2015年浙江省宁波市江北区八年级(下)期末数学试卷与解析(word版)
- 格式:doc
- 大小:1.18 MB
- 文档页数:21
宁波市2014-2015学年第二学期期末质量检测八年级数学试卷一、选择题(每小题3分,共36分)1、设a =19-1,a 在两个相邻整数之间,则这两个整数是( ) A .1和2 B .2和3 C .3和4 D .4和52、下列各点中,在函数xy 12-=的图象上的点是( ) A .(3,4) B .(-2,-6) C .(-2,6) D .(-3,-4)3、某地连续10天的最高气温统计如下:最高气温(℃)22 23 24 25 天数1234这组数据的中位数和众数分别是( )A 、24,25B 、24.5,25C 、25,24D 、23.5,24 4、如图,在直角梯形ABCD 中,AD BC ∥,点E 是边CD 的中点,若52AB AD BC BE =+=,,则梯形ABCD 的面积为( )A .254B .252C .258 D .255、若函数y =2x +k 的图象与y 轴的正半轴...相交,则函数y =x k的图象所在的象限是( ) A 、第一、二象限 B 、第三、四象限 C 、第二、四象限 D 、第一、三象限 6、一组数据 0,-1,5,x ,3,-2的极差是8,那么x 的值为( ) A 、6 B 、7 C 、6或-3 D 、7或-3 7、如图,E 、F 、G 、H 分别是四边形ABCD 四条边的中点,要使四边形EFGH 为矩形,四边形ABCD 应具备的条件是( ). A 、一组对边平行而另一组对边不平行 B 、对角线相等 C 、对角线互相垂直 D 、对角线互相平分8、若点(-5,y 1)、(-3,y 2)、(3,y 3)都在反比例函数y= -3x 的图像上,则( )A 、y 1>y 2>y 3B 、y 2>y 1>y 3C 、y 3>y 1>y 2D 、y 1>y 3>y 2ADE C BDCBAHGFE9、如图,已知矩形ABCD 的对角线AC 的长为10cm ,连结各边中点E 、F 、G 、H 得四边形EFGH ,则四边形EFGH 的周长为( )A 、20cmB 、202cmC 、203cmD 、25cm10、某超市一月份营业额为300万元,第一季度的营业额为1500万元,如果平均每月增长率为x,由题意可列方程( )A 、1500)1(3002=+x B 、300+300×2x=1500 C 、[]1500)1()1(13002=++++x x D 、300+300×3x=150011、已知关于x 的一元二次方程有两个不相等的实数根,则m 的取值范围是( )43.>m A 43.≥m B 243.≠>m m C 且 243.≠≥m m D 且12、如图(2)所示,矩形ABCD 的面积为102cm ,它的两条对角线交于点1O ,以AB 、1AO 为邻边作平行四边形11O ABC ,平行四边形11O ABC 的对角线交于点2O ,同样以AB 、2AO 为邻边作平行四边形22O ABC ,……,依次类推,则平行四边形55O ABC 的面积为( )A 、12cm B 、22cmC 、852cm D 、1652cm 二、填空题(每小题3分,共24分)13. 关于x 的方程0122=++-m mx x 根的情况是14.边长为7,24,25的△ABC 内有一点P 到三边距离相等,则这个距离为 15、如果函数y=222-+k k kx是反比例函数,那么k=____, 此函数的解析式是__ ______16、任何一个正整数n 都可以进行这样的分解:t s n ⨯=(s 、t 是正整数,且s ≤t),如果q p ⨯在n 的所有这种分解中两因数之差的绝对值最小,我们就称q p ⨯是最佳分解,并规定q p F n =)(。
八年级数学试卷(期末)一、选择题1.要使式子3x -有意义,则下列数值中字母x 不能取的是( )A .1B .3C .2D .4 2.命题“三角形的内角和等于180º”是( )A .假命题B 定义C .定理D .公理 3.用配方法解方程2210x x --=,变形结果正确的是( ) A .213()24x -=B .213()44x -=C .2117()416x -=D .219()416x -= 4.如图,在网格(网格的正方形边长为1)中,格点四边形ABCD 是菱形,则此四边形ABCD 的面积等于( ) A .6 B .12 C . 413 D .无法计算 5.不等式2x -7<5-2x 的正整数解有( )A 、1个 B.、2个 C 、3个 D 、4个6.某超市一月份的营业额为300万元,第一季度的营业额共为1500万元,如果平均每月增长率为x ,则由题意可列方程为( ) A . 2300(1)1500x += B . 30030021500x +⨯=C . 30030031500x +⨯=D . 23001(1)(1)1500x x ⎡⎤++++=⎣⎦7.已知等腰△ABC 的周长为18 cm ,BC =8 cm ,若△ABC 与△A ′B ′C ′全等,则△A ′B ′C ′的腰长等于( ).A .8 cmB .2 cm 或8 cmC .5 cmD .8 cm 或5 cm 8.已知xy <0,则化简后为( )A .B .C .D .9.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s (m )关于时间t (min )的函数图象,那么符合小明行驶情况的大致图象是( ) A .B .C .D .10.如图所示的矩形是由六个正方形组成,其中最小的正方形的面积为1,则此矩形的面积 为( ▲ )A .99B .120C .143D .168二、用心填一填.11.如图,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x =过点A ,则不等式20x kx b <+<的解集为 .12.已知点(3,5)在直线y =ax +b (a ,b 为常数,且a ≠0)上,则ab 5-的值为 13.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为 。
新人教版八年级数学下册期末考试试题(含答案) 一、选择题(每小题3分,共30分)1.当分式3-1x有意义时,字母x应满足()A、x≠1B、x=0C、x≠-1D、x≠3 答案:A考点:分式的意义。
解析:由分式的意义,得:10x-≠,得:x≠12.若把分式2xyx y+的x、y同时扩大3倍,则分式值()A、不变B、扩大为原来的3倍C、缩小为原来的13D、扩大为原来的9倍答案:B考点:分式的运算。
解析:把分式2xyx y+的x、y同时扩大3倍,得:2339223333()x y xy xyx y x y x y⨯⨯⨯==⨯+++,所以,分式值扩大为原来的3倍3.平行四边形、矩形、菱形、正方形共有的性质是()A、对角线相等B、对角线互相垂直C.对角线互相平分D、对角形互相垂直平分答案:C考点:特殊四边形的性质。
解析:平行四边形的性质:对角线互相平分,矩形的性质:对角线互相平分且相等,菱形的性质:对角线互相平分且垂直,正方形的性质:对角线互相垂直平分且相等,所以,共有的性质为:对角线互相平分4.在反比例函数y=1mx-的图象的每一条曲线上,y都随x的增大而减小,则m的值可以是()A、0B、1C、2D、3答案:A考点:反比例函数的图象及其性质。
解析:反比例函数图象的每一条曲线上,y都随x的增大而减小,所以,图象在一、三象限,有1-m>0,解得:m<1,符合的选项只有A。
5.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A、x>1.5B、x<1.5C、x>3D、x<3答案:B考点:一次函数图象,图象与不等式。
解析:依题意,有:3=2m,即m=32,所以,A(32,3),由图象可知:不等式2x<ax+4的解集为:x<1.56.我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是()A、71.8B、77C、82D、95.7答案:C考点:平均数。
江北区2014-2015学年下期八年级期末考试数学试题(全卷共五个大题,满分:150分,考试时间:120分钟)一、选择题(本大题12个小题,每小题4分,共48分)1、若关于x 的一元二次方程022=+-k x x 的一个根为3,则k 的值为( )A 、3B 、-2C 、-3D 、22、点()m ,3在直线52-=x y 上,则m 的值为( )A 、0B 、1C 、2D 、33、如图,E D 、分别是ABC ∆的边AC 和BC 的中点,已知4=AB ,则=DE ( )A 、1B 、2C 、3D 、44、若直角三角形的两条直角边的长分别为1和2,则斜边的长为( )A 、3B 、3C 、5D 、55、下列四组线段中,构成直角三角形的是( )A 、4、5、6B 、1.5、2、2.5C 、2、3、4D 、1、2、36、某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是:50、20、50、30、25、50、55(单位:元),这组数据的众数和中位数分别是( )A 、50元,20元B 、50元,40元C 、55元,50元D 、50元,50元7、一元二次方程022=+-x x 的根的情况是( )A 、有两个相等的实数根B 、有两个不相等的实数根C 、无实数根D 、只有一个实数根8、张华同学军训期间5发实弹射击的环数分别为:7、8、6、9、10,则他的平均环数为( )A 、6B 、7C 、8D 、99、若直线n mx y +=经过第二、三、四象限,则n m 、的取值范围是( )A 、00<<n m ,B 、00><n m ,C 、00>>n m ,D 、00<>n m ,10、一列慢车从A 城驶往B 城,一列快车从B 城驶往A 城,慢车的速度为h km /100,快车的速度为h km /200,A 、B 两城相距1200km ,若两车同时出发,到达目的地后停止,则下列折线图能大致表示这两列车按所给条件行使时,两车之间的距离y (千米)与快车行驶的时间t (小时)之间的函数图象是( )A 、B 、C 、D 、11、我市出租车起步价经过由5元上调为8元及8元上调为10元的两次调价,政府相关职能部门欲知两次上调的平均增长率,请你帮忙计算一下,这个结果应为( )(结果精确到%1.0)A 、%0.60B 、%5.42C 、%4.41D 、%0.2512、如图,菱形纸片ABCD 中,︒=∠60A ,折叠菱形纸片ABCD ,使点C 落在DP (P 为AB 的中点)所在的直线上,得到经过点D 的折痕DE ,则DEC ∠的大小为( )A 、︒78B 、︒75C 、︒60D 、︒45二、填空题(本大题6个小题,每小题4分,共24分)13、一元二次方程052=+x x 的解为 ; 14、直线b kx y +=经过点()31,-及()32-,两点,则该直线的解析式为 ;15、甲、乙两位飞镖选手经过十轮比赛,计算出他们的方差分别是3222==乙甲,S S ,从稳定性考虑, 更优秀;16、第二象限内一点()112--x x A ,,关于x 轴的对称点为B ,且AB=6,则x = ;17、如图,直线l 上有三个正方形c b a 、、,若的面积分别为9和16,则b 的边长为 ;18、如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE 。
浙江省宁波市数学八年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)在、、、、中分式的个数有()。
A . 2个B . 3个C . 4个D . 5个2. (2分)甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲的方差是1.2,乙的方差是1.8.下列说法中不一定正确的是()A . 甲、乙射中的总环数相同B . 甲的成绩稳定C . 乙的成绩波动较大D . 甲、乙的众数相同3. (2分) (2017九上·北京期中) 小阳在如图①所示的扇形舞台上沿O﹣M﹣N匀速行走,他从点O出发,沿箭头所示的方向经过点M再走到点N,共用时70秒.有一台摄像机选择了一个固定的位置记录了小阳的走路过程,设小阳走路的时间为t(单位:秒),他与摄像机的距离为y(单位:米),表示y与t的函数关系的图象大致如图②,则这个固定位置可能是图①中的()A . 点QB . 点PC . 点MD . 点N4. (2分) (2020九上·莲湖月考) 如图,正方形中,在延长线上取一点E,使,连接,则的度数为()A .B .C .D .5. (2分)已知,如图,一牧童在A处牧马,牧童家在B处,A,B两处距河岸的距离AC,BD的长分别为700米,500米,且CD的距离为500米,天黑前牧童从A点将马牵到河边去饮水后,再赶回家,那么牧童最少要走()米.A . 1100B . 1200C . 1300D . 14006. (2分) (2017八下·蚌埠期中) 如图,在四边形ABCD中,∠DAB=∠BCD=90°,分别以四边形的四条边为边向外作四个正方形,若S1+S4=100,S3=36,则S2=()A . 136B . 64C . 50D . 817. (2分)(2020·阿城模拟) 反比例函数的图象位于二、四象限,则的取值范围是()A .B .C .D .8. (2分) (2017八下·广东期中) 如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE 的长为()A . 4B . 3C .D . 2二、填空题 (共8题;共9分)9. (2分) (2015八上·阿拉善左旗期末) 当x________时,分式有意义.10. (1分) (2019八上·浦东期末) 如果反比例函数y= 的图象在每个象限内y随x的增大而减小,那么k的取值范围是________.11. (1分)(2020·扬州模拟) 如图,已知四边形是平行四边形,,将它沿翻折得到四边形,若四边形是正方形,则的度数是________.12. (1分)某乒乓球训练队共有9名队员,他们的年龄(单位:岁)分别为:12,13,13,14,12,13,15,13,15,则他们年龄的众数为________.13. (1分) (2020八下·香坊期末) 在直角三角形ABC中,斜边AB=1,则AB2+BC2+AC2的值是________.14. (1分)某同学五次单元测试成绩分别为85,90,95,95,80,设这五次成绩的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为________ (用“>”来表示).15. (1分)空气的体积质量是1.239×10-3g/cm3 ,用小数把它表示是________ g/cm316. (1分)(2018·北部湾模拟) 如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是线段BO上的一个动点,点F为射线DC上一点,若∠ABC=60°,∠AEF=120°,AB=4,则EF可能的整数值是________.三、综合题 (共10题;共90分)17. (5分)(2019·梧州) 解方程: +1= .18. (5分)(2016·双柏模拟) 先化简,再求值:,其中x=2.19. (5分) (2020八下·鄂城期中) 如图,把一块三角形土地挖去一个直角三角形后,测得米,米,米,米.求剩余土地(图中阴影部分)的面积.20. (15分)(2019·合肥模拟) 下表统计的是甲、乙两班男生的身高情况,根据统计表绘制了如下不完整的统计表图身高分组频数频率152≤x<15530.06155≤x<15870.14158≤x<161130.26161≤x<164130.26164≤x<16790.18167≤x<17030.06170≤x<173M n根据以上统计表完成下列问题:并将频数分布直方图补充完整,根据以上统计表完成下列问题:并将频数分布直方图补充完整;(1)统计表中m=________,n=________,并将频数分布直方图补充完整________;(2)在这次测量中两班男生身高的中位数在:________范围内;(3)在身高不低于167cm的男生中,甲班有2人,现从这些身高不低于167cm的男生中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率。
2014-2015学年浙江省宁波市鄞州区八年级(下)期末数学试卷一、选择题:每题2分,共20分.1.(2分)二次根式中x的取值范围是()A.x>﹣1 B.x<﹣1 C.x≠﹣1 D.一切实数2.(2分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(2分)将代数式x2﹣6x+2化为(x+p)2+q的形式为()A.(x﹣3)2+11 B.(x+3)2﹣7 C.(x﹣3)2﹣7 D.(x+3)2+114.(2分)如图,为测量池塘边A、B两点的距离,小明在池塘的一侧选取一点O,测得OA、OB的中点分别是点D、E,且DE=14米,则A、B间的距离是()A.18米B.24米C.28米D.30米5.(2分)人民商场对上周女装的销售情况进行了统计,如下表所示:经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差6.(2分)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A.48(1﹣x)2=36 B.48(1+x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=48 7.(2分)下列命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连结矩形四边中点得到的四边形是菱形;④对于反比例函数y=,当k>0时,y随x的增大而减小;⑤用反证法证明命题“对于任意的实数a,都有a2≥0”时应先假设a2≤0,其中真命题共有()A.1个 B.2个 C.3个 D.4个8.(2分)已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm29.(2分)如图,函数y=﹣x与函数的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D.则四边形ACBD的面积为()A.2 B.4 C.6 D.810.(2分)如图,矩形纸片ABCD,已知AB=2,BC=4,若点E是AD上一动点(与A不重合),其0<AE≤2,沿BE将△ABE翻折,点A落在点P处,连结PC,有下列说法:①△ABE和△PBE关于直线BE对称;②线段PC的长有可能小于2;③四边形ABPE有可能为正方形;④当△PCD是等腰三角形时,PC=2或.其中正确的序号是()A.①②B.①③C.①③④D.②③④二、填空题:每题3分,共30分.11.(3分)一个n边形的内角和是540°,那么n=.12.(3分)有一个数值转换器,原理如下:当输入x为64时,输出的y的值是.13.(3分)若关于x的一元二次方程x2+2x+a=0有实数根,则a的取值范围是.14.(3分)若关于x的方程(m﹣1)x+4x﹣2=0是一元二次方程,则m的值为.15.(3分)如图,平行四边形ABCD的对角线相交于点O,且AD≠CD,过点O 作OE⊥BD,交AD于点E,如果△ABE的周长为4,那么平行四边形ABCD的周长是.16.(3分)现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是.17.(3分)若实数m、n满足+|n﹣2|=0,则过点(m,n)的反比例函数解析式为.18.(3分)如图,已知直线y=x+2与坐标轴交于A、B两点,与双曲线y=交=6,则k=.于点C,A、D关于y轴对称,若S四边形OBCD19.(3分)将n个边长都为1cm的正方形按如图所示的方法摆放,点A1、A2…A n 分别是各正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积的和为cm2.20.(3分)在面积为12的平行四边形ABCD中,过点A作直线BC的垂线交BC 于点E,过点A作直线CD的垂线交CD于点F,若AB=4,BC=6,则CE+CF的值为.三、解答题:第21、22题6分,第23题8分,第24、25题9分,第26题12分,共50分.21.(6分)计算:(1)(2).22.(6分)解方程:(1)(x﹣1)(x+2)=2(x+2)(2)2x2﹣5x﹣3=0.23.(8分)某校八年级甲、乙两班学生开闸踢毽子比赛活动,每班派5名学生参加,在规定时间内每人踢100个以上(含100)为优秀,下表是成绩最好的甲班和乙班各5名学生的比赛数据(单位:个):经统计发现两班总数相等.现请你回答下列问题:(1)计算两班的优秀率.(2)求两班比赛成绩的中位数.(3)估计两班比赛数据的方差哪一个小?请说明你估计的理由.(4)根据以上三条信息,若要在这两个班级中,挑选一个班级代表学校去参加区级团体比赛,你会选择让哪个班级去参加?简述你的理由.24.(9分)如图,已知一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于A,B两点,且A点的横坐标与B点的纵坐标都是﹣2.(1)一次函数的解析式;(2)△AOB的面积.25.(9分)水果批发市场有一种高档水果,若每千克盈利(毛利润)10元,每天可售出500千克,现经市场调查发现,在进价不变的情况下,若每千克涨价1元,日销量将减少20千克.(1)若每千克盈利18元,问每天的毛利润为多少元?(2)现市场要保证每天总毛利润为6000元,同时又要使得顾客得到实惠,则每千克应涨价多少元?(3)现需按毛利的10%缴纳各种税费,人工费按销售量每千克0.9元,水电费房租费每日102元,若剩下的每天总纯利润要达到5100元,则每千克应涨价多少元?26.(12分)如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN 上,若∠1=∠2=∠3=∠4,则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD为矩形,且AB=4,BC=8.理解与作图:(1)在图2,图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH.计算与猜想:(2)求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值?启发与证明:(3)如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.2014-2015学年浙江省宁波市鄞州区八年级(下)期末数学试卷参考答案与试题解析一、选择题:每题2分,共20分.1.(2分)二次根式中x的取值范围是()A.x>﹣1 B.x<﹣1 C.x≠﹣1 D.一切实数【解答】解:∵x2为非负数,∴x2+1>0,∴x为一切实数,二次根式均有意义,故选D.2.(2分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.3.(2分)将代数式x2﹣6x+2化为(x+p)2+q的形式为()A.(x﹣3)2+11 B.(x+3)2﹣7 C.(x﹣3)2﹣7 D.(x+3)2+11【解答】解:x2﹣6x+2=x2﹣6x+9﹣9+2=x2﹣6x+9﹣7=(x﹣3)2+7.故选:C.4.(2分)如图,为测量池塘边A、B两点的距离,小明在池塘的一侧选取一点O,测得OA、OB的中点分别是点D、E,且DE=14米,则A、B间的距离是()A.18米B.24米C.28米D.30米【解答】解:∵D、E是OA、OB的中点,即DE是△OAB的中位线,∴DE=AB,∴AB=2DE=2×14=28米.故选:C.5.(2分)人民商场对上周女装的销售情况进行了统计,如下表所示:经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差【解答】解:在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.由于众数是数据中出现次数最多的数,故考虑的是各色女装的销售数量的众数.故选:C.6.(2分)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A.48(1﹣x)2=36 B.48(1+x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=48【解答】解:二月份的营业额为36(1+x),三月份的营业额为36(1+x)×(1+x)=36(1+x)2,即所列的方程为36(1+x)2=48,故选:D.7.(2分)下列命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连结矩形四边中点得到的四边形是菱形;④对于反比例函数y=,当k>0时,y随x的增大而减小;⑤用反证法证明命题“对于任意的实数a,都有a2≥0”时应先假设a2≤0,其中真命题共有()A.1个 B.2个 C.3个 D.4个【解答】解:①首先由两直线平行,同旁内角互补及等角的补角相等得出另一组对角相等,然后根据两组对角分别相等的四边形是平行四边形可知是个真命题;②对角线互相垂直且相等的平行四边形是正方形,故错误,是假命题;③顺次连结矩形四边中点得到的四边形是菱形,正确,是真命题;④对于反比例函数y=,当k>0时,在每一象限内,y随x的增大而减小,故错误,是假命题;⑤用反证法证明命题“对于任意的实数a,都有a2≥0”时应先假设a2<0,故错误,是假命题,真命题有2个,故选:B.8.(2分)已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm2【解答】解:设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,解得x=1,故菱形的对角线分别为8cm和6cm,所以菱形的面积=×8×6=24cm2,故选:B.9.(2分)如图,函数y=﹣x与函数的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D.则四边形ACBD的面积为()A.2 B.4 C.6 D.8【解答】解:∵过函数的图象上A,B两点分别作y轴的垂线,垂足分别为点C,D,∴S△AOC=S△ODB=|k|=2,又∵OC=OD,AC=BD,∴S△AOC=S△ODA=S△ODB=S△OBC=2,∴四边形ABCD的面积为:S△AOC +S△ODA+S△ODB+S△OBC=4×2=8.故选:D.10.(2分)如图,矩形纸片ABCD,已知AB=2,BC=4,若点E是AD上一动点(与A不重合),其0<AE≤2,沿BE将△ABE翻折,点A落在点P处,连结PC,有下列说法:①△ABE和△PBE关于直线BE对称;②线段PC的长有可能小于2;③四边形ABPE有可能为正方形;④当△PCD是等腰三角形时,PC=2或.其中正确的序号是()A.①②B.①③C.①③④D.②③④【解答】解:①根据折叠的性质可得△ABE与△PBE关于直线BE对称,则①正确;②当AE=AB=2时,PC的长度最小,此时P在BC上,则PC=2,四边形ABPE是正方形,故②错误,③正确.④以P、C、D为顶点的等腰三角形有两种情况.第1种情况:点P与BC的中点H重合时:CH=CD.即PC=CH=2;第2种情况:点P在CD的中垂线上时,PD=PC,设DC的中点为K,过P作PF ⊥BC于F,则四边形PFCK是矩形,PF=CK=1,PB=2.∴BF=,∴FC=4﹣,PC2=(4﹣)2+12,∴PC=,故④错误.∴①③正确,故选:B.二、填空题:每题3分,共30分.11.(3分)一个n边形的内角和是540°,那么n=5.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.12.(3分)有一个数值转换器,原理如下:当输入x为64时,输出的y的值是2.【解答】解:由题意,得:x=64时,=8,8是有理数,将8的值代入x中;当x=8时,=2,2是无理数,故y的值是2.故答案为:2.13.(3分)若关于x的一元二次方程x2+2x+a=0有实数根,则a的取值范围是a ≤1.【解答】解:因为关于x的一元二次方程有实根,所以△=b2﹣4ac=4﹣4a≥0,解之得a≤1.故答案为a≤1.14.(3分)若关于x的方程(m﹣1)x+4x﹣2=0是一元二次方程,则m的值为﹣1.【解答】解:由题意得,,由①得,m=±1,由②得,m≠1,所以,m的值为﹣1.故答案为:﹣1.15.(3分)如图,平行四边形ABCD的对角线相交于点O,且AD≠CD,过点O 作OE⊥BD,交AD于点E,如果△ABE的周长为4,那么平行四边形ABCD的周长是8.【解答】解:∵四边形ABCD为平行四边形,∴O为BD中点,AB=CD,AD=BC,∵EO⊥BD,∴EO垂直平分BD,∴BE=DE,∵△ABE周长为4,∴AB+BE+AE=4,即AB+DE+AE=AB+AD=4,∴平行四边形ABCD的周长=2(AB+AD)=8,故答案为:8.16.(3分)现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是﹣1或4.【解答】解:根据题中的新定义将x★2=6变形得:x2﹣3x+2=6,即x2﹣3x﹣4=0,因式分解得:(x﹣4)(x+1)=0,解得:x1=4,x2=﹣1,则实数x的值是﹣1或4.故答案为:﹣1或417.(3分)若实数m、n满足+|n﹣2|=0,则过点(m,n)的反比例函数解析式为y=﹣.【解答】解:设过点(m,n)的反比例函数解析式为y=(k≠0).∵实数m、n满足+|n﹣2|=0,∴m=﹣3,n=2,∴点(﹣3,2)在满足反比例函数解析式y=(k≠0).∴k=﹣3×2=﹣6,∴该反比例函数解析式为y=﹣.故答案是:y=﹣.18.(3分)如图,已知直线y=x+2与坐标轴交于A、B两点,与双曲线y=交于点C,A、D关于y轴对称,若S=6,则k=.四边形OBCD【解答】解:∵y=x +2, ∴当x=0时,y=2, 当y=0时,0=x +2, x=﹣4,即A (﹣4,0),B (0,2), ∵A 、D 关于y 轴对称, ∴D (4,0), ∵C 在y=x +2上,∴设C 的坐标是(x ,x +2), ∵S 四边形OBCD =6, ∴S △ACD ﹣S △AOB =6,∴×(4+4)×(x +2)﹣×4×2=6, x=1,x +2=, C (1,),代入y=得:k=. 故答案为:.19.(3分)将n 个边长都为1cm 的正方形按如图所示的方法摆放,点A 1、A 2…A n 分别是各正方形的中心,则n 个这样的正方形重叠部分(阴影部分)的面积的和为cm 2.【解答】解:由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)=cm2.故答案为:.20.(3分)在面积为12的平行四边形ABCD中,过点A作直线BC的垂线交BC 于点E,过点A作直线CD的垂线交CD于点F,若AB=4,BC=6,则CE+CF的值为10+或2+.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=4,BC=AD=6,①如图:∵S▱ABCD=BC•AE=CD•AF=12,∴AE=2,AF=3,在Rt△ABE中:BE==2,在Rt△ADF中,DF==3,∴CE+CF=BC﹣BE+DF﹣CD=2+;②如图:∵S▱ABCD=BC•AE=CD•AF=12,∴AE=2,AF=3,在Rt△ABE中:BE==2,在Rt△ADF中,DF==3,∴CE+CF=BC+BE+DF+CD=10+5;综上可得:CE+CF的值为10+或2+.故答案为:10+或2+.三、解答题:第21、22题6分,第23题8分,第24、25题9分,第26题12分,共50分.21.(6分)计算:(1)(2).【解答】解:(1)原式=2×﹣×2=2﹣4=﹣2;(2)原式=2﹣2+1﹣2×+2=2﹣2+1﹣4+2=﹣1.22.(6分)解方程:(1)(x﹣1)(x+2)=2(x+2)(2)2x2﹣5x﹣3=0.【解答】解:(1)(x﹣1)(x+2)﹣2(x+2)=0(x+2)(x﹣3)=0,∴x+2=0或x﹣3=0,解得:x=﹣2或x=3;(2)左边因式分解可得:(x﹣3)(2x+1)=0,∴x﹣3=0或2x+1=0,解得:x=3或x=﹣.23.(8分)某校八年级甲、乙两班学生开闸踢毽子比赛活动,每班派5名学生参加,在规定时间内每人踢100个以上(含100)为优秀,下表是成绩最好的甲班和乙班各5名学生的比赛数据(单位:个):经统计发现两班总数相等.现请你回答下列问题:(1)计算两班的优秀率.(2)求两班比赛成绩的中位数.(3)估计两班比赛数据的方差哪一个小?请说明你估计的理由.(4)根据以上三条信息,若要在这两个班级中,挑选一个班级代表学校去参加区级团体比赛,你会选择让哪个班级去参加?简述你的理由.【解答】解:(1)甲班的优秀率=2÷×100%5=40%;乙班的优秀率=3÷5×100%=60%;(2)甲班5名学生比赛成绩的中位数是97(个);乙班5名学生比赛成绩的中位数是100(个);(3)甲班的平均数=(89+100+96+118+97)÷5=100(个),甲班的方差S甲2=[(89﹣100)2+(100﹣100)2+(96﹣100)2+(118﹣100)2+(97﹣100)2]÷5=94乙班的平均数=(100+96+110+90+104)÷5=100(个),乙班的方差S乙2=[(100﹣100)2+(96﹣100)2+(110﹣100)2+(90﹣100)2+(104﹣100)2]÷5=46.4;故S甲2>S乙2(4)因为乙班5名学生的比赛成绩的优秀率比甲班高,中位数比甲班大,方差比甲班小,综合评定乙班踢毽子水平较好,应选择让乙班级去参加比赛.24.(9分)如图,已知一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于A,B两点,且A点的横坐标与B点的纵坐标都是﹣2.(1)一次函数的解析式;(2)△AOB的面积.【解答】解:(1)设A(x1,y1),B(x2,y2),则x1=﹣2,y2=﹣2,把x1=y2=﹣2分别代入y=得y1=x2=4,∴A(﹣2,4),B(4,﹣2).把A(﹣2,4)和B(4,﹣2)分别代入y=kx+b得解得∴一次函数的解析式为y=﹣x+2.(2)如图,分别过点AB作AD⊥y轴,BE⊥y轴,∵A(﹣2,4),B(4,﹣2).∴AD=2,BE=4,∵y=﹣x+2与y轴交点为C(0,2)∴OC=2,=S△AOC+S△BOC∴S△AOB=×OC×|AD|+×OC×|BE|=×2×2+×2×4=6.25.(9分)水果批发市场有一种高档水果,若每千克盈利(毛利润)10元,每天可售出500千克,现经市场调查发现,在进价不变的情况下,若每千克涨价1元,日销量将减少20千克.(1)若每千克盈利18元,问每天的毛利润为多少元?(2)现市场要保证每天总毛利润为6000元,同时又要使得顾客得到实惠,则每千克应涨价多少元?(3)现需按毛利的10%缴纳各种税费,人工费按销售量每千克0.9元,水电费房租费每日102元,若剩下的每天总纯利润要达到5100元,则每千克应涨价多少元?【解答】解:(1)设每千克盈利x元,可售y千克,则当x=10时,y=500,当x=11时,y=500﹣20=480,由题意得,,解得:.因此y=﹣20x+700,当x=18时,y=340,则每天的毛利润为18×340=6120元;(2)由题意得:x(﹣20x+700)=6000,解得:x1=20,x2=15,∵要使得顾客得到实惠,应选x=15,∴每千克应涨价15﹣10=5元;(3)由题意得:x(﹣20x+700)﹣10%x(﹣20x+700)﹣0.9(﹣20x+700)﹣102=5100,解得:x1=x2=18,则每千克应涨价18﹣10=8元.26.(12分)如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN 上,若∠1=∠2=∠3=∠4,则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD为矩形,且AB=4,BC=8.理解与作图:(1)在图2,图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH.计算与猜想:(2)求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值?启发与证明:(3)如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.【解答】解:(1)作图如下:(2)在图2中,EF=FG=GH=HE===2,∴四边形EFGH的周长为4×2=8,在图3中,EF=GH==,FG=HE===3,∴四边形EFGH的周长为2×+2×3=2+6=8.猜想:矩形ABCD的反射四边形的周长为定值.(3)证法一:延长GH交CB的延长线于点N.∵∠1=∠2,∠1=∠5,∴∠2=∠5.而FC=FC,∴Rt△FCE≌Rt△FCM.∴EF=MF,EC=MC,同理:NH=EH,NB=EB.∴MN=2BC=16.∵∠M=90°﹣∠5=90°﹣∠1,∠N=90°﹣∠3,∴∠M=∠N.∴GM=GN.过点G作GK⊥BC于K,则KM=MN=8,∴GM===4,∴四边形EFGH的周长为2GM=8,证法二:∵∠1=∠2,∠1=∠5,∴∠2=∠5.而FC=FC,∴Rt△FCE≌Rt△FCM.∴EF=MF,EC=MC.∵∠M=90°﹣∠5=90°﹣∠1,∠HEB=90°﹣∠4,而∠1=∠4,∴∠M=∠HEB.∴HE∥GF.同理:GH∥EF.∴四边形EFGH是平行四边形.∴FG=HE,而∠1=∠4,∴Rt△FDG≌Rt△HBE.∴DG=BE.过点G作GK⊥BC于K,则KM=KC+CM=GD+CM=BE+EC=8.∴GM===4,∴四边形EFGH的周长为2GM=8.。
八年级下学期期末数学试卷一、仔细选一选(本题有10 个小题,每小题3 分,共30 分)1.已知二次根式,则a 的取值范围是()A. B. C. D.2.下列图形是中心对称图形的个数有()A.1 个B.2 个C.3 个D.4 个3.为了比较甲、乙两块地的小麦哪块长得更整齐,应选择的统计量为()A.平均数B.中位数C.众数D.方差4.矩形具有而菱形不具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线平分一组对角5.用下列哪种方法解方程3x2=16x 最合适()A.开平方法B.配方法C.因式分解法D.公式法6.如图,等腰三角形ABC 的顶点A 在原点,顶点B 在x 轴的正半轴上,顶点C 在函数y=(x>0)的图象上运动,且AC=BC,则△ABC 的面积大小变化情况是()A.一直不变B.先增大后减小C.先减小后增大D.先增大后不变7.已知(﹣3,y1),(﹣15,y2),在反比例函数y=﹣上,则y1,y2,y3 的大小关系为()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y28.用反证法证明命题“钝角三角形中必有一个内角小于45°”时,首先应该假设这个三角形中()A.有一个内角小于45°B.每一个内角都小于45°C.有一个内角大于等于45°D.每一个内角都大于等于45°9.直线与x 轴,y 轴分别交于A,B 两点,把△AOB 绕着A 点旋转180°得到△AO′B′,则点B′的坐标为()A.(4,2)B.(4,﹣2)C.(,2)D.(,﹣2)10.如图,以▱ABCD 的四条边为边,分别向外作正方形,连结EF,GH,IJ,KL.如果▱ABCD 的面积为8,则图中阴影部分四个三角形的面积和为()A.8 B.12 C.16 D.20二、认真填一填(本题有6 小题,每小题4 分,共24 分)11.在、、、、中,是最简二次根式的是.12.已知多边形的内角和等于外角和的三倍,则内角和为;边数为.13.已知=0 是关于x 的一元二次方程,则k 为.14.如图,四边形ABCD 是菱形,对角线AC=8,BD=6,E,F 分别是AB,AD 的中点,连接EO 并延长交CD 于G 点,连接FO 并延长交CB 于H 点,△OEF 与△OGH 组成的图形称为蝶形,则蝶形的周长为.15.如图,将边长为6 的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A′B′C′,当两个三角形重叠部分为菱形时,则AA′为.16.如图,一个正方形内两个相邻正方形的面积分别为 4 和 2,它们都有两个顶点在大正方形的边 上且组成的图形为轴对称图形,则图中阴影部分的面积为 .三、全面答一答(本题有 7 个小题,共 66 分.要求写出文字说明、证明过程或推演步骤) 17.计算: (1).18.如图,AC 是▱ABCD 的一条对角线,BE ⊥AC ,DF ⊥AC ,垂足分别为 E ,F . (1)求证:△ADF ≌△CBE ; 求证:四边形 DFBE 是平行四边形.19.如图,将表面积为 550cm 2 的包装盒剪开,铺平,纸样如图所示,包装盒的高为 15cm ,请求出 包装盒底面的长与宽.(3)20.某初中要调查学校学生(总数1000 人)双休日课外阅读情况,随机调查了一部分学生,调查得到的数据分别制成频数直方图(如图1)和扇形统计图(如图2).(1)请补全上述统计图(直接填在图中);试确定这个样本的中位数和众数;(3)请估计该学校1000 名学生双休日课外阅读时间不少于4 小时的人数.21.已知方程:x2﹣2x﹣8=0,解决一下问题:(1)不解方程判断此方程的根的情况;请按要求分别解这个方程:①配方法;②因式分解法.(3)这些方法都是将解转化为解;(4)尝试解方程:x3+2x2+x=0.22.在矩形ABCD 中,AB=3,BC=4,E,F 是对角线ACS 行的两个动点,分别从A,C 同时出发相向而行,速度均为1cm/s,运动时间为t 秒,当其中一个动点到达后就停止运动.(1)若G,H 分别是AB,DC 中点,求证:四边形EGFH 始终是平行四边形.在(1)条件下,当t 为何值时,四边形EGFH 为矩形.(3)若G,H 分别是折线A﹣B﹣C,C﹣D﹣A 上的动点,与E,F 相同的速度同时出发,当t 为何值时,四边形EGFH 为菱形.23.如图1,正方形ABCD 的边长为4,以AB 所在的直线为x 轴,以AD 所在的直线为y 轴建立平面直角坐标系.反比例函数的图象与CD 交于E 点,与CB 交于F 点.(1)求证:AE=AF;若△AEF 的面积为6,求反比例函数的解析式;(3)在的条件下,将△AEF 以每秒1 个单位的速度沿x 轴的正方向平移,如图2,设它与正方形ABCD 的重叠部分面积为S,请求出S 与运动时间t(秒)的函数关系式(0<t<4).八年级下学期期末数学试卷参考答案与试题解析一、仔细选一选(本题有10 个小题,每小题3 分,共30 分)1.已知二次根式,则a 的取值范围是()A. B. C. D.【考点】二次根式有意义的条件.【分析】直接利用二次根式的性质得出a 的取值范围.【解答】解:∵二次根式有意义,∴2a﹣1≥0,解得:a≥,则a 的取值范围是:a≥.故选:D.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的性质是解题关键.2.下列图形是中心对称图形的个数有()A.1 个B.2 个C.3 个D.4 个【考点】中心对称图形.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形进行分析.【解答】解:第一、四个图形是中心对称图形,第二、三个图形不是中心对称图形,故选:B.【点评】此题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180 度后与原图重合.3.为了比较甲、乙两块地的小麦哪块长得更整齐,应选择的统计量为()A.平均数B.中位数C.众数D.方差【考点】统计量的选择.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:为了比较甲、乙两块地的小麦哪块长得更整齐,应选择的统计量为方差.故选:D.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.矩形具有而菱形不具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线平分一组对角【考点】矩形的性质;菱形的性质.【专题】推理填空题.【分析】根据矩形的对角线互相平分、相等和菱形的对角线互相平分、垂直、对角线平分一组对角,即可推出答案.【解答】解:A、对角线互相平分是菱形矩形都具有的性质,故A 选项错误;B、对角线互相垂直是菱形具有而矩形不具有的性质,故B 选项错误;C、矩形的对角线相等,菱形的对角线不相等,故C 选项正确;D、对角线平分一组对角是菱形具有而矩形不具有的性质,故D 选项错误;故选:C.【点评】本题主要考查对矩形的性质,菱形的性质等知识点的理解和掌握,能熟练地根据矩形和菱形的性质进行判断是解此题的关键.5.用下列哪种方法解方程3x2=16x 最合适()A.开平方法B.配方法C.因式分解法D.公式法【考点】解一元二次方程-因式分解法.【专题】计算题;一次方程(组)及应用.【分析】观察方程特点确定出适当的解法即可.【解答】解:方程3x2=16x 最合适因式分解法.故选C【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.6.如图,等腰三角形ABC 的顶点A 在原点,顶点B 在x 轴的正半轴上,顶点C 在函数y=(x>0)的图象上运动,且AC=BC,则△ABC 的面积大小变化情况是()A.一直不变B.先增大后减小C.先减小后增大D.先增大后不变【考点】反比例函数系数k 的几何意义.【专题】探究型.【分析】根据三角形ABC 的面积是点C 的横坐标与纵坐标的乘积除以2,和点C 在函数y= (x>0)的图象上,可以解答本题.【解答】解:∵等腰三角形ABC 的顶点A 在原点,顶点B 在x 轴的正半轴上,顶点C 在函数y= (x >0)的图象上运动,且AC=BC,设点C 的坐标为(x,),∴(k 为常数).即△ABC 的面积不变.故选A.【点评】本题考查反比例函数系数k 的几何意义,解题的关键是将反比例的系数k 与三角形的面积联系在一起.7.已知(﹣3,y1),(﹣15,y2),在反比例函数y=﹣上,则y1,y2,y3 的大小关系为()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y2【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再由各点横坐标的值即可得出结论.【解答】解:∵反比例函数y=﹣中k=﹣a2<0,∴此函数图象的两个分支分别位于二四象限,并且在每一象限内,y 随x 的增大而增大.∵(﹣3,y1),(﹣15,y2),在反比例函数y=﹣上,∴(﹣3,y1),(﹣15,y2)在第二象限,点在第四象限,∴y3<y2<y1.故选A.【点评】本题考查的是反比例函数函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.用反证法证明命题“钝角三角形中必有一个内角小于45°”时,首先应该假设这个三角形中()A.有一个内角小于45°B.每一个内角都小于45°C.有一个内角大于等于45°D.每一个内角都大于等于45°【考点】反证法.【分析】反证法的步骤中,第一步是假设结论不成立,反面成立.【解答】解:用反证法证明“钝角三角形中必有一个内角小于45°”时,应先假设这个三角形中每一个内角都不小于或等于45°,即每一个内角都大于45°.故选:D.【点评】此题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.9.直线与x 轴,y 轴分别交于A,B 两点,把△AOB 绕着A 点旋转180°得到△AO′B′,则点B′的坐标为()A.(4,2)B.(4,﹣2)C.(,2)D.(,﹣2)【考点】坐标与图形变化-旋转;一次函数图象上点的坐标特征.【专题】计算题.【分析】先根据一次函数图象上点的坐标特征求出A 点和B 点坐标,则可得到OA=2,OB=2,再根据旋转的性质得到AO′=AO=2,O′B′=OB=2,∠AO′B′=∠AOB=90°,然后根据第二象限点的坐标特征写出点B′的坐标.【解答】解:当y=0 时,﹣x+2=0,解得x=2 ,则A,所以OA=2 ,当x=0 时,=2,则B(0,2),所以OB=2,因为△AOB 绕着A 点旋转180°得到△AO′B′,所以AO′=AO=2,O′B′=OB=2,∠AO′B′=∠AOB=90°,所以点B′的坐标为(4,﹣2).故选D.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了一次函数图象上点的坐标特征.10.如图,以▱ABCD 的四条边为边,分别向外作正方形,连结EF,GH,IJ,KL.如果▱ABCD 的面积为8,则图中阴影部分四个三角形的面积和为()A.8 B.12 C.16 D.20【考点】全等三角形的判定与性质;平行四边形的性质;正方形的性质.【分析】过D 作DN⊥AB 于N,过E 作EM⊥FA 交FA 延长线于M,连接AC,BD,求出∠EAM=∠BAD,根据锐角三角形函数定义求出EM=DN,求出△AEF 和△ABD 面积相等,同理求出理S△BHG=S△ABC,S△CIJ=S△CBD,S△DLK=S△DAC,代入S=S△AEF+S△BGH+S△CIJ+S△DLK 得出S=2S 平行四边形ABCD,代入求出即可.【解答】解:过D 作DN⊥AB 于N,过E 作EM⊥FA 交FA 延长线于M,连接AC,BD,∵四边形ABGF 和四边形ADLE 是正方形,∴AE=AD,AF=AB,∠FAB=∠EAD=90°,∴∠EAF+∠BAD=360°﹣90°﹣90°=180°,∵∠EAF+∠EAM=180°,∴∠EAM=∠DA N,∴sin∠EAM= ,sin∠DAN= ,∵AE=AD,∴EM=DN,∵S△AEF = AF×EM,S△ADB = AB×DN,∴S△AEF=S△ABD,同理S△BHG=S△ABC,S△CIJ=S△CBD,S△DLK=S△DAC,∴阴影部分的面积S=S△AEF+S△BGH+S△CIJ+S△DLK=2S平行四边形ABCD=2×8=16.故选C【点评】本题考查了平行四边形的性质,锐角三角函数的定义,三角形的面积等知识点的应用,关键是根据S△BHG=S△ABC,S△CIJ=S△CBD,S△DLK=S△DAC,进行计算解答即可.二、认真填一填(本题有6 小题,每小题4 分,共24 分)11.在、、、、中,是最简二次根式的是.【考点】最简二次根式.【分析】直接利用最简二次根式的概念:(1)被开方数不含分母;被开方数中不含能开得尽方的因数或因式,分析得出答案.【解答】解:在、、、、中,只有是最简二次根式.故答案为:.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.12.已知多边形的内角和等于外角和的三倍,则内角和为1080°;边数为 8 .【考点】多边形内角与外角.第10 页(共22 页)【分析】首先设边数为n,由题意得等量关系:内角和=360°×3,根据等量关系列出方程,可解出n 的值,然后再利用内角和公式计算内角和.【解答】解:设边数为n,由题意得:180(n﹣2)=360×3,解得:n=8,内角和为:180°×(8﹣2)=1080°,故答案为:1080°;8.【点评】此题主要考查了多边形的内角与外角,关键是掌握多边形内角和定理:(n﹣2)•180°(n≥3)且n 为整数),多边形的外角和等于360 度.13.已知=0 是关于x 的一元二次方程,则k 为﹣2 .【考点】一元二次方程的定义.【分析】根据一元二次方程:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数,可得答案.【解答】解:由=0 是关于x 的一元二次方程,得k2﹣2=2,且1﹣k≥0,解得k=﹣2,故答案为:﹣2.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.14.如图,四边形ABCD 是菱形,对角线AC=8,BD=6,E,F 分别是AB,AD 的中点,连接EO 并延长交CD 于G 点,连接FO 并延长交CB 于H 点,△OEF 与△OGH 组成的图形称为蝶形,则蝶形的周长为 16 .【考点】菱形的性质.【分析】利用菱形的性质结合三角形中位线的性质得出GE=BC,HF=AB,进而得出答案.【解答】解:∵四边形ABCD 是菱形,对角线AC=8,BD=6,∴BO=DO=3,CO=AO=4,BD⊥AC,∴BC=CD=AD=AB=5,∵E,F 分别是AB,AD 的中点,∴EF= BD=3,∵E 是AB 的中点,O 是AC 的中点,∴EO∥BC,∴GO∥BC,则EG=BC=5,同理可得:HF=5,HG=3,故蝶形的周长为:5+5+3+3=16.故答案为:16.【点评】此题主要考查了菱形的性质以及三角形中位线的性质,根据题意得出EG=BC=5 是解题关键.15.如图,将边长为6 的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A′B′C′,当两个三角形重叠部分为菱形时,则AA′为12﹣6.【考点】菱形的性质;正方形的性质;平移的性质.【分析】利用菱形的性质结合正方形的性质得出A′D=DF,AA′=A′E,进而利用勾股定理得出答案.【解答】解:如图所示:∵四边形A′ECF 是菱形,∴A′E=EC=FC=A′F,∵边长为6 的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,∴∠A=∠ACD=45°,∴AD=DC,则A′D=DF,AA′=A′E,∴设A′E=x,则A′D=DF=6﹣x,A′F=x,故在Rt△A′DF 中,x2=(6﹣x)2+(6﹣x)2,解得:x1=12﹣6 ,x2=12+6 >6(不合题意舍去),故AA′为:12﹣6 .故答案为:12﹣6 .【点评】此题主要考查了菱形的性质和正方形的性质、勾股定理等知识,得出A′D=DF,AA′=A′E是解题关键.16.如图,一个正方形内两个相邻正方形的面积分别为4 和2,它们都有两个顶点在大正方形的边上且组成的图形为轴对称图形,则图中阴影部分的面积为+ .【考点】正方形的性质;轴对称图形.【分析】连接AC;由正方形的性质和已知条件得出EF= ,GH=2,∠EAF=∠GCH=90°,由轴对称图形的性质得出AE=AF,CG=CH,得出AM=EF= ,CN= GH=1,求出AC 的长,得出正方形ABCD 的面积,由大正方形的面积减去两个小正方形的面积即可得出图中阴影部分的面积.【解答】解:如图所示:连接AC;∵正方形ABCD 内两个相邻正方形的面积分别为4 和2,∴EF= ,GH=2,∠EAF=∠GCH=90°,根据题意得:AE=AF,CG=CH,∴AM= EF=,CN= GH=1,∴AC= + +2+1= +3,∴正方形ABCD 的面积=AC2= (+3)2= + ,∴图中阴影部分的面积= + ﹣4﹣2= + ;故答案为:+ .【点评】本题考查了正方形的性质、轴对称图形的性质、等腰直角三角形的性质、正方形面积的计算方法;熟练掌握正方形的性质,通过作辅助线求出对角线AC 是解决问题的关键.三、全面答一答(本题有7 个小题,共66 分.要求写出文字说明、证明过程或推演步骤)17.计算:(1).(3)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)分母有理化即可;根据二次根式的性质化简即可;(3)先提(+),然后合并后利用平方差公式计算.【解答】解:(1)原式= ;原式= ×2 =3 ;(3)原式=(+ )(3﹣2﹣2+)=(+)(﹣)=()2﹣()2=3﹣2=1.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.如图,AC 是▱ABCD 的一条对角线,BE⊥AC,DF⊥AC,垂足分别为E,F.(1)求证:△ADF≌△CBE;求证:四边形DFBE 是平行四边形.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,得出内错角相等∠DAF=∠BCE,证出∠AFD=∠CEB=90°,由AAS 证明△ADF≌△CBE 即可;由(1)得:△ADF≌△CBE,由全等三角形的性质得出DF=BE,再由BE∥DF,即可得出四边形D FBE 是平行四边形.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AD∥BC,AD=BC,∴∠DAF=∠BCE,∵BE⊥AC,DF⊥AC,∴BE∥DF,∠AFD=∠CEB=90°,在△ADF 和△CBE 中,,∴:△ADF≌△CBE(AAS);解:如图所示:由(1)得:△ADF≌△CBE,∴DF=BE,∵BE∥DF,∴四边形DFBE 是平行四边形.【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.19.如图,将表面积为550cm2 的包装盒剪开,铺平,纸样如图所示,包装盒的高为15cm,请求出包装盒底面的长与宽.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设包装盒底面的长为xcm,则包装盒底面的宽为=15﹣x(cm),求得包装盒的表面积,利用表面积为550cm2 列出方程解答即可.【解答】解:设包装盒底面的长为xcm,则包装盒底面的宽为=15﹣x(cm),由题意得2×[(15﹣x)×15+15x+(15﹣x)×x =550整理得:x2﹣15x+50=0,解得:x1=10,x2=5则10﹣x=5 或10.答:包装盒底面的长为10cm,则包装盒底面的宽5cm.【点评】此题考查一元二次方程的实际运用,解题的关键是熟记长方体的表面积公式.20.某初中要调查学校学生(总数1000 人)双休日课外阅读情况,随机调查了一部分学生,调查得到的数据分别制成频数直方图(如图1)和扇形统计图(如图2).(1)请补全上述统计图(直接填在图中);试确定这个样本的中位数和众数;(3)请估计该学校1000 名学生双休日课外阅读时间不少于4 小时的人数.【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【分析】(1)根据阅读5 小时以上频数为6,所占百分比为12%,求出数据总数,再用数据总数减去其余各组频数得到阅读3 小时以上频数,进而补全频数分布直方图,分别求得阅读0 小时和4 小时的人数所占百分比,补全扇形图;利用各组频数和总数之间的关系确定中位数和众数;(3)用1000 乘以每周课外阅读时间不小于4 小时的学生所占百分比即可.【解答】解:(1)总人数:6÷12%=50(人),阅读3 小时以上人数:50﹣4﹣6﹣8﹣14﹣6=12(人),阅读3 小时以上人数的百分比为12÷50=24%,阅读0 小时以上人数的百分比为4÷50=8%.图如下:中位数是3 小时,众数是4 小时;(3)1000×=1000×40%=400(人)答:该学校1000 名学生双休日课外阅读时间不少于4 小时的人数为400 人.【点评】此题主要考查了频数分布直方图、扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了利用样本估计总体.21.已知方程:x2﹣2x﹣8=0,解决一下问题:(1)不解方程判断此方程的根的情况;请按要求分别解这个方程:①配方法;②因式分解法.(3)这些方法都是将解一元二次方程转化为解一元一次方程;(4)尝试解方程:x3+2x2+x=0.【考点】根的判别式;解一元二次方程-配方法;解一元二次方程-因式分解法.【分析】(1)由a=1,b=﹣2,c=﹣8,可得△=b2﹣4ac=36>0,即可判定此方程的根的情况;①直接利用配方法解一元二次方程;②利用十字相等法解一元二次方程;(3)利用消元法,将解一元二次方程转化为解一元一次方程;(4)利用因式分解法求解即可求得答案.【解答】解:(1)∵a=1,b=﹣2,c=﹣8,∴△=b2﹣4ac=(﹣2)2﹣4×1×(﹣8)=36>0,∴此方程有两个不相等的实数根;①配方法:∵x2﹣2x﹣8=0,∴x2﹣2x=8,∴x2﹣2x+1=8+1,∴(x﹣1)2=9,∴x﹣1=±3,解得:x1=4,x2=﹣2;②因式分解法:∵x2﹣2x﹣8=0,∴(x﹣4)(x+2)=0,解得:x1=4,x2=﹣2;(3)答案为:一元二次方程;一元一次方程;(4)∵x3+2x2+x=0,∴x(x2+2x+1)=0,∴x(x+1)2=0,∴x=0,x+1=0,解得:x1=0,x2=x3=﹣1.【点评】此题考查了一元二次方程的解法以及根的判别式.注意△>0⇔方程有两个不相等的实数根.22.在矩形ABCD 中,AB=3,BC=4,E,F 是对角线ACS 行的两个动点,分别从A,C 同时出发相向而行,速度均为1cm/s,运动时间为t 秒,当其中一个动点到达后就停止运动.(1)若G,H 分别是AB,DC 中点,求证:四边形EGFH 始终是平行四边形.在(1)条件下,当t 为何值时,四边形EGFH 为矩形.(3)若G,H 分别是折线A﹣B﹣C,C﹣D﹣A 上的动点,与E,F 相同的速度同时出发,当t 为何值时,四边形EGFH 为菱形.【考点】四边形综合题.【分析】(1)由矩形的性质得出AB=CD,AB∥CD,AD∥BC,∠B=90°,由勾股定理求出AC=5,由SAS 证明△AFG≌△CEH,得出GF=HE,同理得出GE=HF,即可得出结论;先证明四边形BCHG 是平行四边形,得出GH=BC=4,当对角线EF=GH=4 时,平行四边形EGFH 是矩形,分两种情况:①AE=CF=t,得出EF=5﹣2t=4,解方程即可;②AE=CF=t,得出EF=5﹣2 (5﹣t)=4,解方程即可;(3)连接AG、CH,由菱形的性质得出GH⊥EF,OG=OH,OE=OF,得出OA=OC,AG=AH,证出四边形AGCH 是菱形,得出AG=CG,设AG=CG=x,则BG=4﹣x,由勾股定理得出方程,解方程求出BG,得出AB+BG=,即可得出t 的值.【解答】(1)证明:∵四边形ABCD 是矩形,∴AB=CD,AB∥CD,AD∥BC,∠B=90°,∴AC= =5,∠GAF=∠HCE,∵G,H 分别是AB,DC 中点,∴AG=BG,CH=DH,∴AG=CH,∵AE=CF,∴AF=CE,在△AFG 和△CEH 中,,∴△AFG≌△CEH(SAS),∴GF=HE,同理:GE=HF,∴四边形EGFH 是平行四边形.解:由(1)得:BG=CH,BG∥CH,∴四边形BCHG 是平行四边形,∴GH=BC=4,当EF=GH=4 时,平行四边形EGFH 是矩形,分两种情况:①AE=CF=t,EF=5﹣2t=4,解得:t=0.5;②AE=CF=t,EF=5﹣2(5﹣t)=4,解得:t=4.5;综上所述:当t 为0.5s 或4.5s 时,四边形EGFH 为矩形.(3)解:连接AG、CH,如图所示:∵四边形EGFH 为菱形,∴GH⊥EF,OG=O H,OE=OF,∴OA=OC,AG=AH,∴四边形AGCH 是菱形,∴AG=CG,设AG=CG=x,则BG=4﹣x,由勾股定理得:AB2+BG2=AG2,即32+(4﹣x)2=x2,解得:x= ,∴BG=4﹣= ,∴AB+BG=3+ = ,即t 为s 时,四边形EGFH 为菱形.【点评】本题是四边形综合题目,考查了矩形的性质、全等三角形的判定与性质、平行四边形的判定、菱形的判定与性质、勾股定理等知识;本题综合性强,难度较大,特别是(3)中,需要通过作辅助线证明四边形是菱形,运用勾股定理得出方程才能得出结果.23.如图1,正方形ABCD 的边长为4,以AB 所在的直线为x 轴,以AD 所在的直线为y 轴建立平面直角坐标系.反比例函数的图象与CD 交于E 点,与CB 交于F 点.(1)求证:AE=AF;若△AEF 的面积为6,求反比例函数的解析式;(3)在的条件下,将△AEF 以每秒1 个单位的速度沿x 轴的正方向平移,如图2,设它与正方形ABCD 的重叠部分面积为S,请求出S 与运动时间t(秒)的函数关系式(0<t<4).【考点】反比例函数综合题.【分析】(1)根据反比例函数图象上点的坐标特点可得出DE=BF,故可得出结论;设DE=BF=a,则CE=4﹣a,CF=4﹣a,再由S△AEF=S 正方形ABCD﹣S△ADE﹣S△ABF﹣S△ECF 即可得出a 的值,进而可得出反比例函数的解析式;(3)根据中EF 两点的坐标用t 表示出AB,BG,CE=CK 的长,再由S=S 正方形ABCD﹣S△梯形AA′ED﹣S△ABG﹣S△ECK 即可得出结论.【解答】(1)证明:∵点E、F 均在反比例函数y=(k>0)的图象上,∴AD•DE=AB•BF.∵AD=AB,∴DE=BF.在△ADE 与△ABF 中,,∴△ADE≌△ABF,∴AE=AF;解:设DE=BF=a,则CE=4﹣a,CF=4﹣a,∵△AEF 的面积为6,∴S△AEF=S﹣S△ADE﹣S△ABF﹣S△ECF正方形ABCD=4×4﹣×4a﹣×4a﹣(4﹣a)(4﹣a)=16﹣4a﹣(4﹣a)(4﹣a)=6,解得a=2,∴EF=2×4=8,∴反比例函数的解析式为y=;(3)解:∵由知E,F(4,2),∴AB=4﹣t,BG= AB=2﹣t,CE=CK=2﹣t,∴S=S﹣S△梯形AA′ED﹣S△ABG﹣S△ECK正方形ABCD=4×4﹣××4﹣(4﹣t)•﹣=16﹣4﹣4t﹣t2﹣4+2t﹣2﹣t2+2t=﹣t2+6.【点评】本题考查的是反比例函数综合题,涉及到反比例函数图象上点的坐标特点、正方形的性质及梯形的面积公式等知识,在解答此题时要注意整体思想的运用.第21 页(共22 页)第22 页(共22 页)。
浙教版八年级下册期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下列各式中计算正确的是()A.=×=(﹣2)×(﹣4)=8B.=4a(a>0)C.=3+4=7D.=2.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数 4 5 6 7 8 人数 3 6 5 4 2 每天加工零件数的中位数和众数为()A.6,5 B.6,6 C.5,5 D.5,63.如图,在平面直角坐标系中,一次函数y=kx﹣2的图象分别与x轴、y轴交于A、B两点,与函数y=(x>0)的图象交于点C.若点A为线段BC的中点,则k的值为()A.1 B.C.2 D.34.下列关于x的方程中一定没有实数解的是()A.x2﹣x﹣1=0 B.4x2﹣4x+2=0 C.x2=﹣x D.x2﹣mx﹣2=0.5.下列说法不正确的是()A.平行四边形对边平行B.两组对边平行的四边形是平行四边形C.平行四边形对角相等D.两组邻角互补的四边形是平行四边形6.某新建火车站站前广场绿化工程中有一块长为20米,宽为12米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为112米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是()A.2米B.米C.2米或米D.3米7.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A.B.C.D.8.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S=1,则k的值为()△AOBA.1 B.﹣1 C.2 D.﹣29.若M=2(x﹣3)(x﹣5),N=(x﹣2)(x﹣14),则M与N的关系为()A.M>NB.M<NC.M=ND.M与N的大小由x的取值而定10.如图,在△ABC中,点D、E分别是AB、AC的中点,∠ACB的平分线交DE于点F,若BC=6,DF =1,则AC的长为()A .2B .3C .4D .5二.填空题(共6小题,满分24分,每小题4分)11.使得代数式有意义的x 的取值范围是 .12.一组数据2,x ,1,3,5,4,若这组数据的中位数是3,则这组数据的方差是 .13.一个多边形的内角和与外角和的比是4:1,则它的边数是 .14.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛,根据题意,可列方程为 .15.如图一次函数的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数的图象于Q ,,则Q 点的坐标为 .16.如图所示,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD ,若AD =6cm ,∠ABC =60°,则四边形ABCD 的面积等于 cm 2.三.解答题(共8小题,满分66分)17.(6分)计算(1)02)2019()21(9π--+-(2)解方程:x2+3x﹣4=0(公式法)18.(6分)学校准备从甲乙两位选手中选择一位参加汉字听写大赛,学校对两位选手的表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们的各项成绩(百分制)如表:选手表达能力阅读理解综合素质汉字听写甲85 78 85 73乙73 80 82 83如果表达能力、阅读理解、综合素质和汉字听写成绩按照2:1:3:4的比确定,请分别计算两名选手的平均成绩,从他们的成绩看,应选派谁?19.(8分)如图,在四边形ABCD中,对角线AC、BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10;(1)求证:四边形ABCD是平行四边形.(2)求四边形ABCD的面积.20.(8分)学校要在一块长方形的土地上进行绿化,已知这块长方形土地的长a=5m,宽b=4m(1)求该长方形土地的面积.(精确到0.01)(2)若绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金为多少元?21.(8分)已知,如图,在平行四边形ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC 于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=10,BF=24,CE=7,求四边形ABCD的面积.22.(10分)如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A开始沿射线AC向点C以2cm/s的速度移动,与此同时,点Q从点C开始沿边CB向点B以1cm/s的速度移动.如果P、Q分别从A、C同时出发,运动的时间为ts,当点Q运动到点B时,两点停止运动.(1)当点P在线段AC上运动时,P、C两点之间的距离cm.(用含t的代数式表示)(2)在运动的过程中,是否存在某一时刻,使得△PQC的面积是△ABC面积的.若存在,求t 的值;若不存在,说明理由.23.(10分)如图,在平面直角坐标中,点O是坐标原点,一次函数y1=kx+b与反比例函数y2=(x >0)的图象交于A(1,m)、B(n,1)两点.(1)求直线AB的解析式及△OAB面积;(2)根据图象写出当y1<y2时,x的取值范围;(3)若点P在x轴上,求PA+PB的最小值.24.(10分)以△ABC的各边,在边BC的同侧分别作三个正方形.他们分别是正方形ABDI,BCFE,ACHG,试探究:(1)如图中四边形ADEG是什么四边形?并说明理由.(2)当△ABC满足什么条件时,四边形ADEG是矩形?(3)当△ABC满足什么条件时,四边形ADEG是正方形?。
新八年级(下)数学期末考试题(含答案)一、选择题(本大题共10 小题,每小题3分,共30 分.每小题只有一个选项是正确的,把正确选项前的字母填入下表中)1.化简222a aa++的结果是A.-a B.-1 C.a D.12.在1x,12,212x+,3xyπ,3x y+,1am+中分式的个数有A.2 个B.3 个C.4 个D.5 个3.在一个不透明的口袋中装有红、黄、蓝三种颜色的球,如果口袋中有5个红球,且摸出红球的概率为13,那么袋中总共球的个数为A.15 个B.12 个C.8 个D.6 个4.若ab=25,则a bb+的值是A.75B.35C.32D.575.已知x<3A.-x-3 B.x+3 C.3-x D.x-36.如图,梯形A BCD 中,AD∥BC,AD=CD,BC=AC,∠BAD=110°,则∠D=A.140°B.120°C.110°D.100°7.已知△ABC 和△A'B'C'是位似图形.△A'B'C'的面积为6cm2,周长是△ABC 的一半,AB=8cm,则A B 边上的高等于A.3cm B.6cm C.9cm D.12cm8.如图,在△ABC 中,点E、D、F 分别在边AB、BC、CA 上,且DE∥CA,DF∥BA.下列四个判断中,是假命题的是A.四边形A E DF 是平行四边形B.如果∠BAC=90°,那么四边形AEDF 是矩形C.如果AD 平分∠BAC,那么四边形A EDF 是菱形D.如果A D⊥BC 且A B=AC,那么四边形A EDF 是正方形9.如果点A(x1,y1)和点B(x2,y2)是直线y=kx-b 上的两点,且当x1<x2 时,y2<y1,那么函数y=kx的图象大致是10.一副三角板按图1所示的位置摆放,将△DEF 绕点A(F)逆时针旋转60°后(图2),测得CG=8cm,则两个三角形重叠(阴影)部分的面积为A.16+16 2B.16cm2C.16cm2D.48cm2二、填空题(本大题共10 小题,每小题2分,共20 分)11.当x=时,分式211xx-+的值为零.12.13.点A(2,1)在反比例函数y=kx的图象上,当1<x<4 时,y 的取值范围是.14.如图,正方体的棱长为 3,点 M ,N 分别在 C D ,HE 上,CM = 12DM ,HN =2NE ,HC 与 N M 的延长线交于点 P ,则 P C 的值为.15.对于平面内任意一个凸四边形 A BCD ,现从以下三个关系式①AB =CD ,②AD =BC ,③AB ∥CD 中任取两个 作为条件,能够得出这个四边形 ABCD 是平行四边形的概率 是 .16.若关于 x 的分式方程 121m x -=+的解为正数,则 m 的取值范围是 .17.如下图,将边长为 9cm 的正方形纸片 A BCD 折叠,使得点 A 落在边 C D 上的 E 点,折痕为 M N .若 C E 的长为 6cm ,则 M N 的长为 cm .18.如上图,点 A 在双曲线 y =6x上,且 O A =4,过 A 作 A C ⊥x 轴,垂足为 C ,OA 的 垂直平分线交 O C 于 B ,则△ABC 的周长为.19.设函数 y =2x与 y =x -1 的图象的交点坐标为(x 0,y 0),则0011x y -的值为 . 20.如图,在平面直角坐标系中,等边三角形 A BC 的顶点B ,C 的坐标分别为(1,0),(3,0),过坐标原点 O 的 一条直线分别与边 A B ,AC 交于点 M ,N ,若 O M = MN ,则点 M 的坐标为( ).三、解答题(本大题共 8 小题,共 50 分,解答时应写出必要的计 算过程,推演步骤或文字说明) 21.计算化简(本题满分 8 分,每小题 4 分) (1)011()23-+ (2) 221()a b a ba b b a -÷-+-22.(本题 5 分)解方程:2431422x x x x x +-+=--+23.(本题满分 5 分)化简代数式:2224421142x x x x x x x-+-÷-+-+,并求当 x =2012 时,代 数式的值.24.(本题满分 5 分)如图,在正方形网格中,△T AB 的顶点坐标分别为 T (1,1)、A(2,3)、B(4,2). (1)以点 T (1,1)为位似中心,在位似中心的 同侧将△T AB 放大为原来的 3 倍,放大 后点 A 、B 的对应点分别为 A '、B',画出 △T A'B': (2)写出点 A '、B'的坐标: A'( )、B'( ); (3)在(1)中,若 C (a ,b)为线段 A B 上任一 点,则变化后点 C 的对应点 C'的坐标为 ( ).25.(本题满分6 分)如图,四边形ABCD 中,E、F、G、H 分别为各边的中点,顺次连结E、F、G、H,把四边形E FGH 称为中点四边形.连结A C、BD,容易证明:中点四边形E FGH 一定是平行四边形.(1)如果改变原四边形ABCD 的形状,那么中点四边形的形状也随之改变,通过探索可以发现:当四边形A B CD 的对角线满足A C=BD 时,四边形E FGH 为菱形;当四边形A BCD 的对角线满足时,四边形E FGH 为矩形;当四边形A BCD 的对角线满足时,四边形E FGH 为正方形.(2)试证明:S△AEH+S△CFG=14S□ABCD(3)利用(2)的结论计算:如果四边形A BCD新人教版八年级第二学期下册期末模拟数学试卷(含答案)一、选择题(共8小题;共40分)1. 在下列各式中,不是二次根式的有① ;② ;③ (,同号且);④ ;⑤ .A. 个B. 个C. 个D. 个2. 要使代数式有意义,则的A. 最大值是B. 最小值是C. 最大值是D. 最小值是3. 下列计算结果正确的个数是① ;② ;③ ;④当时,.A. B. C. D.4. 下列式子中为最简二次根式的是A. B. C. D.5. 下列计算正确的是A. B.C. D.6. 算式的值为A. B. C. D.7. 若是整数,则正整数的最小值是A. B. C. D.8. 甲、乙两人计算的值,当的时候得到不同的答案,甲的解答是;乙的解答是.下列判断正确的是A. 甲、乙都对B. 甲、乙都错C. 甲对,乙错D. 甲错,乙对二、填空题(共9小题;共45分) 9. 若 ,则 .10. 已知 ,则 . 11. 把进行化简,得到的最简结果是 (结果保留根号).12. 计算:等于 .13. 在实数范围内分解因式: .14. 对于任意不相等的两个数 , ,定义一种运算“ ”如下:.如,那么 .15. 设 , ,则 .16. 若实数新八年级下学期期末考试数学试题(答案)一、填空题(本大题共6个小题,每小题3分,满分18分) 1.(3分)化简:(2)--= .2.(3分)亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为 . 3.(3分)因式分解:228x -= .4.(3分)将直线23y x =-向上平移4个单位后,所得的直线在平面直角坐标系中,不经过第 象限.5.(3分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若14k =,则该等腰三角形的顶角为 . 6.(3分)如图, 在平面直角坐标系中,(4,0)A ,(0,3)B ,以点A 为圆心,AB 长为半径画弧, 交x 轴的负半轴于点C ,则点C 坐标为 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.(4分)下列图形中,是中心对称图形的是( )A .B .C .D .8.(4分)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为( ) A .45,48B .44,45C .45,51D .52,539.(4分)下列对二次函数2y x x =-的图象的描述,正确的是( ) A .开口向下 B .对称轴是y 轴C .经过原点D .在对称轴右侧部分是下降的10.(4分)学校为创建“书香校园”,购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x 元,则可列方程为( ) A .1000090001005x x -=- B .9000100001005x x -=- C .1000090001005x x-=- D .9000100001005x x -=- 11.(4分)如图所示,四边形ABCD 为O 的内接四边形,120BCD ∠=︒,则BOD ∠的大小是( )A .80︒B .120︒C .100︒D .90︒12.(4分)某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知//AB CD ,87BAE ∠=︒,121DCE ∠=︒,则E ∠的度数是( )A .28︒B .34︒C .46︒D .56︒13.(4分)我市某楼盘准备以每平方10000元的均价对外销售由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方8100元的均价开盘销售,则平均每次下调的百分率是( ) A .8%B .9%C .10%D .11%14.(4分)生活处处有数学:在五一出游时,小明在沙滩上捡到一个美丽的海螺,经仔细观察海螺的花纹后画出如图所示的蝶旋线,该螺旋线由一系列直角三角形组成,请推断第n 个三角形的面积为( )A .nBC .2nD三、解答题(本大题共9个小题,满分70分 15.(6分)计算:01132019()3----.16.(6分)解不等式组()3214213212x x x x ⎧--⎪⎪⎨+⎪>-⎪⎩①②…,并写出x 的所有整数解. 17.(7分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABC ∆的三个顶点坐标分别为(1,4)A ,(1,1)B ,(3,1)C . (1)画出ABC ∆关于x 轴对称的△111A B C ;(2)画出ABC ∆绕点O 逆时针旋转90︒后的△222A B C ; (3)在(2)的条件下,求线段BC 扫过的面积(结果保留)π.18.(7分)某区举行“庆祝改革开放40周年”征文比赛,已知每篇参赛征文成绩记m分剟,组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘m(60100)制了如下不完整的两幅统计图表:请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c 的值是 ; (2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.19.(7分)如图,ABC ∆中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF CD =,连接CF . (1)求证:AEF DEB ∆≅∆;(2)若AB AC =,试判断四边形ADCF 的形状,并证明你的结论.20.(8分)如图,AB 是O 的直径, 直线CD 与O 相切于点C ,且与AB 的延长线交于点E ,点C 是BF 的中点 . (1) 求证:AD CD ⊥;(2) 若30CAD ∠=︒,O 的半径为 3 ,一只蚂蚁从点B 出发, 沿着BE EC CB --爬回至点B ,求蚂蚁爬过的路程( 3.14π≈ 1.73≈, 结果保留一位小数) .21.(8分)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为 件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?22.(9分)如图,在Rt ABC ∆中,90ACB ∠=︒,D 、E 分别是AB 、AC 的中点,连接CD ,过E 作//EF DC 交BC 的延长线于F .(1)证明:四边形CDEF 是平行四边形;(2)若四边形CDEF 的周长是25cm ,AC 的长为5cm ,求线段AB 的长度.23.(12分)如图,抛物线2(0)y ax bx c a =++≠与直线1y x =+相交于(1,0)A -,(4,)B m 两点,且抛物线经过点(5,0)C(1)求抛物线的解析式.(2)点P 是抛物线上的一个动点(不与点A 点B 重合),过点P 作直线PD x ⊥轴于点D ,交直线AB于点E.当2时,求P点坐标;PE ED(3)如图2所示,设抛物线与y轴交于点F,在抛物线的第一象限内,是否存在一点Q,使得四边形OFQC的面积最大?若存在,请求出点Q的坐标;若不存在,说明理由.云南师大附中呈贡校区2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每小题3分,满分18分)1.(3分)化简:(2)--= 2 .【考点】14:相反数【分析】根据相反数的定义解答即可.【解答】解:(2)2--=.故答案为:2.【点评】本题考查了相反数的定义,是基础题.2.(3分)亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为 74.410⨯ .【考点】1I :科学记数法-表示较大的数【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:744000000 4.410=⨯,故答案为:74.410⨯.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(3分)因式分解:228x -= 2(2)(2)x x +- .【考点】53:因式分解-提公因式法;54:因式分解-运用公式法【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2282(2)(2)x x x -=+-.【点评】本题考查提公因式法和公式法分解因式,是基础题.4.(3分)将直线23y x =-向上平移4个单位后,所得的直线在平面直角坐标系中,不经过第 四 象限.【考点】9F :一次函数图象与几何变换【分析】根据一次函数图象的平移规律,可得答案.【解答】解:由题意得:平移后的解析式为:23421y x x =-+=+,即21y x =+,直线21y x =+经过一、二、三象限,不经过第四象限,故答案为:四.【点评】本题考查了一次函数图象与几何变换,利用一次函数图象的平移规律是解题关键,注意求直线平移后的解析式时要注意平移时k 的值不变.5.(3分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若14k =,则该等腰三角形的顶角为 20︒ . 【考点】KH :等腰三角形的性质【分析】先根据等腰三角形的性质得出B C ∠=∠,再根据三角形内角和定理得出9180A ∠=︒,即可求解.【解答】解:如图.ABC ∆中,AB AC =,B C ∴∠=∠,等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若14k =, :1:4A B ∴∠∠=,180A B C ∠+∠+∠=︒,44180A A A ∴∠+∠+∠=︒, 即9180A ∠=︒,20A ∴∠=︒,故答案为:20︒.【点评】本题考查了三角形内角和定理和等腰三角形的性质,能根据等腰三角形性质、三角形内角和定理得出9180A ∠=︒是解此题的关键.6.(3分)如图, 在平面直角坐标系中,(4,0)A ,(0,3)B ,以点A 为圆心,AB 长为半径画弧, 交x 轴的负半轴于点C ,则点C 坐标为 (1,0)- .【考点】5D :坐标与图形性质;KQ :勾股定理【分析】求出OA 、OB ,根据勾股定理求出AB ,即可得出AC ,求出OC 长即可 .【解答】解:点A ,B 的坐标分别为(4,0),(0,3),4OA ∴=,3OB =,在Rt AOB ∆中, 由勾股定理得:5AB ==, 5AC AB ∴==,541OC ∴=-=,∴点C 的坐标为(1,0)-,故答案为:(1,0)-,【点评】本题考查了勾股定理和坐标与图形性质的应用, 解此题的关键是求出OC 的长, 注意: 在直角三角形中, 两直角边的平方和等于斜边的平方 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.(4分)下列图形中,是中心对称图形的是( )A .B .C .D .【考点】5R :中心对称图形【分析】根据中心对称图形定义:把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行解答即可.【解答】解:A 、是中心对称图形,故此选项正确;B 、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:A.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形定义.8.(4分)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为()A.45,48B.44,45C.45,51D.52,53【考点】4W。
2023-2024学年浙江省宁波市江北区八年级(下)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若代数式x−3有意义,则实数x的取值范围是( )A. x≥3B. x>3C. x<3D. x≤32.下列用数学家命名的图形中,是中心对称图形的是( )A. 笛卡尔心形线B. 谢尔宾斯基地毯C. 赵爽弦图D. 斐波那契螺旋线3.下列计算正确的是( )A. 2+3=5B. 2×3=6C. 33−3=3D. 24÷6=44.用配方法解关于x的一元二次方程x2−2x−4=0,其变形后正确的结果是( )A. (x−1)2=5B. (x+1)2=5C. (x−1)2=3D. (x+1)2=3(k≠0)的图象上,则该函数图象必过点( )5.若点(−1,6)在反比例函数y=kxA. (1,6)B. (−3,−2)C. (−2,−3)D. (−6,1)6.某校801班全体同学参加学校“红五月”合唱大赛,根据所有评委老师的打分成绩进行数据统计,获得信息如表所示(10分制,单位:分):平均数众数中位数方差9.59.39.50.05最后评分若要去掉一个最高分、去掉一个最低分,则下列统计量一定不发生变化的是( )A. 平均数B. 众数C. 中位数D. 方差7.用反证法证明:“在锐角△ABC中,若∠C<∠B<∠A,则∠B>45°”,则应先假设( )A. ∠B>45°B. ∠B≥45°C. ∠B<45°D. ∠B≤45°8.如图,平行四边形ABCD的对角线相交于点O,尺规作图操作步骤如下:①以点C为圆心,OC长为半径画弧;②以点D为圆心,OD长为半径画弧;③两弧交于点E,连结DE,CE.则下列说法一定正确的是( )A. 若AC⊥BD,则四边形OCED是矩形B. 若AC=BD,则四边形OCED是菱形C. 若AD⊥CD,则四边形OCED是矩形D. 若AD=CD,则四边形OCED是菱形9.公元9世纪,阿拉伯数学家花拉子米在其著作《代数学》中提到图解一元二次方程的方法:如图,先构造边长为x的正方形ABCD,再分别以BC,CD为边作另一边长为5的长方形,最后得到面积为64的正方形AEGH.则能列出关于x的一元二次方程是( )A. x2+10x=25B. x2+10x=39C. x2+10x=64D. x2+10x=8910.已知实数x,y满足4x2−x+4xy+y2=1,设M=x+y,则M的最大值是( )A. 75B. 54C. 1916D. 1二、填空题:本题共6小题,每小题3分,共18分。
2014-2015学年浙江省宁波市江北区八年级(下)期末数学试卷一、选择题(每题3分,共30分)1.(3分)当x取下列各数中的哪个数时,式子有意义()A.﹣1 B.0 C.1 D.32.(3分)如果关于x的方程2x2﹣x+k=0(k为常数)有两个相等的实数根,那么k=()A.B.C.D.3.(3分)在下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.4.(3分)要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是()A.平均数B.中位数C.众数D.方差5.(3分)一个多边形的内角和是外角和的2倍,这个多边形是()A.三角形B.四边形C.五边形D.六边形6.(3分)某超市一月份的营业额为300万元,第一季度的营业额共为1500万元,如果平均每月增长率为x,则由题意可列方程为()A.300(1+x)2=1500 B.300+300×2x=1500C.300+300×3x=1500 D.300[1+(1+x)+(1+x)2]=15007.(3分)反比例函数的图象,当x>0时,y随x的值增大而增大,则k 的取值范围是()A.k<2 B.k≤2 C.k>2 D.k≥28.(3分)用反证法证明命题:若整数系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a、b、c中至少有一个是偶数时,下列假设中正确的是()A.假设a、b、c都是偶数B.假设a、b、c至多有一个是偶数C.假设a、b、c都不是偶数D.假设a、b、c至多有两个是偶数9.(3分)双曲线y1,y2在第一象限的图象如图所示,其中y1的解析式为y1=,=1,过y1图象上的任意一点A,作x轴的平行线交y2图象于B,交y轴于C,若S△AOB则y2的解析式是()A.y2=B.y2=C.y2=D.y2=10.(3分)如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC的距离记为h2015.若h1=1,则h2015的值为()A.B.C.1﹣D.2﹣二、填空题(每题3分,共18分)11.(3分)某班七个合作学习人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是.12.(3分)一元二次方程x(x﹣2)=x﹣2的根是.13.(3分)已知点M(a,3)和点N(﹣4,b)关于原点中心对称,则(a+b)2015的值为.14.(3分)如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为.15.(3分)如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=,AG=1,则EB=.16.(3分)已知四边形的四条边和两条对角线这六条线段中只有两种长度,则这个四边形的最大内角为.三、解答题17.(6分)计算(1)+(﹣)2(2)×(﹣)+.18.(6分)解下列方程:(1)2(x﹣2)2=18(2)2x2﹣6x﹣1=0.19.(8分)如图1,有一张菱形纸片ABCD,AC=8,BD=6.(1)请沿着AC剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四边形,在图2中用实线画出你所拼成的平行四边形;若沿着BD剪开,请在图3中用实线画出拼成的平行四边形;并直接写出这两个平行四边形的周长.(2)沿着一条直线剪开,拼成与上述两种都不全等的平行四边形,请在图4中用实线画出拼成的平行四边形.(注:上述所画的平行四边形都不能与原菱形全等)周长为周长为.20.(8分)在学校组织的八年级数学竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,学校将八年级一班和二班的成绩整理并绘制成如下的统计图:请你根据提供的信息解答下列问题:(1)此次竞赛中二班80分以上(包括80分)的人数为;(2)请你将表格补充完整:(3)请从不同角度对这次竞赛成绩的结果进行分析.(至少两个角度)21.(8分)如图,一次函数y=kx+b的图象与坐标轴交于点A(0,2),B(2,0),与反比例函数y=的图象交于点C和点D(﹣1,a).(1)求一次函数y=kx+b和反比例函数y=的解析式;(2)利用图象,直接写出关于x的不等式kx+b﹣<0的解;(3)连接OC,OD,求△COD的面积.22.(8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)23.(8分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC与点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止,在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.2014-2015学年浙江省宁波市江北区八年级(下)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)当x取下列各数中的哪个数时,式子有意义()A.﹣1 B.0 C.1 D.3【解答】解:由题意得,x﹣2≥0,解得,x≥2,∵﹣1、0、1、3中只有3不小于2,∴x=3时式子有意义.故选:D.2.(3分)如果关于x的方程2x2﹣x+k=0(k为常数)有两个相等的实数根,那么k=()A.B.C.D.【解答】解:∵关于x的方程2x2﹣x+k=0(k为常数)有两个相等的实数根,∴△=(﹣1)2﹣8k=0,解得k=.故选:A.3.(3分)在下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形,符合题意;B、是轴对称图形,又是中心对称图形,不符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、是轴对称图形,是中心对称图形,不符合题意.4.(3分)要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是()A.平均数B.中位数C.众数D.方差【解答】解:由于方差反映数据的波动情况,应知道数据的方差.故选:D.5.(3分)一个多边形的内角和是外角和的2倍,这个多边形是()A.三角形B.四边形C.五边形D.六边形【解答】解:设多边形的边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选:D.6.(3分)某超市一月份的营业额为300万元,第一季度的营业额共为1500万元,如果平均每月增长率为x,则由题意可列方程为()A.300(1+x)2=1500 B.300+300×2x=1500C.300+300×3x=1500 D.300[1+(1+x)+(1+x)2]=1500【解答】解:∵一月份的营业额为300万元,平均每月增长率为x,∴二月份的营业额为300×(1+x),∴三月份的营业额为300×(1+x)×(1+x)=300×(1+x)2,∴可列方程为300+300×(1+x)+300×(1+x)2=1500.即300[1+(1+x)+(1+x)2]=1500.故选:D.7.(3分)反比例函数的图象,当x>0时,y随x的值增大而增大,则k 的取值范围是()A.k<2 B.k≤2 C.k>2 D.k≥2【解答】解:∵当x>0时,y随x的增大而增大,∴k﹣2<0,故选:A.8.(3分)用反证法证明命题:若整数系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a、b、c中至少有一个是偶数时,下列假设中正确的是()A.假设a、b、c都是偶数B.假设a、b、c至多有一个是偶数C.假设a、b、c都不是偶数D.假设a、b、c至多有两个是偶数【解答】解:∵用反证法证明:若整数系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a、b、c中至少有一个是偶数,∴假设a、b、c都不是偶数.故选:C.9.(3分)双曲线y1,y2在第一象限的图象如图所示,其中y1的解析式为y1=,过y1图象上的任意一点A,作x轴的平行线交y2图象于B,交y轴于C,若S=1,△AOB则y2的解析式是()A.y2=B.y2=C.y2=D.y2=【解答】解:设y2=,∵AB∥x轴,=×4=2,S△OBC=k2,∴S△OAC=k2﹣2=1,∴S△AOB∴k2=6.∴y2的解析式是y=故选:C.10.(3分)如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC的距离记为h2015.若h1=1,则h2015的值为()A.B.C.1﹣D.2﹣【解答】解:连接AA1,由折叠的性质可得:AA1⊥DE,DA=DA1,又∵D是AB中点,∴DA=DB,∴DB=DA1,∴∠BA1D=∠B,∴∠ADA1=2∠B,又∵∠ADA1=2∠ADE,∴∠ADE=∠B,∴DE∥BC,∴AA1⊥BC,∴AA1=2,∴h1=2﹣1=1,同理,h2=2﹣,h3=2﹣=2﹣,…E n﹣1到BC的距离h n=2﹣,∴经过第n次操作后得到的折痕D n﹣1∴h2015=2﹣,故选:D.二、填空题(每题3分,共18分)11.(3分)某班七个合作学习人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是6.【解答】解:∵4、5、5、x、6、7、8的平均数是6,∴(4+5+5+x+6+7+8)÷7=6,解得:x=7,将这组数据从小到大排列为4、5、5、6、7、7、8,最中间的数是6;则这组数据的中位数是6.故答案为:6.12.(3分)一元二次方程x(x﹣2)=x﹣2的根是1或2.【解答】解:x(x﹣2)=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1,故答案为:1或2.13.(3分)已知点M(a,3)和点N(﹣4,b)关于原点中心对称,则(a+b)2015的值为1.【解答】解:由点M(a,3)和点N(﹣4,b)关于原点中心对称,得a=4,b=﹣3.(a+b)2015=(1)2015=1,故答案为:1.14.(3分)如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为2.【解答】解:∵点E、F分别是AB、CD的中点,M、N分别为DE、BF的中点,∴矩形绕中心旋转180°阴影部分恰好能够与空白部分重合,∴阴影部分的面积等于空白部分的面积,∴阴影部分的面积=×矩形的面积,∵AB=2,BC=2,∴阴影部分的面积=×2×2=2.故答案为:2.15.(3分)如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=,AG=1,则EB=.【解答】解:连接BD交AC于O,∵四边形ABCD、AGFE是正方形,∴AB=AD,AE=AG,∠DAB=∠EAG,∴∠EAB=∠GAD,在△AEB和△AGD中,,∴△EAB≌△GAD(SAS),∴EB=GD,∵四边形ABCD是正方形,AB=,∴BD⊥AC,AC=BD=AB=2,∴∠DOG=90°,OA=OD=BD=1,∵AG=1,∴OG=OA+AG=2,∴GD==,∴EB=.故答案为:.16.(3分)已知四边形的四条边和两条对角线这六条线段中只有两种长度,则这个四边形的最大内角为120°.【解答】解:分两种情况:①如图1,四边形ABCD的四条边与一对角线相等,即AB=BC=CD=DA=BD<AC.∵在△ABD中,AB=AD=BD,∴△ABD是等边三角形,∴∠A=∠ABD=∠ADB=60°.同理,∠C=∠CBD=∠CDB=60°.∴∠ABC=∠ABD+∠CBD=120°,∴这个四边形的最大内角为120°;②如图2,在四边形ABCD中,AD=DC=CB=BA.∵在四边形ABCD中,AD=DC=CB=BA,∴四边形ABCD是正方形,∴AC=BD>AB,∴正方形ABCD符合题意,∴∠ABC=∠ADC=∠DCB=∠DAB=90°,即这个四边形的最大内角为90°.综合①②,该四边形的最大内角为120°.故答案是:120°.三、解答题17.(6分)计算(1)+(﹣)2(2)×(﹣)+.【解答】解:(1)原式=6+3=9;(2)原式=﹣3+5=3.18.(6分)解下列方程:(1)2(x﹣2)2=18(2)2x2﹣6x﹣1=0.【解答】解:(1)2(x﹣2)2=18,(x﹣2)2=9,x﹣2=±3,x1=﹣1,x2=5;(2)2x2﹣6x﹣1=0,∵a=2,b=﹣6,c=﹣1,∴△=(﹣6)2﹣4×2×(﹣1)=44,∴x==.即x=.19.(8分)如图1,有一张菱形纸片ABCD,AC=8,BD=6.(1)请沿着AC剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四边形,在图2中用实线画出你所拼成的平行四边形;若沿着BD剪开,请在图3中用实线画出拼成的平行四边形;并直接写出这两个平行四边形的周长.(2)沿着一条直线剪开,拼成与上述两种都不全等的平行四边形,请在图4中用实线画出拼成的平行四边形.(注:上述所画的平行四边形都不能与原菱形全等)周长为26周长为22.【解答】解:(1)∵菱形的两条对角线长分别为6,8,∴对角线的一半分别为3,4,∴菱形的边长分别为5,∴第一个平行四边形的周长为2×(5+8)=26;第二个平行四边形的周长为2×(5+6)=22;(2)20.(8分)在学校组织的八年级数学竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,学校将八年级一班和二班的成绩整理并绘制成如下的统计图:请你根据提供的信息解答下列问题:(1)此次竞赛中二班80分以上(包括80分)的人数为13;(2)请你将表格补充完整:(3)请从不同角度对这次竞赛成绩的结果进行分析.(至少两个角度)【解答】解:(1)一班参赛人数为:6+12+2+5=25(人),∵两班参赛人数相同,∴二班成绩在70分以上(包括70分)的人数为25×52%=13人;(2)填表如下:(3)①平均数相同的情况下,二班的成绩更好一些.②请一班的同学加强基础知识训练,争取更好的成绩.故答案为:13;80,70.21.(8分)如图,一次函数y=kx+b的图象与坐标轴交于点A(0,2),B(2,0),与反比例函数y=的图象交于点C和点D(﹣1,a).(1)求一次函数y=kx+b和反比例函数y=的解析式;(2)利用图象,直接写出关于x的不等式kx+b﹣<0的解;(3)连接OC,OD,求△COD的面积.【解答】解:(1)∵一次函数y=kx+b的图象与坐标轴交于点A(0,2),B(2,0),∴,∴,∴一次函数的解析式为y=﹣x+2,∵一次函数与反比例函数y=的图象交于点C和点D(﹣1,a),∴a=3,∴m=﹣1×3=﹣3,∴反比例函数的解析式为y=﹣;(2)解得:,,∴C(3,﹣),根据图象知:不等式kx+b﹣<0的解为:﹣1<x<0,或x>3;(3)∵直线CD与y轴的交点坐标为:(0,2),∴△COD的面积=×2×1+×2×3=4.22.(8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为26.8万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)【解答】解:(1)∵若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,∴若该公司当月售出3部汽车,则每部汽车的进价为:27﹣0.1×(3﹣1)=26.8,故答案为:26.8;(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:28﹣[27﹣0.1(x﹣1)]=(0.1x+0.9)(万元),当0≤x≤10,根据题意,得x•(0.1x+0.9)+0.5x=12,整理,得x2+14x﹣120=0,解这个方程,得x1=﹣20(不合题意,舍去),x2=6,当x>10时,根据题意,得x•(0.1x+0.9)+x=12,整理,得x2+19x﹣120=0,解这个方程,得x1=﹣24(不合题意,舍去),x2=5,因为5<10,所以x2=5舍去.答:需要售出6部汽车.23.(8分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC与点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止,在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,∵AC的垂直平分线EF,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF,∵OA=OC,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.∴AF=FC,设AF=xcm,则CF=xcm,BF=(8﹣x)cm,∵四边形ABCD是矩形,∴∠B=90°,∴在Rt△ABF中,由勾股定理得:42+(8﹣x)2=x2,解得x=5,即AF=5cm;(2)显然当P点在AF上时,Q点在CD上,此时A、C、P、Q四点不可能构成平行四边形;同理P点在AB上时,Q点在DE或CE上或P在BF,Q在CD时不构成平行四边形,也不能构成平行四边形.因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形,∴以A、C、P、Q四点为顶点的四边形是平行四边形时,PC=QA,∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,∴PC=5t,QA=12﹣4t,∴5t=12﹣4t,解得t=.∴以A、C、P、Q四点为顶点的四边形是平行四边形时,t=秒.。