第九章微分方程模型有解答
- 格式:doc
- 大小:460.00 KB
- 文档页数:14
第9章 偏微分方程的差分方法含有偏导数的微分方程称为偏微分方程。
由于变量的增多和区域的复杂性,求偏微分方程的精确解一般是不可能的,经常采用数值方法求方程的近似解。
偏微分方程的数值方法种类较多,最常用的方法是差分方法。
差分方法具有格式简单,程序易于实现,计算量小等优点,特别适合于规则区域上偏微分方程的近似求解。
本章将以一些典型的偏微分方程为例,介绍差分方法的基本原理和具体实现方法。
9.1椭圆型方程边值问题的差分方法9.1.1 差分方程的建立最典型的椭圆型方程是Poisson (泊松)方程G y x y x f yux u u ∈=∂∂+∂∂-≡∆-),(),,()(2222 (9.1)G 是x ,y 平面上的有界区域,其边界Γ为分段光滑的闭曲线。
当f (x ,y )≡0时,方程(9.1)称为Laplace(拉普拉斯)方程。
椭圆型方程的定解条件主要有如下三种边界条件第一边值条件 ),(y x u α=Γ (9.2) 第二边值条件),(y x nuβ=∂∂Γ (9.3) 第三边值条件 ),()(y x ku nuγ=+∂∂Γ (9.4) 这里,n 表示Γ上单位外法向,α(x,y ),β(x,y ),γ(x,y )和k (x,y )都是已知的函数,k (x,y )≥0。
满足方程(9.1)和上述三种边值条件之一的光滑函数u (x ,y )称为椭圆型方程边值问题的解。
用差分方法求解偏微分方程,就是要求出精确解u (x ,y )在区域G 的一些离散节点(x i ,y i )上的近似值u i ,j ≈(x i ,y i )。
差分方法的基本思想是,对求解区域G 做网格剖分,将偏微分方程在网格节点上离散化,导出精确解在网格节点上近似值所满足的差分方程,最终通过求解差分方程,通常为一个线性方程组,得到精确解在离散节点上的近似值。
设G ={0<x <a , 0<y <b }为矩形区域,在x ,y 平面上用两组平行直线x =ih 1, i =0,1,…,N 1, h 1=a /N 1 y =jh 2, j =0,1,…,N 2, h 2=b /N 2将G 剖分为网格区域,见图9-1。
《高等数学》各章知识点总结——第9章第9章是《高等数学》中的微分方程章节。
微分方程是研究函数与其导数之间的关系的一门数学学科,是应用数学的基础。
本章主要介绍了常微分方程的基本概念和解法,包括一阶和二阶常微分方程的解法、线性常微分方程、齐次线性常微分方程和非齐次线性常微分方程等。
本章的主要内容如下:1.一阶常微分方程的解法:-可分离变量法:将方程两边进行变量分离,然后分别对两边积分得到解。
-齐次方程法:通过对方程的两边同时除以y的幂次,转化为可分离变量的形式。
- 线性方程法:将方程整理为dy/dx + P(x)y = Q(x)的形式,然后通过积分因子法求解。
2.二阶常微分方程的解法:- 齐次线性方程法:将方程整理为d²y/dx² + P(x)dy/dx + Q(x)y = 0的形式,然后通过特征方程求解。
- 非齐次线性方程法:将方程整理为d²y/dx² + P(x)dy/dx + Q(x)y = f(x)的形式,然后通过待定系数法求解。
3.线性常微分方程:-线性方程的定义和性质:线性方程是指非齐次线性方程,具有叠加和齐次性质。
-齐次线性方程的通解:通过特征方程求解齐次线性方程,得到通解。
-非齐次线性方程的通解:通过齐次线性方程的通解和非齐次线性方程的一个特解求得非齐次线性方程的通解。
4.齐次线性微分方程:-齐次线性方程的定义和性质:齐次线性方程是指非齐次线性方程中f(x)为零的情况。
-齐次线性方程的解法:通过特征方程求解齐次线性方程,得到通解。
5.非齐次线性微分方程:-非齐次线性方程的定义和性质:非齐次线性方程是指非齐次线性方程中f(x)不为零的情况。
-非齐次线性方程的解法:通过待定系数法求解非齐次线性方程。
6.可降次的非齐次线性微分方程:-可降次的非齐次线性方程的定义和性质:可降次的非齐次线性方程是指非齐次线性方程中f(x)可以表示为x的多项式乘以y(x)的幂函数的形式。
嗯,很好~快乐就好~如果我的存在只能给你压力,不如放开手让彼此解脱。
让我们都能幸福着,在各自的路程快乐第五章 微分方程模型建立微积方程模型要对研究对象作具体分析。
一般有以下三种方法:1、根据规律建模,2、用微元法建模,3、用模拟法建模。
§5.1 根据规律建模在数学、力学物理、化学等学科中已有许多经过实践的规律和定律,如牛顿运动定律,基尔霍夫电流及电压定律,物质的放射规律,曲线的切线性质等,这些都涉及到某些函数的变化率。
我们就可以根据相应的规律,列出常微分方程。
下面以目标跟踪问题为例介绍。
设位于坐标原点的甲舰向位于x 轴上点()0,1A 处的乙舰发射导弹,但始终对准乙舰,如果乙舰以最大的速度0V 沿平行于y 轴的直线行驶,导弹的速度是05V ,求导弹运行的曲线。
又乙舰行驶多远时,导弹将它击中?解:设导弹轨迹为y=y(x),经过时间t ,导弹位于P(x,y),乙舰位于点Q ),1(0t V 。
由于导弹头始终对准乙舰,故此时PQ 就是曲线y(x)在点P 处的切线,因此,由于,由xyt V y --=10'得 y y x t V +-='0)1(,又因为弧OP 的长度为5|AQ|,即t V dx y x002'51=+⎰所以 dx y y y x x ⎰+=+-02''151)1(, 整理得 2'''151)1(y y x +=+, 并有y(0)=0,0)0('=y ,解得245)1(125)1(855654+-+--=x x y当x=1时,254=y 即当乙舰行到⎪⎭⎫⎝⎛254,1处被击中,00245V V y t ==。
§5.2 微元法建模微元法建模实际上是寻求一些微元之间的关系式。
与第一种方法不同之处在于这里不是直接对未知函数及其导数应用规律和定理来求关系式,而是对某些微元来应用规律。
以容器漏水问题为例。
药代动力学12 第九章药代动力学与药效学动力学结合模型第九章药代动力学与药效动力学结合模型第一节概述药代动力学(Pharmacokinetics, PK)和药效动力学(Pharmacodynamics,PD) 是按时间同步进行着的两个密切相关的动力学过程,前者着重阐明机体对药物的作用,即药物在体内的吸收、分布、代谢和排泄及其经时过程;后者描述药物对机体的作用,即效应随着时间和浓度而变化的动力学过程,后者更具有临床实际意义。
传统的药效动力学主要在离体的水平进行,此时药物的浓度和效应呈现出一一对应的关系,根据药物的量效关系可以求得其相应的药效动力学参数,如亲和力和内在活性等。
但药物的作用在体内受到诸多因素的影响,因而其在体内的动力学过程较为复杂。
以往对于药动学和药效学的研究是分别进行的,但实际上药动学和药效学是两个密切相关的动力学过程,两者之间存在着必然的内在联系。
早期的临床药动学研究通过对治疗药物的血药浓度的监测(TherapeuticDrug Monitoring, TDM)来监测药物效应变化情况,其理论基础是药物的浓度和效应呈现出一一对应的关系,这一关系是建立在体外研究的基础之上的,这里所说的浓度实际上是作用部位的浓度,但在临床研究中我们不可能直接测得作用部位的药物浓度,因而常常用血药浓度来代替作用部位的浓度。
随着药代动力学和药效动力学研究的不断深入人们逐渐发现药物在体内的效应动力学过程极为复杂,其血药浓度和效应之间并非简单的一一对应关系,出现了许多按传统理论无法解释的现象,如效应的峰值明显滞后于血药浓度峰值,药物效应的持续时间明显长于其在血浆中的滞留时间,有时血药浓度和效应的曲线并非像在体外药效动力学研究中观察到的 S形曲线,而是呈现出一个逆时针滞后环。
进一步研究发现血药浓度的变化并不一定平行于作用部位药物浓度的变化,因而出现了上述的一些现象,所以在体内不能用血药浓度简单地代替作用部位的浓度来反映药物效应的变化情况。
微分方程模型的建立与求解微分方程是描述自然界各种变化规律的一种数学工具。
其具有广泛的应用背景,尤其在物理、化学和工程等学科领域。
很多实际问题正是因为缺乏有效的数学工具,使其难以进行深入的研究。
因此,微分方程成为科学研究中重要的数学工具。
一、微分方程的建立微分方程是对一组连续物理量之间的关系进行描述的方程,其本身并不具有明显的物理意义。
在实际问题中,我们经常需要根据实际情况建立微分方程模型,以便对问题进行数学分析和求解。
对于一些简单的实际问题,我们可以通过观察实验数据或者计算获取一些变化规律,以此来形成微分方程模型。
例如,当我们掷出一枚硬币时,硬币的旋转角速度会随着时间的推移而逐渐减小。
此时,我们可以根据旋转角速度随时间变化的条件建立微分方程模型。
在实际情况中,很多问题可能存在多种不同的影响因素,因此会涉及到多组变量之间的变化关系。
对于这类问题,我们需要建立高阶微分方程模型。
例如,在考虑空气阻力、重力等因素时,对于自由落体的运动问题,我们需要建立二阶微分方程模型。
二、微分方程的求解为了求解微分方程,我们需要先了解微分方程的类型和特点。
微分方程按照阶数和类型可以分为很多种类,包括常微分方程、偏微分方程、线性微分方程、非线性微分方程等。
对于一些简单的微分方程,我们可以通过手工计算或者使用微积分公式求解。
例如,对于一阶线性微分方程:$$\frac{dy}{dx}+p(x)y=q(x)$$我们可以通过变形后使用求解公式:$$y=e^{-\int{p(x)dx}}(\int{q(x)e^{\int{p(x)dx}}dx+C})$$来得到其通解。
对于复杂的微分方程,我们则需要使用更加精确的数值求解方法。
这些方法主要有欧拉法、龙格-库塔法等。
这些方法可以使用计算机程序求解微分方程模型,并得到问题的数值解。
三、微分方程模型在实际应用中的意义微分方程模型在实际应用中具有广泛的意义。
例如,在物理学领域中,我们可以通过建立微分方程模型来描述一些基本规律,如经典力学、电磁理论等。
嗯,很好~快乐就好~如果我的存在只能给你压力,不如放开手让彼此解脱。
让我们都能幸福着,在各自的路程快乐第五章 微分方程模型建立微积方程模型要对研究对象作具体分析。
一般有以下三种方法:1、根据规律建模,2、用微元法建模,3、用模拟法建模。
§5.1 根据规律建模在数学、力学物理、化学等学科中已有许多经过实践的规律和定律,如牛顿运动定律,基尔霍夫电流及电压定律,物质的放射规律,曲线的切线性质等,这些都涉及到某些函数的变化率。
我们就可以根据相应的规律,列出常微分方程。
下面以目标跟踪问题为例介绍。
设位于坐标原点的甲舰向位于x 轴上点()0,1A 处的乙舰发射导弹,但始终对准乙舰,如果乙舰以最大的速度0V 沿平行于y 轴的直线行驶,导弹的速度是05V ,求导弹运行的曲线。
又乙舰行驶多远时,导弹将它击中?解:设导弹轨迹为y=y(x),经过时间t ,导弹位于P(x,y),乙舰位于点Q ),1(0t V 。
由于导弹头始终对准乙舰,故此时PQ 就是曲线y(x)在点P 处的切线,因此,由于,由xyt V y --=10'得 y y x t V +-='0)1(,又因为弧OP 的长度为5|AQ|,即t V dx y x002'51=+⎰所以 dx y y y x x ⎰+=+-02''151)1(, 整理得 2'''151)1(y y x +=+, 并有y(0)=0,0)0('=y ,解得245)1(125)1(855654+-+--=x x y当x=1时,254=y 即当乙舰行到⎪⎭⎫⎝⎛254,1处被击中,00245V V y t ==。
§5.2 微元法建模微元法建模实际上是寻求一些微元之间的关系式。
与第一种方法不同之处在于这里不是直接对未知函数及其导数应用规律和定理来求关系式,而是对某些微元来应用规律。
以容器漏水问题为例。
有高为1米的半球形容器,水从它的底部小孔流出。
小孔横截面为1cm 2.开始时的容器内盛满了水,求水从小孔流出过程中容器里面水面的高度h (水面与小孔中心距离)随时间t 变化的规律。
解:由流体力学知识知道,水从孔口流出的流量Q 可用下列公式计算:gh S dtdvQ 262.0==, 其中0.62为流量系数,S 为孔口横截面积。
现S=1cm 2.故 gh dtdv262.0=另一方面,现在[t,t+t ∆]内,水面高度由h 降至0)dh(dh h <+,则dh r dv 2π-=其中r 是时刻t 的水面半径。
因为222200)100(100h h h r -=--=,所以dh h h dv )200(2--=π,于是dh h h dt gh )200(262.02--=π,由此得)200(262.02423h h gdh dt -=π, 满足100|0=t h .解得)310107(265.4252335h h gt +-⨯=π此即容器内水面高度h 与时间t 之间的函数关系式。
P.S matlab 程序 clearsyms r; %定义符号变量 ry=dsolve('Dy=r*y*(1-y)','x') %求通解 y=dsolve('Dy=r*y*(1-y)','y(0)=y0','x') %求特解§5.3 模拟近似法建模在社会科学、生物学、医学、经济学等学科的实践中,常常要用模拟近似法来建立微分方程模型。
这是因为,这些学科中的一些现象的规律我们还不是很清楚,即使有所了解也并不全面,因此,要用数学模型进行研究只能在不同的假设下去模拟实际的现象。
然后再把解得的结果同实际情况作对比。
以交通管理问题为例。
在交通十字路口,都会设置红绿灯。
为了让那些正行驶在交叉路口或离交叉路口太近而无法停下的车辆通过路口,红绿灯转换中间还要亮起一段时间的黄灯。
对于一些驶近交叉路口的驾驶员来说,万万不可处于这样的进退两难的境地:要安全停车则离路口太近;要想在红灯亮之前通过路口又觉得太远。
那么,黄灯应亮多长时间合理呢?、解:各段时间应该满足以下关系:黄灯状态应持续的时间=驾驶员反应时间+车通过交叉路口时间+通过刹车距离的时间。
设v 0-----表示法定速度,I-----交叉路口宽度,L-----典型车身长度。
则通过路口的时间为v LI +,(车尾通过路口)。
下面计算刹车距离。
设w----为汽车的重量,u------摩擦系数,则摩擦力=μw ,汽车在停车过程中,行驶距离x 与时间t的关系可由下面微分方程求得w dtxd g w μ-=22(F=ma ). 满足:00'0|,0|v x x t t ====,于是刹车距离就是直接到速度v=0时汽车驶过的距离,由上式得t v gt x 0221+-=μ 。
令x ’=0,所以刹车时所用时间g v t μ00=,刹车距离gv t x μ2)(200=由上面得黄灯状态时间为t V LI g v T v L I t x A +++=+++=0002)(μ,其中T 是驾驶员反应时间,A,v 0关系(如图)(即黄灯周期与法定速度的关系)。
假设T=1s,L=4.5m,I=9m,另外,我们取具有代表性的u=0.2,,当v0=45,60,80km/h时,黄灯时间如下表示。
v0 (km/h) A(s) 经验法的值(s)45 5.27 360 6.06 480 7.28 5经验法的结果一律比我们预测的黄灯状态短些。
这使人想起,许多交叉路口红绿灯的设计可能使车辆在绿灯转为红灯时正处于交叉路口。
§5.4 微分方程模型实例例1.最优捕鱼策略为了保护人类赖以生存的自然环境,可再生资源(如渔业,林业资源)的开发必须适度。
一种合理、简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益。
考虑对某种鱼(鲥鱼)的最优捕捞策略:假设这种鱼分4个年龄组:称1龄鱼,…,4龄鱼。
各年龄组每条鱼的平均重量分别为5.07,11.55,17.86,22.99(克);各年龄组鱼的自然死亡率均为0.8(1/年);这种鱼为季节性集中产卵繁殖,平均每条4龄鱼的产卵量为1.109×105(个),3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵,产卵和孵化期为每年的最后4个月;卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵总量n之比)为1.22×10 11/(1.22×10 11+n).渔业管理部门规定,每年只允许在产卵孵化期前的8个月内进行捕捞作业。
如果每年投入的捕捞能力(如渔船数、下网次数等)固定不变,这时单位时间捕捞量将与各年龄组鱼群条数成正比。
比例系数不妨称捕捞强度系数。
通常使用13 mm 网眼的拉网,这种网只能捕捞3龄鱼和4龄鱼,其两个捕捞强度系数之比为0.42:1。
渔业上称这种方式为固定努力量捕捞。
(1)建立数学建模型分析如何实现可持续捕捞(即每年开始捕捞时渔场重各年龄组鱼群条数不变),并且在此前提下得到最高的年收获量(捕捞总重量)。
(2)某渔业公司承包这种鱼的捕捞业务5年,合同要求5年后鱼群的生产能力不能受到太大破坏。
已知承包时各年龄组。
鱼群的数量分别为:122,29.7,10.1,3.29(×109条),如果仍用固定努力量的捕捞方式。
该公司应该采取怎样的策略才能使总收获量最高。
问题分析要求研究的问题是:对某种鱼的最优捕捞策略。
1.鱼的情况具体数据如下表:i m i(g) r(1/年) u i (个/条)1 2 5.0711.550.80.83 4 17.86 22.99 0.8 0.8其中,i 表示i 龄鱼,m i 表示龄鱼的质量,r 表示龄鱼的自然死亡率,u i 表示平均每条i 龄鱼的产卵量。
如果每年投入的捕捞能力(如渔船数、下网次数等)不变,这时单位时间捕捞量将与i 成正比,比例系数之比为i k 使用13mm 网眼的拉网,这种网只能捕捞3、4龄鱼,其中两个捕捞强度系数之比为k 3:k 4=0.42:1,k 1=k 2=0渔业上称这种方式为固定努力量捕捞。
2.基本假设假设I:一年中,鱼的产卵是集中在8月底一次性完成,捕捞工作只在8个月进行。
假设II:各龄鱼(不包括4龄鱼)只在年末瞬时才长大一岁,鱼卵在年终才孵化完毕,成为1龄鱼。
这样在计算产卵量时,3,4龄鱼的条数为t=8/12.3.应解决的问题1)建立数学建模型分析如何实现可持续捕捞(即每年开始捕捞时渔场重各年龄组鱼群条数不变),并且在此前提下得到最高的年收获量(捕捞总重量)。
2)某渔业公司承包这种鱼的捕捞业务5年,合同要求5年后鱼群的生产能力不能受到太大破坏。
已知承包时各年龄组。
鱼群的数量分别为x 1,x 2,x 3,x 4, 如果仍用固定努力量的捕捞方式。
该公司应该采取怎样的策略才能使总收获量最高。
记号和约定)(t x i:i 龄鱼在t 时刻的数量(t 以年为单位,i=1,2,3,4);ip :i 龄鱼的捕捞量(i=3,4); M :捕捞总质量:Q :每年的产卵中能孵化成l 龄鱼的数量; N :每年的产卵量; 模型的建立由于鱼的数量随时间变化,可视为)(t x i 为连续函数,它的变化与时间t ,自然死亡率r ,单位时间捕捞量i k ,卵的成活率有关。
模型1定义单位死亡率8.0,=-=r rx dtdx i i单位时间捕捞量0,1:42.0:,2143====k k k k x k dtdp i i i则捕捞时满足i i ix k r dtdx )(+-= 对各龄鱼存在以下方程(令4k k =,则k k42.03=) 118.0)(x dt t dx -=,t ∈[]1,0 228.0)(x dtt dx -=,t ∈[]1,0()⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡∈-=⎥⎦⎤⎢⎣⎡∈+-=1,128,8.0128,0,42.08.03333t x dt dx t x k dt dx ()⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡∈-=⎥⎦⎤⎢⎣⎡∈+-=1,128,8.0128,0,8.04444t x dtdxt x k dt dx由此可解得)0()8.0exp()1(11x x -=, )0()8.0exp()1(22x x -=, )0()32)42.08.0(exp()128(33x k x ⨯+-=, )0()32)8.0(exp()128(44x k x ⨯+-=, )0())28.08.0(exp()1(33x k x +-=, )0())328.0(exp()1(44x kx +-= 收获量为⎰⎰==128012804433)(,)(42.0dt t kx p dt t kx p 。