图象经过第二、四象限.图象经过第一、三象限.A ,B 两点,与双曲线ky x=交于E ,F 两点. 若AB =2EF ,则k 的值是【 】A .1-B .1C .12 D .34考点:1.反比例函数与一次函数交点问题;2.曲线上点的坐标与方程的关系;3.相似三角形的判定和性质;4.轴对称的性质.11.(2014•甘肃兰州,第9题4分)若反比例函数的图象位于第二、四象限,则k反比例函数解:∵反比例函数的图象位于第二、四象限,本题考查了反比例函数的性质.对于反比例函数12. (2014•黑龙江绥化,第16题3分)如图,过点O作直线与双曲线y=(k≠0)交于A、B 两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()13. (2014•河北第14题3分)定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()B C=14、(2014•随州,第8题3分)关于反比例函数y=的图象,下列说法正确的是()15、(2014•宁夏,第5题3分)已知两点P1(x1,y1)、P2(x2,y2)在函数y=的图象上,当x1>x2>0时,下列结论正确的是()=,,=,=16.(2014•四川广安,第8题3分)如图,一次函数y1=k1x+b(k1、b为常数,且k1≠0)的图象与反比例函数y2=(k2为常数,且k2≠0)的图象都经过点A(2,3).则当x>2时,y1与y2的大小关系为()17.(2014•重庆A,第12题4分)如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C,则△AOC的面积为()A.8 B.10 C.12 D.24考点:反比例函数系数k的几何意义.分析:根据已知点横坐标得出其纵坐标,进而求出直线AB的解析式,求出直线AB与x 轴横坐标交点,即可得出△AOC的面积.解答:解:∵反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,∴x=﹣1,y=6;x=﹣3,y=2,∴A(﹣1,6),B(﹣3,2),设直线AB的解析式为:y=kx+b,则,解得:,解得:y=2x+8,∴y=0时,x=﹣4,∴CO=4,∴△AOC的面积为:×6×4=12.故选:C.点评:此题主要考查了反比例函数系数k的几何意义以及待定系数法求一次函数解析式,得出直线AB的解析式是解题关键.18.(4分)(2014•贵州黔西南州, 第9题4分)已知如图,一次函数y=ax+b和反比例函数y=的图象相交于A、B两点,不等式ax+b>的解集为()第1题图A.x<﹣3 B.﹣3<x<0或x>1 C.x<﹣3或x>1 D.﹣3<x<1考点:反比例函数与一次函数的交点问题.专题:数形结合.分析:观察函数图象得到当﹣3<x<0或x>1时,一次函数图象都在反比例函数图象上方,即有ax+b>.解答:解:不等式ax+b>的解集为﹣3<x<0或x>1.故选B.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了观察函数图象的能力.19. (2014•黑龙江牡丹江, 第9题3分)在同一直角坐标系中,函数y=kx+1与y=﹣(k≠0)的图象大致是()A .B.C .D .考点:反比例函数的图象;一次函数的图象专题:数形结合.分析:先根据一次函数图象与系数的关系得到k的范围,然后根据k的范围判断反比例函数图象的位置.解答:解:A、对于y=kx+1经过第一、三象限,则k>0,所以反比例函数图象应该分布在第二、四象限,所以A选项错误;B、一次函数y=kx+1与y轴的交点在x轴上方,所以B选项错误;C、对于y=kx+1经过第二、四象限,则k<0,所以反比例函数图象应该分布在第一、三象限,所以C选项错误;D、对于y=kx+1经过第二、四象限,则k<0,所以反比例函数图象应该分布在第一、三象限,所以D选项正确.故选D.点评:本题考查了反比例函数图象:反比例函数y=(k≠0)为双曲线,当k>0时,图象分布在第一、三象限;当k<0时,图象分布在第二、四象限.也考查了一次函数图象.20.(2014•青岛,第8题3分)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()B C21. (2014•乐山,第8题3分)反比例函数y=与一次函数y=kx﹣k+2在同一直角坐标系中的图象可能是()B C22. (2014•乐山,第10题3分)如图,点P(﹣1,1)在双曲线上,过点P的直线l1与坐标轴分别交于A、B两点,且tan∠BAO=1.点M是该双曲线在第四象限上的一点,过点M 的直线l2与双曲线只有一个公共点,并与坐标轴分别交于点C、点D.则四边形ABCD的面积最小值为()=(﹣,x()﹣)﹣)2≥0,∴当且仅当﹣23.(2014年广西南宁,第12题3分)已知点A在双曲线y=﹣上,点B在直线y=x﹣4上,且A,B两点关于y轴对称.设点A的坐标为(m,n),则+的值是()A.﹣10 B.﹣8 C.6D. 4考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标..分析:先根据A、B两点关于y轴对称用m、n表示出点B的坐标,再根据点A在双曲线y=﹣上,点B在直线y=x﹣4上得出mn与m+n的值,代入代数式进行计算即可.解答:解:∵点A的坐标为(m,n),A、B两点关于y轴对称,∴B(﹣m,n),∵点A在双曲线y=﹣上,点B在直线y=x﹣4上,∴n=﹣,﹣m﹣4=n,即mn=﹣2,m+n=﹣4,∴原式===﹣10.故选A.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.24.(2014年广西钦州,第11题3分)如图,正比例函数y=x与反比例函数y=的图象交于A (2,2)、B(﹣2,﹣2)两点,当y=x的函数值大于y=的函数值时,x的取值范围是()A.x>2 B.x<﹣2 C.﹣2<x<0或0<x <2 D.﹣2<x<0或x>2考点:反比例函数与一次函数的交点问题.\专题:数形结合.分析:观察函数图象得到当﹣2<x<0或x>2时,正比例函数图象都在反比例函数图象上方,即有y=x的函数值大于y=的函数值.解答:解:当﹣2<x<0或x>2时,y=x的函数值大于y=的函数值.故选D.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.25.(2014年贵州安顺,第7题3分)如果点A(﹣2,y1),B(﹣1,y2),C(2,y3)都在反比例函数的图象上,那么y1,y2,y3的大小关系是()A.y1<y3<y2B.y2<y1<y3C.y1<y2<y3 D.y3<y2<y1考点:反比例函数图象上点的坐标特征..分析:分别把x=﹣2,x=﹣1,x=2代入解析式求出y1、y2、y3根据k>0判断即可.解答:解:分别把x=﹣2,x=﹣1,x=2代入解析式得:y1=﹣,y2=﹣k,y3=,∵k>0,∴y2<y1<y3.故选B .点评: 本题主要考查对反比例函数图象上点的坐标特征的理解和掌握,能根据k >0确定y 1、y 2、y 3的大小是解此题的关键.26. (2014•海南,第14题3分)已知k 1>0>k 2,则函数y =k 1x 和y =的图象在同一平面直角坐标系中大致是( )BC=27.(2014·云南昆明,第8题3分)左下图是反比例函数)0(≠=k k xy 为常数,的图像,则一次函数k kx y -=的图像大致是( ) C BA28. (2014•湘潭,第8题,3分)如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()(第1题图)29. (2014•益阳,第6题,4分)正比例函数y=6x的图象与反比例函数y=的图象的交点位于()根据反比例函数与一次函数的交点问题解方程组得或30. (2014•株洲,第4题,3分)已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是()31. (2014•扬州,第3题,3分)若反比例函数y=(k≠0)的图象经过点P(﹣2,3),则该函数的图象的点是()32. (2014•广西贺州,第10题3分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:先根据二次函数的图象得到a>0,b<0,c<0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.解答:解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴一次函数y=cx+的图象过第二、三、四象限,反比例函数y=分布在第二、四象限.故选B.点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了一次函数图象和反比例函数的图象.33.(2014年天津市,第9 题3分)已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>10考点:反比例函数的性质.分析:将x=1和x=2分别代入反比例函数即可确定函数值的取值范围.解答:解:∵反比例函数y=中当x=1时y=10,当x=2时,y=5,∴当1<x<2时,y的取值范围是5<y<10,故选C.点评:本题考查了反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.34.(2014•新疆,第11题5分)若点A(1,y1)和点B(2,y2)在反比例函数y=图象上,则y1与y2的大小关系是:y1y2(填“>”、“<”或“=”).35.(2014•温州,第10题4分)如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y 轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()36.(2014•四川自贡,第9题4分)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()...D37 关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()...D38. (2014•福建泉州,第7题3分)在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可能是()B C D二、填空题1. (2014•上海,第14题4分)已知反比例函数y=kx(k 是常数,k≠0),在其图象所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是 (只上,则k 的值为 ﹣8 . ,解得3. (2014山东济南,第21题,3分)如图,OAC ∆和BAD ∆都是等腰直角三角形,90=∠=∠ADB ACO ,反比例函数xky =在第一象限的图象经过点B ,若1222=-AB OA ,则k 的值为________.【解析】设点B 的坐标为),(00y x B ,则DB OC AD AC y DB OC x -=-=+=00,,于是62121222200=-=-=-⋅+=⋅=AB OA DB OC DB OC DB OC y x k )()(,所以应填6.4. (2014•山东聊城,第17题,3分)如图,在x 轴的正半轴上依次间隔相等的距离取点A 1,A 2,A 3,A 4,…,A n 分别过这些点做x 轴的垂线与反比例函数y=的图象相交于点P 1,P 2,P 3,P 4,…P n 作P 2B 1⊥A 1P 1,P 3B 2⊥A 2P 2,P 4B 3⊥A 3P 3,…,P n B n ﹣1⊥A n ﹣1P n ﹣1,垂足分别为B 1,B 2,B 3,B 4,…,B n ﹣1,连接P 1P 2,P 2P 3,P 3P 4,…,P n ﹣1P n ,得到一组Rt △P 1B 1P 2,Rt △P 2B 2P 3,Rt △P 3B 3P 4,…,Rt △P n ﹣1B n ﹣1P n ,则Rt △P n ﹣1B n ﹣1P n 的面积为. .(﹣)﹣)(﹣)﹣])(﹣﹣)﹣)[﹣](﹣).故答案为.交于E,F两点,若E是AB的中点,S△BEF=2,则k的值为8.,代入解析式得到纵坐标:,=6.(2014•山东淄博,第16题4分)关于x的反比例函数y=的图象如图,A、P为该图象上的点,且关于原点成中心对称.△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a﹣1)x2﹣x+=0的根的情况是没有实数根.考点:根的判别式;反比例函数的性质.分析:由比例函数y=的图象位于一、三象限得出a+4>0,A、P为该图象上的点,且关于原点成中心对称,得出2xy>12,进一步得出a+4>6,由此确定a的取值范围,进一步利用根的判别式判定方程根的情况即可.解答:解:∵反比例函数y=的图象位于一、三象限,∴a+4>0,a>﹣4,∵A、P关于原点成中心对称,PB∥y轴,AB∥x轴,△PAB的面积大于12,∴2xy>12,即a+4>6,a>2∴a>2.∴△=(﹣1)2﹣4(a﹣1)×=2﹣a<0,∴关于x的方程(a﹣1)x2﹣x+=0没有实数根.故答案为:没有实数根.点评:此题综合考查了反比例函数的图形与性质,一元二次方程根的判别式,注意正确判定a的取值范围是解决问题的关键.7.(2014•山东临沂,第18题3分)(3分)(2014•临沂)如图,反比例函数y=的图象经过直角三角形OAB的顶点A,D为斜边OA的中点,则过点D的反比例函数的解析式为y=.8.(2014•四川泸州,第16题,3分)图,矩形AOBC的顶点坐标分别为A(0,3),O(0,0),B(4,0),C(4,3),动点F在边BC上(不与B、C重合),过点F的反比例函数的图象与边AC交于点E,直线EF分别与y轴和x轴相交于点D和G.给出下列命题:①若k=4,则△OEF的面积为;②若,则点C关于直线EF的对称点在x轴上;③满足题设的k的取值范围是0<k≤12;④若DE•EG=,则k=1.其中正确的命题的序号是②④(写出所有正确命题的序号).≠)如答图所示,若,求出,,),﹣.,连接====,解得,解得,9 .(2014•年山东东营,第17题4分)如图,函数y=和y=﹣的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB 的面积为8.考点:反比例函数系数k的几何意义.分析:设P的坐标是(a,),推出A的坐标和B的坐标,求出∠APB=90°,求出PA、PB 的值,根据三角形的面积公式求出即可.解答:解:∵点P在y=上,∴|x p|×|y p|=|k|=1,∴设P的坐标是(a,)(a为正数),∵PA⊥x轴,∴A的横坐标是a,∵A在y=﹣上,∴A的坐标是(a,﹣),∵PB⊥y轴,∴B的纵坐标是,∵B在y=﹣上,∴代入得:=﹣,解得:x=﹣3a,∴B的坐标是(﹣3a,),∴PA=|﹣(﹣)|=,PB=|a﹣(﹣3a)|=4a,∵PA⊥x轴,PB⊥y轴,x轴⊥y轴,∴PA⊥PB,∴△PAB的面积是:PA×PB=××4a=8.故答案为:8.点评:本题考查了反比例函数和三角形面积公式的应用,关键是能根据P点的坐标得出A、B的坐标,本题具有一定的代表性,是一道比较好的题目.10.(2014•黔南州,第16题5分)如图,正比例函数y1=k1x与反比例函数y2=的图象交于A、B两点,根据图象可直接写出当y1>y2时,x的取值范围是﹣1<x<0或x>1.考点:反比例函数与一次函数的交点问题专题:计算题.分析:先根据正比例函数图象和反比例函数图象的性质得到点A与点B关于原点对称,则B点坐标为(﹣1,﹣2),然后观察函数图象,当﹣1<x<0或x>1时,正比例函数图象都在反比例函数图象上方,即有y1>y2.解答:解:∵正比例函数y=k1x与反比例函数y2=的图象交于A、B两点,1∴点A与点B关于原点对称,∴B点坐标为(﹣1,﹣2),当﹣1<x<0或x>1时,y1>y2.故答案为:﹣1<x<0或x>1.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.11. (2014•湖南衡阳,第18题3分)若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k >0)的图象上,则m=<n(填“>”“<”或“=”号).考点:反比例函数图象上点的坐标特征.专题:计算题.分析:根据反比例函数图象上点的坐标特征得到﹣1•m=k,﹣2•n=k,解得m=﹣k,n=﹣,然后利用k>0比较m、n的大小.解答:解:∵P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,∴﹣1•m=k,﹣2•n=k,∴m=﹣k,n=﹣,而k>0,∴m<n.故答案为:<.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12. (2014•湖南永州,第13题3分)已知点A(1,y1),B(﹣2,y2)在反比例函数y=(k>0)的图象上,则y1 >y2(填“>”“<”或“=”)13. (2014衡阳,第18题3分)若点()11P m -,和点()22P n -,都在反比例函数()0y k x=>的图象上,则m ______n (填“>”、“<” 或“=”号) 【考点】反比例函数图像的性质【解析】∵k >0时,图像在一三象限,在每一象限,y 随x 增大而减小; 又∵0>-1>-2 ∴m <n 【答案】<【点评】反比例函数图像的性质应用是基础题,就考查一个知识点,k >0,反比例函数y 随x 的增大而减小,牢记性质,注意数形结合. 14、(2014•无锡,第14题2分)已知双曲线y =经过点(﹣2,1),则k 的值等于 ﹣1 .,求出经过点(﹣,15、(2014•宁夏,第24题8分)在平面直角坐标系中,已知反比例函数y =的图象经过点A (1,).(1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由.BD ,=1×==,点坐标为(时,=)在反比例函数16.(2014•陕西,第16题3分)已知P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,若x2=x1+2,且=+,则这个反比例函数的表达式为y=.考点:反比例函数图象上点的坐标特征.分析:设这个反比例函数的表达式为y=,将P1(x1,y1),P2(x2,y2)代入得x1•y1=x2•y2=k,所以=,=,由=+,得(x2﹣x1)=,将x2=x1+2代入,求出k=4,得出这个反比例函数的表达式为y=.解答:解:设这个反比例函数的表达式为y=,∵P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,∴x1•y1=x2•y2=k,∴=,=,∵=+,∴=+,∴(x2﹣x1)=,∵x2=x1+2,∴×2=,∴k=4,∴这个反比例函数的表达式为y=.故答案为y=.点评:本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.同时考查了式子的变形.17.(2014•浙江绍兴,第15题5分)如图,边长为n的正方形OABC的边OA,OC在坐标轴上,点A1,A2…A n﹣1为OA的n等分点,点B1,B2…B n﹣1为CB的n等分点,连结A1B1,A2B2,…A n﹣1B n﹣1,分别交曲线y=(x>0)于点C1,C2,…,C n﹣1.若C15B15=16C15A15,则n的值为17.(n为正整数),)=15×=18.(2014•四川成都,第25题4分)如图,在平面直角坐标系xOy中,直线y=x与双曲线y=相交于A,B两点,C是第一象限内双曲线上一点,连接CA并延长交y轴于点P,连接BP,B C.若△PBC的面积是20,则点C的坐标为(,).解方程组或)代入得,解得)代入得,解得=点坐标为(,故答案为(,19.(2014•湖北荆门,第17题3分)如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是﹣6.第2题图考点:反比例函数图象上点的坐标特征;等边三角形的性质;相似三角形的判定与性质;特殊角的三角函数值.专题:动点型.分析:连接OC,易证AO⊥OC,OC=O A.由∠AOC=90°想到构造K型相似,过点A 作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,可证△AEO∽△OF C.从而得到OF=AE,FC=EO..设点A坐标为(a,b)则ab=2,可得FC•OF=6.设点C坐标为(x,y),从而有FC•OF=﹣xy=﹣6,即k=xy=﹣6.解答:解:∵双曲线y=关于原点对称,∴点A与点B关于原点对称.∴OA=O B.连接OC,如图所示.∵△ABC是等边三角形,OA=OB,∴OC⊥A B.∠BAC=60°.∴tan∠OAC==.∴OC=O A.过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,∵AE⊥OE,CF⊥OF,OC⊥OA,∴∠AEO=∠FOC,∠AOE=90°﹣∠FOC=∠OCF.∴△AEO∽△OF C.∴==.∵OC=OA,∴OF=AE,FC=EO.设点A坐标为(a,b),∵点A在第一象限,∴AE=a,OE=B.∴OF=AE=a,FC=EO=B.∵点A在双曲线y=上,∴ab=2.∴FC•OF=b•a=3ab=6设点C坐标为(x,y),∵点C在第四象限,∴FC=x,OF=﹣y.∴FC•OF=x•(﹣y)=﹣xy=6.∴xy=﹣6.∵点C在双曲线y=上,∴k=xy=﹣6.故答案为:﹣6.点评:本题考查了等边三角形的性质、反比例函数的性质、相似三角形的判定与性质、点与坐标之间的关系、特殊角的三角函数值等知识,有一定的难度.由∠AOC=90°联想到构造K型相似是解答本题的关键.20.(2014•莱芜,第16题4分)已知一次函数y=ax+b与反比例函数的图象相交于A(4,2)、B(﹣2,m)两点,则一次函数的表达式为y=x﹣2.得得,21. (2014•山西,第13题3分)如图,已知一次函数y=kx﹣4的图象与x轴、y轴分别交于A、B两点,与反比例函数y=在第一象限内的图象交于点C,且A为BC的中点,则k= 4.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:先确定B点坐标,根据A为BC的中点,则点C和点B关于点A中心对称,所以C点的纵坐标为4,再利用反比例函数图象上点的坐标特征可确定C点坐标,然后把C 点坐标代入y=kx﹣4即可得到k的值.解答:解:把y=0代入y=kx﹣4得y=﹣4,则B点坐标为(0,﹣4),∵A为BC的中点,∴C点的纵坐标为4,把y=4代入y=得x=2,∴C点坐标为(2,4),把C(2,4)代入y=kx﹣4得2k﹣4=4,解得k=4.故答案为4.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.22.(2014•丽水,第16题4分)如图,点E,F在函数y=(x>0)的图象上,直线EF 分别与x轴、y轴交于点A,B,且BE:BF=1:m.过点E作EP⊥y轴于P,已知△OEP的面积为1,则k值是2,△OEF的面积是(用含m的式子表示),)==,+.23.(2014•武汉,第15题3分)如图,若双曲线y=与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为.,xx==xx x故答案为:24.(2014•邵阳,第13题3分)若反比例函数的图象经过点(﹣1,2),则k的值是﹣2 .25.(2014•孝感,第17题3分)如图,Rt△AOB的一条直角边OB在x轴上,双曲线y=经过斜边OA的中点C,与另一直角边交于点D.若S△OCD=9,则S△OBD的值为6.=26.(2014•浙江湖州,第15题4分)如图,已知在Rt△OAC中,O 为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA的解析式为.分析:设OC=a,根据点D在反比例函数图象上表示出CD,再根据相似三角形对应边成比例列式求出AC,然后根据中点的定义表示出。
2012年各地中考数学压轴题精选61~70_解析版 61.【2012吉林】 26.问题情境如图,在x 轴上有两点(,0)A m ,(,0)B n (0n m >>).分别过点A ,点B 作x 轴的垂线,交抛物线2y x =于点C 、点D .直线OC 交直线BD 于点E ,直线OD 交直线AC 于点F ,点E 、点F 的纵坐标分别记为.E y 、Fy .特例探究 填空: 当1m =,2n =时,.E y =____,F y =______.当3m =,5n =时,.E y =____,F y =______.归纳证明对任意m ,n (0n m >>),猜想.E y 与Fy 的大小关系,并证明你的猜想拓展应用.若将“抛物线2y x =”改为“抛物线2(0)y ax a =>”,其它条件不变,请直接写出.E y 与Fy 的大小关系.连接EF ,AE .当.3OFEOFEB S S =△四边形时,直接写出m 和n 的关系及四边形OFEA 的形状.[答案] 特例探究2,2;15,15.归纳证明 猜想E Fy y =.证明(略)拓展应用(1)E Fy y =.(2)四边形OFEA 是平行四边形.[考点] 一次函数、二次函数综合运用,函数图象上的点与函数解析式的关系,平行四边形的判定.[解析] 特例探究当1m =,2n =时,(1,1)C ,(2,4)D ,所以直线OC 的解析式为:y x =;直线OD 的解析式为:2y x =;此时解2x y x =⎧⎨=⎩,得(2,2)2E E y ⇒=.解12x y x =⎧⎨=⎩,得(1,2)2F F y ⇒=. 所以,此时122E F y y ==⨯=当3m =,5n =时,(3,9)C ,(5,25)D ,所以直线OC 的解析式为:3y x =;直线OD 的解析式为:5y x =;此时解53x y x =⎧⎨=⎩,得(5,15)15E E y ⇒=.解35x y x =⎧⎨=⎩,得(3,15)15F F y ⇒=.所以,此时3515E F y y ==⨯=归纳证明 猜想:对任意m ,n (0n m >>),都有:E Fy y =.证明:对任意m ,n (0n m >>)时,2(,)C m m ,2(,)D n n ,所以直线OC 的解析式为:y mx =;直线OD 的解析式为:y nx =;此时解x ny mx =⎧⎨=⎩,得(,)E E n mn y mn ⇒=.解x m y nx =⎧⎨=⎩,得(,)F F n mn y mn ⇒=. 所以,此时E F y y mn==.拓展应用(1)若将“抛物线2y x =”改为“抛物线2(0)y ax a =>”,其它条件不变,仍然有:E Fy y =.此时,2(,)C m am ,2(,)D n an ,所以直线OC 的解析式为:y amx =;直线OD 的解析式为:y anx =;此时解x n y amx =⎧⎨=⎩,得(,)E E n amn y amn ⇒=.解x my anx =⎧⎨=⎩,得(,)F F n amn y amn ⇒=.62.【2012济南】28.如图1,抛物线y=ax2+bx+3与x轴相交于点A(-3,0),B(-1,0),与y轴相交于点C,⊙O1为△ABC的外接圆,交抛物线于另一点D.(1)求抛物线的解析式;(2)求cos∠CAB的值和⊙O1的半径;(3)如图2,抛物线的顶点为P,连接BP,CP,BD,M为弦BD中点,若点N在坐标平面内,满足△BMN∽△BPC,请直接写出所有符合条件的点N的坐标.【考点】二次函数综合题.【专题】【分析】(1)利用待定系数法求出抛物线的解析式;(2)如答图1所示,由△AOC为等腰直角三角形,确定∠CAB=45°,从而求出其三角函数值;由圆周角定理,确定△BO1C为等腰直角三角形,从而求出半径的长度;(3)如答图2所示,首先利用圆及抛物线的对称性求出点D坐标,进而求出点M的坐标和线段BM的长度;点B、P、C的坐标已知,求出线段BP、BC、PC的长度;然后利用△BMN∽△BPC相似三角形比例线段关系,求出线段BN和MN的长度;最后利用两点间的距离公式,列出方程组,求出点N的坐标.【解答】解:(1)∵抛物线y=ax2+bx+3与x轴相交于点A(-3,0),B(-1,0),∴933030a ba b-+=⎧⎨-+=⎩,解得a=1,b=4,∴抛物线的解析式为:y=x2+4x+3.(2)由(1)知,抛物线解析式为:y=x2+4x+3,∵令x=0,得y=3,∴C(0,3),∴OC=OA=3,则△AOC为等腰直角三角形,∴∠CAB=45°,∴cos∠CAB=2 2.在Rt△BOC中,由勾股定理得:BC=221310 +=.如答图1所示,连接O1B、O1B,由圆周角定理得:∠BO1C=2∠BAC=90°,∴△BO1C为等腰直角三角形,∴⊙O1的半径O1B=22BC=5.(3)抛物线y=x2+4x+3=(x+2)2-1,∴顶点P坐标为(-2,-1),对称轴为x= -2.又∵A(-3,0),B(-1,0),可知点A、B关于对称轴x=2对称.如答图2所示,由圆及抛物线的对称性可知:点D、点C(0,3)关于对称轴对称,∴D(-4,3).又∵点M为BD中点,B(-1,0),∴M(52-,32),∴BM=22533 [(1)]()2 222---+=;在△BPC中,B(-1,0),P(-2,-1),C(0,3),由两点间的距离公式得:BP=2,BC=10,PC=25.∵△BMN∽△BPC,∴==BM BN MNBP BC PC,即32221025==BN MN,解得:3102=BN,MN35=.设N(x,y),由两点间的距离公式可得:2222223(1)(10)253()()(35)22x y x y ⎧++=⎪⎪⎨⎪++-=⎪⎩, 解之得,117232x y ⎧=⎪⎪⎨⎪=⎪⎩,221292x y ⎧=⎪⎪⎨⎪=-⎪⎩ ∴点N 的坐标为(72,32-)或(12,92-).【点评】本题综合考查了二次函数的图象与性质、待定系数法、圆的性质、相似三角形、勾股定理、两点间的距离公式等重要知识点,涉及的考点较多,试题难度较大.难点在于第(3)问,需要认真分析题意,确定符合条件的点N 有两个,并画出草图;然后寻找线段之间的数量关系,最终正确求得点N 的坐标.63.【2012达州】23.如图1,在直角坐标系中,已知点A (0,2)、点B (-2,0),过点B 和线段OA 的中点C 作直线BC ,以线段BC 为边向上作正方形BCDE. (1)填空:点D 的坐标为( ),点E 的坐标为( ).(2)若抛物线2y ax bx c(a 0)=++≠经过A 、D 、E 三点,求该抛物线的解析式. (3)若正方形和抛物线均以每秒5个单位长度的速度沿射线BC 同时向上平移,直至正方形的顶点E 落在y 轴上时,正方形和抛物线均停止运动.①在运动过程中,设正方形落在y 轴右侧部分的面积为s ,求s 关于平移时间t (秒)的函数关系式,并写出相应自变量t 的取值范围.②运动停止时,求抛物线的顶点坐标.【答案】解:(1)D (-1,3),E (-3,2)。
2014年中考数学压轴题复习⒅341.(山东省淄博市)如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠BAC 的平分线交⊙O 于点D ,过D 点作EF ∥BC 交AB 的延长线于点E ,交AC 的延长线于点F . (1)求证:EF 为⊙O 的切线; (2)若sin ∠ABC =54,CF =1,求⊙O 的半径及EF 的长.342.(山东省淄博市)将一副三角尺如图拼接:含30°角的三角尺(△ABC )的长直角边与含45°角的三角尺(△ACD )的斜边恰好重合.已知AB =32,P 是AC 上的一个动点. (1)当点P 运动到∠ABC 的平分线上时,连接DP ,求DP 的长; (2)当点P 在运动过程中出现PD =BC 时,求此时∠PDA 的度数;(3)当点P 运动到什么位置时,以D ,P ,B ,Q 为顶点的平行四边形的顶点Q 恰好在边BC 上?求出此时□DPBQ 的面积.343.(山东省淄博市)已知直角坐标系中有一点A (-4,3),点B 在x 轴上,△AOB 是等腰三角形. (1)求满足条件的所有点B 的坐标;(2)求过O ,A ,B 三点且开口向下的抛物线的函数表达式(只需求出满足条件的一条即可);(3)在(2)中求出的抛物线上存在点P ,使得以O ,A ,B ,P 四点为顶点的四边形是梯形,求满足条件的所有点P 的坐标及相应梯形的面积.344.(山东省潍坊市)如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,且AC =CD . (1)求证:OC ∥BD ;(2)若BC 将四边形OBDC 分成面积相等的两个三角形,试确定四边形OBDC 的形状.345.(山东省潍坊市)如图,已知正方形OABC 在直角坐标系xO y 中,点A 、C 分别在x 轴、y 轴的正半轴上,点O 在坐标原点.等腰直角三角板OEF 的直角顶点O 在原点,E 、F 分别在OA 、OC 上,且OA =4,OE =2.将三角板OEF 绕O 点逆时针旋转至OE 1F 1的位置,连结CF 1、AE 1. (1)求证:△OAE 1≌△OCF 1;A B C DA B OC D(2)若三角板OEF 绕O 点逆时针旋转一周,是否存在某一位置,使得OE ∥CF ,若存在,请求出此时E346.(山东省潍坊市)如图所示,抛物线与x 轴交于点A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3).以AB为直径作⊙M ,过抛物线上一点P 作⊙M 的切线PD ,切点为D ,并与⊙M 的切线AE 相交于点E ,连结DM 并延长交⊙M 于点N ,连结AN 、AD .(1)求抛物线所对应的函数关系式及抛物线的顶点坐标;(2)若四边形EAMD 的面积为34,求直线PD 的函数关系式; (3)抛物线上是否存在点P ,使得四边形EAMD 的面积等于△DAN 的面积?若存在,求出点P 的坐标;若不存在,说明理由.347.(山东省东营市)如图,梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =AD ,DE ⊥BC 于E ,F 为AB 上一点,且AF =EC ,M 是FC 中点,连结FD 、ME ,设FC 与DE 相交于点N . (1)求证:∠FDB =∠FCB ;△DFN ∽△CBD ;ME 垂直平分BD ; (2)若ME =2,求BF 的长.348.(山东省东营市)如图,在Rt △ABC 中,∠C =90°,直角边BC 与x 轴重合,其内切圆的圆心坐标为I(0,1),抛物线y =ax2+2ax +1的顶点为A .(1)判断抛物线的开口方向并说明理由;(2)求点B 的坐标(用含a 的代数式表示); (3)当a 为何值时,∠ABC =30°?349.(山东省东营市)如图,在锐角三角形ABC 中,BC =12,△ABC 的面积为48,D ,E 分别是边AB ,AC 上的两个动点(D 不与A ,B 重合),且保持DE ∥BC ,以DE 为边,在点A 的异侧作正方形DEFG . (1)当正方形DEFG 的边GF 在BC 上时,求正方形DEFG 的边长;(2)设DE =x ,△ABC 与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,写出x 的取值范围,并求出y 的最大值.350.(山东省日照市)如图,小明在一次高尔夫球争霸赛中,从山坡下O 点打出一球向球洞A 点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水平距离为9米.已知山坡OA 与水平方向OC 的夹角为30°,O 、A 两点相距38米.(1)求出点A 的坐标及直线OA 的解析式;(2)求出球的飞行路线所在抛物线的解析式;(3)判断小明这一杆能否把高尔夫球从O 点直接打入球洞A 点.351.(山东省日照市)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 于E ,交BC 于D .求证: (1)D 是BC 的中点;(2)△BEC ∽△ADC ; (3)BC 2=2AB ²CE .352.(山东省日照市)如图,对称轴为直线x =21的抛物线交x 轴于A (-2,0)、B 两点,交y 轴负半轴于点C ,且S △ABC=215. (1)求抛物线的解析式;(2)若平行于x 轴的直线y =k (k <0)交该抛物线于M 、N 两点,交y 轴于点D ,且以MN 为直径的圆恰好经过坐标原点,求k 的值;(3)在(2)的条件下,连结AD ,将△AOD 绕坐标平面内的某一点旋转180°后,A 、D 的对应点A ′、D ′能否同时落在抛物线上?若能,求出A ′、D ′和旋转中心的坐标;若不能,请说明理由.A B C D E F G A B C 备用图(1) AB C 备用图(2)353.(山东省菏泽市)如图,在△ABC 中,∠ACB =90°,AC =8,BC =6,D 是AB 中点,E 是BC 上动点(不与C 重合),⊙O 是过C 、D 、E 三点的圆. (1)求证:∠DFE =∠B ,并求EF 的最小值.(2)设BE =x ,CF =y ,求y 关于x 的函数关系式,并写出x 的取值范围. (3)求CF 的取值范围.354.(山东省菏泽市)如图1,梯形OABC 中,OA ∥BC ,∠C =90°,以AB 为直径作⊙M ,交OC 于点D 、E ,连结AD 、BD 、BE .(1)求证:△ADB ∽△ECB .(2)如图2,以梯形OABC 的顶点O 为坐标原点,顶点C 在y 轴正半轴上建立直角坐标系,抛物线y =ax2-2ax -3a 经过A 、D 两点,且顶点为B ,求抛物线的解析式.(3)在(2)的条件下,在x 轴下方的抛物线上是否存在这样的点P :过点P 做PQ ⊥x 轴于Q ,使得以P 、A 、Q 为顶点的三角形与△ADB 相似?若存在,请求出点P 的坐标;若不存在,请说明理由.355.(山东省菏泽市)如图所示,抛物线y =ax2+bx +c 经过原点O ,与x 轴交于另一点N ,直线y =kx +4与两坐标轴分别交于A 、D 两点,与抛物线交于点B (1,m )、C (2,2)两点. (1)求直线与抛物线的解析式.(2)若抛物线在x 轴上方的部分有一动点P (x ,y ),设∠PON =α,求当△PON 的面积最大时tan α的值.图1(3)若动点P 保持(2)中的运动路线,问是否存在点P ,使得△POA 的面积等于△PON 面积的 815?若存在,请求出点P 的坐标;若不存在,请说明理由.356.(山东省莱芜市)在Rt △ACB 中,∠C =90°,AC =3cm ,BC =4cm ,以BC 为直径作⊙O 交AB 于点D .(1)求线段AD 的长度;(2)点E 是线段AC 上的一点,试问当点E 在什么位置时,直线ED 与⊙O 相切?请说明理由.357.(山东省莱芜市)在□ABCD 中,AC 、BD 交于点O ,过点O 作直线EF 、GH ,分别交平行四边形的四条边于E 、G 、F 、H 四点,连结EG 、GF 、FH 、HE . (1)如图①,试判断四边形EGFH 的形状,并说明理由;(2)如图②,当EF ⊥GH 时,四边形EGFH 的形状是_______________;(3)如图③,在(2)的条件下,若AC =BD ,四边形EGFH 的形状是_______________; (4)如图④,在(3)的条件下,若AC ⊥BD ,试判断四边形EGFH 的形状,并说明理由.358.(山东省莱芜市)如图,在平面直角坐标系中,已知抛物线y =ax2+bx +c 交x 轴于A (2,0),B (6,0)两点,交y 轴于点C (0,32). (1)求此抛物线的解析式; (2)若此抛物线的对称轴与直线y =2x 交于点D ,作⊙D 与x 轴相切,⊙D 交y 轴于E 、F 两点,求劣弧EF︵的长;(3)P 为此抛物线在第二象限图像上的一点,PG 垂直于x 轴,垂足为点G ,试确定P 点的位置,使得△PGA 的面积被直线AC 分成1 :2两部分.B H G F E O DC B A 图① H G E OD C B A 图② A B C DO E F G H 图③ A B C DO E F G H 图④F359.(山东省泰安市)如图,在△ABC 中,D 是BC 边上一点,E 是AC 边上一点,且满足AD =AB ,∠ADE =∠C .(1)求证:∠AED =∠ADC ,∠DEC =∠B ;(2)求证:AB 2=AE ²AC .360.(山东省泰安市)如图,△ABC 是等腰直角三角形,∠A =90°,点P 、Q 分别是AB 、AC 上的动点,且满足BP =AQ ,D 是BC 的中点.(1)求证:△PDQ 是等腰直角三角形;(2)当点P 运动到什么位置时,四边形APDQ 是正方形,并说明理由.AEC AQ P答案341.(1)证明:连结OD∵AD 平分∠BAC ,∴∠1=∠2 ∵OA =OD ,∴∠1=∠3 ∴∠2=∠3,∴OD ∥AC ∵AB 为⊙O 的直径,∴AC ⊥BC ∴OD ⊥BC∵EF ∥BC ,∴OD ⊥EF ∵OD 为⊙O 的半径∴EF 为⊙O 的切线 ·················································································· 3分(2)解:设OD 与BC 相交于点M ,⊙O 的半径为r ,则OB =OD =r在Rt △BOM 中,OM =OB ²sin ∠ABC =54r又∵OM =OD -MD =OD -CF =r -1r -1=54r ,∴r =5即⊙O 的半径为5 ····················································································· 6分 ∴AB =10,AC =AB ²sin ∠ABC =8,BC =22AC AB-=6AF =AC +CF =9∵EF ∥BC ,∴△AEF ∽△ABC ∴BC EF =AC AF ,即5EF =89∴EF =845································································································· 8分342.解:(1)如图(1),作DF ⊥AC 于F在Rt △ABC 中,∵AB =32,∠BAC =30°,∴BC =3,AC =3 在Rt △ACD 中,∵AD =CD ,∴DF =AF =CF =23∵BP 平分∠ABC ,∴∠PBC =30° ∴CP =BC ²tan30°=1,∴PF =21 ∴DP =22PF DF+=210 ······································································· 3分(2)(1)(2)当P 点位置如图(2)所示时,根据(1)中结论,DF =23,∠ADF =45° 又PD =BC =3,∴cos ∠PDF =PDDF =23,∴∠PDF =30°∴∠PDA =∠ADF -∠PDF =15° ································································· 5分 当P 点位置如图(3)所示时,同(2)可得∠PDF =30°∴∠PDA =∠ADF +∠PDF =75° ································································· 7分 (3)当CP =23时,以D ,P ,B ,Q 为顶点的平行四边形的顶点Q 恰好在边BC 上 理由如下:如图(4),在□DPBQ 中,∵BC ∥DP ,∠ACB =90°,∴DP ⊥AC 根据(1)中结论可知,DP =CP =23························································· 8分 ∴S □DPBQ=DP ²CP =49 ············································································· 10分 343.解:(1)过A 作AC ⊥x 轴,由已知得OC =4,AC =3∴OA =22AC OC+=5①当OB =OA =5时若点B 在x 轴的负半轴上,如图(1),点B 的坐标为(-5,0) ·········· 0.5分 若点B 在x 轴的正半轴上,如图(2),点B 的坐标为(5,0) ················· 1分②当AB =OA =5时,点B 只能在x 轴的负半轴上,如图(3)此时BC =OC ,则OB =8,点B 的坐标为(-8,0) ····························· 1.5分 ③当AB =OB =5时,点B 只能在x 轴的负半轴上,如图(4) 在x 轴上取点D ,使AD =OA ,则OD =8(3)(4)(2)(1)由∠AOB =∠OAB =∠ODA ,可知△AOB ∽△ODA 则OA OB =OD OA ,即5OB =85解得OB =825,点B 的坐标为(-825,0) ················································ 2分(2)当AB =OA 时,抛物线过O(0,0),A (-4,3),B (-8,0)三点设抛物线的函数表达式为y =ax2+bx则⎩⎪⎨⎪⎧16a -4b =364a -8b =0 解得a =-163,b =-23∴y =-163x2-23x ························································································ 3分 当OA =OB 时,同理可得y =-43x2-415x ················································ 4分 (3)当OA =AB 时①若BP ∥OA ,如图(5)分别过A 、P 作x 轴的垂线,垂足分别为C 、E 则∠PBE =∠AOC ,∠PEB =∠ACO =90° ∴△PBE ∽△AOC ,∴BE PE =OCAC =43设BE =4m ,则PE =3m∴点P 的坐标为(4m -8,-3m ),代入y =-163x2-23x ,解得m =3 ∴P (4,-9) ································································································ 5分 S 梯形ABPO=S △ABO+S △BPO=21×OB ×(AC +PE )=21×8×(3+9)=48 ···· 5.5分 ②若OP ∥AB ,根据抛物线的对称性可得点P 的坐标为(-12,-9) ······ 6分 S 梯形AOPB=S △ABO+S △BPO=48 ··································································· 6.5分当OA =OB 时,若BP ∥OA ,如图(6),作PF ⊥x 轴 则∠PBF =∠AOC ,∠PFB =∠ACO =90° ∴△PBF ∽△AOC ,∴BF PF =OCAC =43设BF =4m ,则PF =3m(3)(4)∴点P 的坐标为(4m -5,-3m ),代入y =-43x2-415x ,解得m =3∴P (1,-29) ······························································ 7分 S 梯形ABPO=S △ABO+S △BPO=475 ····································· 8分 若OP ∥AB (图略),作PF ⊥x 轴 则∠POF =∠ABC ,∠PFO =∠ACB =90° ∴△POF ∽△ABC ,∴OF PF =BCAC=3 设点P 的坐标为(-n ,-3n ),代入y =-43x2-415x ,解得n =9∴P (-9,-27) ·························································································· 9分 S 梯形AOPB=S △ABO+S △BPO=75 ····································································· 10分344.(1)证明:∵AC =CD ,∴AC ︵=CD ︵,∴∠ABC =∠CBD又∵OC =OB ,∴∠OCB =∠OBC ,∴∠OCB =∠CBD ∴OC ∥BD ···························································4分(2)解:∵OC ∥BD ,不妨设平行线OC 与BD 间的距离为h又S △OBC=21OC ²h ,S △DBC=21BD ²h 因为BC 将四边形OBDC 分成面积相等的两个三角形,即S △OBC=S △DBC ∴OC =BD ································································································· 7分 ∴四边形OBDC 为平行四边形. 又∵OC =BD ,∴四边形OBDC 为菱形345.(1)证明:∵四边形OABC 为正方形,∴OA =OC∵三角板OEF 是等腰直角三角形,∴OE 1=OF 1又三角板OEF 绕O 点逆时针旋转至OE 1F 1的位置时,∠AOE 1=∠COF 1 ∴△OAE 1≌△OCF 1 ·················································································· 3分 (2)存在 ··········································································································· 4分∵OE ⊥OF∴过点F 与OE 平行的直线有且只有一条,并与OF 垂直,又当三角板OEF 绕O 点逆时针旋转一周时,点F 在以O 为圆心,OF 为半径的圆上······································································································· 5分∴过点F 与OF 垂直的直线必是⊙O 的切线,又点C 是圆⊙O 外一点,过点C 与⊙O 相切的直线有且只有2条,不妨设为CF 1和CF 2此时,E 点分别在E 1点和E 2点,满足CF 1∥OE 1,CF 2∥OE 2 ·············· 7分ABOC D当切点F 1在第二象限时,点E 1在第一象限, 在直角三角形CF 1O 中,OC =4,OF 1=2 cos ∠COF 1=OC OF 1=21∴∠COF 1=60°,∴∠AOE 1=60° ∴点E 1的横坐标为:x E 1=2cos60°=1 点E 1的纵坐标为:y E 1=2sin60°=3∴点E 1的坐标为(1,3) ··························· 9分 当切点F 2在第一象限时,点E 2在第四象限同理可求:点E 2的坐标为(1,-3)················································· 10分综上所述,三角板OEF 绕O 点逆时针旋转一周,存在两个位置,使得OE ∥CF ,此时点E 的坐标为E 1(1,3)或E 2(1,-3) ············································ 11分346.解:(1)因为抛物线与x 轴交于点A (-1,0)、B (3,0)两点设抛物线的函数关系式为:y =a (x +1)(x -3) ∵抛物线与y 轴交于点C (0,-3) ∴-3=a (0+1)(0-3),∴a =1所以,抛物线的函数关系式为:y =(x +1)(x -3)即y =x2-2x -3 ····························································································· 2分∵y =x2-2x -3=(x -1)2-4因此,抛物线的顶点坐标为(1,-4) ························································ 3分 (2)连结EM ,∵EA 、ED 是⊙M 的两条切线∴EA =ED ,EA ⊥AM ,ED ⊥MD ,∴△EAM ≌△EDM 又四边形EAMD 的面积为34,∴S △EAM=32,∴21AM ²AE =32 又AM =2,∴AE =32因此,点E 的坐标为E 1(-1,32)或E 2(-1,-32) ···················· 5分 当E 点在第二象限时,切点D 在第一象限 在Rt △EAM 中,tan ∠EMA =AMEA=232=3∴∠EMA =60°,∴∠DMB =60° 过切点D 作DF ⊥AB ,垂足为点F ∴MF =1,DF =3因此,切点D 的坐标为(2,3) ······························································ 6分 设直线PD 的函数关系式为y =kx +b ,将E (-1,32),D (2,3)的坐标代入得⎩⎨⎧3=2k +b 32=-k +b解得⎩⎪⎨⎪⎧k =-33b =335 所以,直线PD 的函数关系式为y =-33x +335 ···································· 7分 当E 点在第三象限时,切点D 在第四象限同理可求:切点D 的坐标为(2,-3),直线PD 的函数关系式为y =33x -335 因此,直线PD 的函数关系式为:y =-33x +335或y =33x -335 ··························································· 8分 (3)若四边形EAMD 的面积等于△DAN 的面积又S 四边形EAMD=2S △EAM,S △DAN=2S △AMD∴S △AMD=S △EAM∴E 、D 两点到x 轴的距离相等∵PD 与⊙M 相切,∴点D 与点E 在x 轴同侧 ∴切线PD 与x 轴平行此时切线PD 的函数关系式为y =2或y =-2 ···················· 9分 当y =2时,由y =x2-2x -3得,x =1±6当y =-2时,由y =x2-2x -3得,x =1±2 ········································· 11分故满足条件的点P 的位置有4个,分别是:P 1(1+6,2)、P 2(1-6,2)、 P 3(1+2,-2)、P 4(1-2,-2) ····················································· 12分347.(1)证明:∵∠ABC =90°,∴AB ⊥BC又AD ∥BC ,DE ⊥BC ,∴DE =AB =AD ∵AD ∥BC ,∠ABC =90°,∴∠A =90° ∴四边形ABED 是正方形 又AF =EC ,∴△ADF ≌△EDC ∴DF =DC ,∠ADF =∠EDC又∠ADF +∠FDE =90°,∴∠EDC +∠FDE =90° ∴∠FDC =90°,∴△DFC 是等腰直角三角形 设FC 与BD 相交于点G ,则∠DFG =∠DCF =45° ∵∠CBG =45°,∴∠DFG =∠CBG 又∠FGD =∠BGC ,∴△FDG ∽△BCG∴∠FDB =∠FCB ····················································································· 3分 ∵∠FDN =45°+∠FDB ,∠BCD =45°+∠FCB ,∴∠FDN =∠BCD又∠DFN =∠CBD =45°∴△DFN ∽△CBD ···················································································· 5分 连结DM ,则DM ⊥FC ,∠FDM =∠CDM =45° 又∠FDB =45°-∠ADF ,∠MDE =45°-∠EDC ∴∠FDB =∠MDE 又DM DF =DEDB=2,∴△DFB ∽△DME ∴∠MED =∠FBD =45°∴ME 是正方形ABED 的对角线,∴ME 垂直平分BD ··························· 8分(2)解:由△DFB ∽△DME 可知,∴FB =2ME =2 ········································ 10分348.解:(1)∵y =ax2+2ax +1,∴抛物线的对称轴为x =-1∵抛物线的顶点为A ,∴直角边AC 所在直线为对称轴 由题意,得顶点A 的坐标为(-1,1-a ) ∵y =ax2+2ax +1,当x =0时,y =1∴抛物线过I (0,1) ∴1-a >1,∴a <0∴抛物线开口向下 ············································ 12分 (2)如图,AC =1-a ,BC =OC +OB =1+OBAB =AD +BD =AE +OB =AC -EC +OB =(1-a )-1+OB =OB -a 在Rt △ABC 中,由勾股定理得AC 2+BC 2=AB 2∴(1-a ) 2+(1+OB ) 2=(OB -a ) 2,解得OB =11+-a a ∴点B 的坐标为(11+-a a ,0) ······································································· 6分 (3)∵∠ABC =30°,∴tan ∠ABC =33 又tan ∠ABC =BCAC=1111+-+-a a a =a a 212-,∴a a 212-=33∴3a2+32a -3=0∴a 1=-3,a 2=33 又∵a <0,∴a =-3即当a =-3时,∠ABC =30°································································· 10分349.解:(1)当正方形DEFG 的边GF 在BC 上时,如图(1)过点A 作BC 边上的高AM ,交DE 于N ,垂足为MADEN∵S △ABC=48,BC =12,∴AM =8∵DE ∥BC ,△ADE ∽△ABC ·············································· 1分 ∴BC DE =AMAN,而AN =AM -MN =AM -DE ∴12DE =88DE- ································································· 2分 解得 DE =524 ∴当正方形DEFG 的边GF 在BC 上时,正方形DEFG 的边长为524 ······ 3分 (2)分两种情况:①当正方形DEFG 在△ABC 的内部时,如图(2)△ABC 与正方形DEFG 重叠部分的面积为正方形DEFG 的面积 ∵DE =x ,∴y =x2(0<x ≤524) ···································· 4分②当正方形DEFG 的一部分在△ABC 的外部时,如图(3)设EF 与BC 交于点P ,DG 与BC 交于点Q ,△ABC 的高AM 交DE 于N ∵DE =x ,DE ∥BC ,∴△ADE ∽△ABC ························ 5分 ∴BC DE =AMAN,而AN =AM -MN =AM -EP ∴12x =88EP -,解得EP =8-32x ···································· 6分 所以y =x (8-32x ),即y =-32x2+8x (524<x <12) ····· 7分 因此△ABC 与正方形DEFG 重叠部分的面积为y =⎩⎪⎨⎪⎧x2 (0<x ≤524)-32x2+8x (524<x <12) ····································· 8分当0<x ≤524时,△ABC 与正方形DEFG 重叠部分的面积的最大值为(524)2=25576当524<x <12时,∵y =-32x2+8x =-32(x -6)2+24∴当x =6时,△ABC 与正方形DEFG 重叠部分的面积的最大值为24∵24>25576所以△ABC 与正方形DEFG 重叠部分的面积的最大值为24 ··················· 10分350.解:(1)在Rt △AOC 中∵∠AOC =30 °,OA =38∴AC =OA ²sin30o =38×21=34OC =OA ²cos30o =38×23=12 A BCD E FG图(2)AB C图(3) DEF G M NQ P。
《中考压轴题全揭秘》第一辑 三年经典中考压轴题 专题9:函数之一次函数和反比例函数综合问题一、选择题1.(2014年福建福州4分)如图,已知直线y x 2=-+分别与x 轴,y 轴交于A ,B 两点,与双曲线ky x=交于E ,F 两点. 若AB =2EF ,则k 的值是【 】A .1-B .1C .12 D .342.(2014年福建泉州3分)在同一平面直角坐标系中,函数y =mx +m 与my x=(m ≠0)的图象可能是【 】A. B. C. D.3.(2014年广西南宁3分)已知点A 在双曲线2y x=-上,点B 在直线y x 4=-上,且A ,B 两点关于y 轴对称,设点A 的坐标为()m,n ,则m nn m+的值是【 】A .10-B .8-C .6D .44.(2014年湖北咸宁3分)如图,双曲线my x=与直线y =kx +b 交于点M 、N ,并且点M 的坐标为(1,3),点N 的纵坐标为﹣1.根据图象信息可得关于x 的方程mkx b x=+的解为【 】A. ﹣3,1B. ﹣3,3C. ﹣1,1D. ﹣1,35.(2014年湖南怀化3分)已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数byx=在同一坐标系中的图象大致是【】A. B. C. D.6.(2014年湖南岳阳3分)如图,已知点A是直线y=x与反比例函数kyx=(k>0,x>0)的交点,B是kyx=图象上的另一点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M,N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为【】A. B. C. D.7. (2014年四川乐山3分)如图,点P (﹣1,1)在双曲线上,过点P 的直线l 1与坐标轴分别交于A 、B 两点,且tan ∠BAO =1.点M 是该双曲线在第四象限上的一点,过点M 的直线l 2与双曲线只有一个公共点,并与坐标轴分别交于点C 、点D .则四边形ABCD 的面积最小值为【 】A .10B .8C .6D .不确定 8.(2014年四川眉山3分)如图,直线1y x 12=-与x 轴交于点B ,双曲线ky (x 0)x =>交于点A ,过点B 作x 轴的垂线,与双曲线ky x=交于点C ,且AB =AC ,则k 的值为【 】A .2B .3C .4D .69.(2014年海南省3分)已知k 1>0>k 2,则函数y =k 1x 和y =2k x的图象在同一平面直角坐标系中大致是【 】A.B.C.D.10.(2014年重庆市A4分)如图,反比例函数6yx=-在第二象限的图象上有两点A、B,它们的横坐标分别为-1,-3.直线AB与x轴交于点C,则△AOC的面积为【】A. 8 B. 10 C. 12 D.2411.(2014年云南昆明3分)下图是反比例函数ky(k k0)x=≠为常数,的图像,则一次函数y kx k=-的图像大致是【】A. B. C. D.12.(2013年浙江绍兴4分)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y (℃)和时间(min )的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的【 】A .7:20B .7:30C .7:45D .7:50 13.(2013年广东省3分)已知k 1<0<k 2,则函数1y k x 1=-和2k y x=的图象大致是【 】14. (2013年四川凉山4分)如图,正比例函数1y 与反比例函数2y 相交于点E (1-,2),若12y y 0>>,则x 的取值范围在数轴上表示正确的是【 】A .B . C.D .15. (2013年云南八地市3分)若ab >0,则一次函数y =ax +b 与反比例函数aby x=在同一坐标系数中的大致图象是【 】16. (2012广东广州3分)如图,正比例函数y 1=k 1x 和反比例函数22k y =x的图象交于A (﹣1,2)、B (1,﹣2)两点,若y 1<y 2,则x 的取值范围是【 】A .x <﹣1或x >1B .x <﹣1或0<x <1C .﹣1<x <0或0<x <1D .﹣1<x <0或x >1 17. (2012广东梅州3分)在同一直角坐标系下,直线y =x +1与双曲线1y=x的交点的个数为【 】 A .0个 B .1个 C .2个 D .不能确定18. (2012广东河源3分)在同一坐标系中,直线y =x +1与双曲线y = 1x 的交点个数为【 】A .0个B .1个C .2个D .不能确定 19. (2012湖南张家界3分)当a ≠0时,函数y =ax +1与函数y ax在同一坐标系中的图象可能是【 】20. (2012山东东营3分)如图,一次函数y=x+3的图象与x 轴,y 轴交于A ,B 两点,与反比例函数4y=x的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:①△CEF与△DEF的面积相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC=B D.其中正确的结论是【】A.①②B.①②③C.①②③④D.②③④二、填空题1.(2014年江苏宿迁3分)如图,一次函数y=kx﹣1的图象与x轴交于点A,与反比例函数3 yx =(x>0)的图象交于点B,BC垂直x轴于点C.若△ABC的面积为1,则k的值是▲ .2. (2014年四川成都4分)如图,在平面直角坐标系xOy中,直线3y x2=与双曲线6yx=相交于A,B两点,C是第一象限内双曲线上一点,连接CA并延长交y轴于点P,连接BP,B C. 若△PBC的面积是20,则点C的坐标为▲ .3. (2013年江苏宿迁3分)在平面直角坐标系xOy 中,一次函数1y x 23=+与反比例函数()5y x>0x=的图象交点的横坐标为x 0.若k <x 0<k +1,则整数k 的值是 ▲ . 4. (2013年贵州毕节5分)一次函数y kx 1=+的图象经过(1,2),则反比例函数ky x=的图象经过点(2, ▲ ).5. (2013年贵州遵义4分)如图,已知直线1y x 2=与双曲线ky x=(k >0)交于A 、B 两点,点B 的坐标为()42--,,C 为双曲线ky x=(k >0)上一点,且在第一象限内,若△AOC 的面积为6,则点C 的坐标为 ▲ .6. (2013年福建三明4分)如图,已知一次函数y =kx +b 的图象经过点P (3,2),与反比例函数2y x=(x >0)的图象交于点Q (m ,n ).当一次函数y 的值随x 值的增大而增大时,m 的取值范围是 ▲ .7. (2012浙江衢州4分)如图,已知函数y =2x 和函数ky=x的图象交于A 、B 两点,过点A 作AE ⊥x 轴于点E ,若△AOE 的面积为4,P 是坐标平面上的点,且以点B 、O 、E 、P 为顶点的四边形是平行四边形,则满足条件的P 点坐标是 ▲ .8. (2012湖北十堰3分)如图,直线y =6x ,y =23x 分别与双曲线ky x=在第一象限内交于点A ,B ,若S △OAB =8,则k = ▲ .9. (2012湖南益阳4分)反比例函数ky=x的图象与一次函数y =2x +1的图象的一个交点是(1,k ),则反比例函数的解析式是 ▲ .10. (2012辽宁营口3分)如图,直线b x y +-=与双曲线xy 1=(x >0)交于A 、B 两点,与x 轴、y 轴分别交于E 、F 两点,连结OA 、OB ,若AOB OBF OAE S S S ∆∆∆=+,则=b ▲ .11. (2012甘肃兰州4分)如图,M 为双曲线3上的一点,过点M 作x 轴、y 轴的垂线,分别交直线y =-x +m 于点D 、C 两点,若直线y =-x +m 与y 轴交于点A ,与x 轴相交于点B ,则AD •BC 的值为 ▲ .三、解答题1.(2014年福建泉州14分)如图,直线y =﹣x +3与x ,y 轴分别交于点A ,B ,与反比例函数的图象交于点P (2,1).(1)求该反比例函数的关系式;(2)设PC ⊥y 轴于点C ,点A 关于y 轴的对称点为A ′;①求△A ′BC 的周长和sin ∠BA ′C 的值;②对大于1的常数m ,求x 轴上的点M 的坐标,使得sin ∠BMC =1m.2.(2014年黑龙江牡丹江10分)如图,在平面直角坐标系中,直线AB 与x 轴、y 轴分别交于点A ,B ,直线CD 与x 轴、y 轴分别交于点C ,D ,AB 与CD 相交于点E ,线段OA ,OC 的长是一元二次方程x 2﹣18x +72=0的两根(OA >OC ),BE =5,tan ∠ABO =43. (1)求点A ,C 的坐标; (2)若反比例函数y =kx的图象经过点E ,求k 的值; (3)若点P 在坐标轴上,在平面内是否存在一点Q ,使以点C ,E ,P ,Q 为顶点的四边形是矩形?若存在,请写出满足条件的点Q 的个数,并直接写出位于x 轴下方的点Q 的坐标;若不存在,请说明理由.3.(2014年江苏淮安12分)如图,点A(1,6)和点M(m,n)都在反比例函数kyx=(x>0)的图象上,(1)k的值为▲ ;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.4.(2014年山东枣庄10分)如图,一次函数y=ax+b与反比例函数kyx=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为13,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、B D.(1)求一次函数与反比例函数的解析式;(2)求四边形OCBD的面积.5. (2014年四川巴中10分)如图,在平面直角坐标系xOy 中,已知四边形DOBC 是矩形,且D (0,4),B (6,0).若反比例函数1k y x=(x >0)的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F .设直线EF 的解析式为2y k x b =+. (1)求反比例函数和直线EF 的解析式; (2)求△OEF 的面积;(3)请结合图象直接写出不等式12k k x b >0x+-的解集.6. (2013年湖南湘西8分)如图,在平面直角坐标系xOy 中,正比例函数y =kx 的图象与反比例函数2y x=的图象有一个交点A (m ,2). (1)求m 的值;(2)求正比例函数y =kx 的解析式;(3)试判断点B (2,3)是否在正比例函数图象上,并说明理由.7. (2013年四川巴中10分)如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与反比例函数my x=的图象交于一、三象限内的A 、B 两点,直线AB 与x 轴交于点C ,点B 的坐标为(﹣6,n ),线段OA =5,E 为x 轴正半轴上一点,且tan ∠AOE =43(1)求反比例函数的解析式; (2)求△AOB 的面积.8. (2012四川巴中10分)如图,在平面直角坐标系中,一次函数11y k x 1=+的图象与y 轴交于点A ,与x 轴交于点B ,与反比例函数22k y x=的图象分别交于点M ,N ,已知△AOB 的面积为1,点M 的纵坐标为2,(1)求一次函数和反比例函数的解析式; (2)直接写出12y y >时x 的取值范围。
2014年中考数学分类汇编——与函数有关的选择题压轴题
2014年与函数有关的选择题压轴题,考点涉及:一次函数性质;反比例函数性质,反比例函数比例系数k的几何意义及不等式的性质,;曲线上点的坐标与方程的关系;二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与一元二次方程的关系,二次函数与不等式;相似三角形的判定和性质;轴对称的性质.数学思想涉及:数形结合;化归;方程.现选取部分省市的2014年中考题展示,以飨读者.
【题1】(2014•济宁第8题)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()
【题2】(2014年山东泰安第20题)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:
下列结论:
(1)ac<0;
(2)当x>1时,y的值随x值的增大而减小.
(3)3是方程ax2+(b﹣1)x+c=0的一个根;
(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.
其中正确的个数为()
A.4个B.3个C.2个D.1个
【分析】:根据表格数据求出二次函数的对称轴为直线x=1.5,然后根据二次函数的性质对各小题分析判断即可得解.
【解答】:由图表中数据可得出:x=1时,y=5值最大,所以二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故(1)正确;
∵二次函数y=ax2+bx+c开口向下,且对称轴为x==1.5,∴当x>1.5时,y的值随x值的增大而减小,故(2)错误;
∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一个根,故(3)正确;
∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2=(b﹣1)x+c>0,故(4)正确.
故选B.
【点评】:本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.
【题3】(2014年山东烟台第11题)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:
①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.
其中正确的结论有()
A.1个B.2个C.3个D.4个
【分析】:根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.
【解答】:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,所以①正确;
∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,所以②错误;
∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,
而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,
∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,所以③正确;
∵对称轴为直线x=2,
∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,所以④错误.故选B.
【点评】:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),
对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac
<0时,抛物线与x轴没有交点.
【题4】(2014•威海第11题)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()
,直线
【题5】(2014•宁波第12题)已知点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为()
=
【题6】(2014•温州第10题)如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y 轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()
•
AB AD
AB•
【题7】(2014年山东泰安第17题)已知函数y=(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()
A.B C D.
【分析】:根据二次函数图象判断出m<﹣1,n=1,然后求出m+n<0,再根据一次函数与反比例函数图象的性质判断即可.
【解答】:由图可知,m<﹣1,n=1,所以,m+n<0,
所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1),
反比例函数y=的图象位于第二四象限,
纵观各选项,只有C选项图形符合.故选C.
【点评】:本题考查了二次函数图象,一次函数图象,反比例函数图象,观察二次函数图象判断出m、n的取值是解题的关键.
【题8】(2014.福州第10题)如图,已知直线y x2
=-+分别与x轴,y轴交于A,B两点,
与双曲线
k
y
x
=交于E,F两点. 若AB=2EF,则k的值是【】
[来
A.1-B.1 C.1
2
D.
3
4
【考点】:1.反比例函数与一次函数交点问题;2.曲线上点的坐标与方程的关系;3.相似三角形的判定和性质;4.轴对称的性质.
【题9】(2014.泸州第12题)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a >3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()
AB=4,
,PE=
=3+。