华工数学分析三试题
- 格式:doc
- 大小:148.50 KB
- 文档页数:4
2022年华南理工数学分析考研试题及解答n例1.设f:RnRn,且fC1R,满足f某fy某y,对于任意n,都成立.试证明f可逆,且其逆映射也是连续可导的.某,yR证明显然,对于任意某,yRn,某y,有f某fy,f是单射,所以f1存在,由f1某f1y某y,知f1连续,由f某fy某y,得对任意实数t0,向量某,hRn,有f某thf某th,f某thf某h在中令t0,取极限,则有t得Jf(某)hh,任何某,hRn,从而必有|Jf(某)|0,Jf可逆,由隐函数组存在定理,所以f1存在,且是连续可微的。
例2.讨论序列fntinnt在0,上一致收敛性.nt11解方法一显然fnt,nt对任意t0,,有limfnt0,nfntinntntt,ntntt0limfnt0,关于n是一致的;对任意0,当t,时,fnt11,n于是fnt在,上是一致收敛于0的,综合以上结果,故fnt在0,上是一致收敛于0的.方法二由fntinntntinntntnt1,ntn即得fnt在0,上是一致收敛于0的例3、判断n1n在某1上是否一致收敛.某n例4.设f某在,上一致连续,且2f某d某收敛,证明limf某0.某2某yz例5.求有曲面21所围成的立体的体积其中常数a,b,c0.abc例6、设D为平面有界区域,f某,y在D内可微,在D上连续,在D的边界上f某,y0,在D内f满足方程试证:在D上f某,y0.fff.某y证明因为f某,y在D上连续,设Mma某f某,y,某,yD则M0,假若M0,则存在某0y0D,使得f某0y0M,于是有ff某0y00,某0y00,某yff这与某0y0f某0y00矛盾,某y假若M0,亦可得矛盾.同理,对mminf某,y,亦有m0,某,yD故f某,y0,某,yD.一.求解下列各题1、设,数列{某}满足lima0nn某na某na。
0,证明limn某na21、解由0lim某na2alim1,n某an某ann知lim2a1,所以lim某na.nn某anco某,当某为有理数f(某)2、设当某为无理数,0,证明f(某)在点某kk1(k为任意整数)处连续,而在其它点处不连续。
《数学分析》(三)――参考答案及评分标准.计算题(共8题,每题9分,共72分)。
因为 lim 3 xsin — 3 ysin —与 lim 3 xsin — 3 ysin -均不存在,x 0y x y 0 y x故二次极限均不存在。
4.要做一个容积为1m 3的有盖圆桶,什么样的尺寸才能使用料最省?解:设圆桶底面半径为r ,高为h,则原问题即为:求目标函数在约束条件下的 最小值,其中目标函数:S 表2 rh 2 r 2,1. 解:1 1求函数f (x, y) V^sin — 济sin-在点(0,0)处的二次极限与二重极限. y xf (x, y) Vxs in 丄 羽 si n 丄y x |3X |3y|,因此二重极限为0.……(4分) (9分)2. 解:设y y(x),是由方程组z xf(x z z(x) F(x,y,z)具有连续的导数和偏导数,求空.dx对两方程分别关于x 求偏导:y0'所确定的隐函数’其中f 和F 分别dz 丁 f (x dx F F 矽 x ydx y) xf (x y)(dX 1),解此方程组并整理得竺 dxF z dz 0dxF y f(x y) xf (x y)(F y F x )(4分)3. 取,为新自变量及2z x yx y 2 解: 2z2xx yJ2z 看成是 wzyF y xf (x y)F z w( ,v)为新函数,变换方程ze y (假设出现的导数皆连续) x, y 的复合函数如下:/、 x yw w(,),,2代人原方程,并将x, y, z 变换为,,w 2 2w W c 2 2w 。
x y。
2整理得:(9分)(4分)(9分)------------------- 时磊忖呎… ... . .... ... ...约束条件:r 2h 1 o构造 Lagrange 函数:F (r,h, ) 2 rh 2 r 2 (3分) (r 2h 1)o人 F r 2 h 4 r 2 rh 0, 令 F h 2 r r 2 0.(6分)解得h径为r 2r ,故有r 彳*,h 3上.由题意知问题的最小值必存在,当底面半 3 ;,高为h 3 4时,制作圆桶用料最省。
华南理工大学数学考研真题1、47、若△ABC≌△DEF,AB=2,AC=4,且△DEF的周长为奇数,则EF的值为()[单选题] *A.3B.4C.1或3D.3或5(正确答案)2、15、如果m/n<0,那么点P(m,n)在()[单选题] *A. 第二象限B. 第三象限C. 第四象限D. 第二或第四象限(正确答案)3、12.如图,将一块三角形纸片剪去一部分后,发现剩余阴影部分的纸片周长要比原三角形纸片的周长大,能正确解释这一现象的数学知识是()[单选题] *A.直线没有端点,向两端无限延伸B.两点之间,线段最短(正确答案)C.经过一点有无数条直线D.两点确定一条直线4、二次函数y=3x2-4x+5的二次项系数是()。
[单选题] *3(正确答案)4515、2005°角是()[单选题] *A、第二象限角B、第二象限角(正确答案)C、第二或第三象限角D、第二或第四象限角6、的值为()[单选题] *A.-2B. 0C. 1(正确答案)D. 27、7人小组选出2名同学作正副组长,共有选法()种。
[单选题] *A、14B、15(正确答案)C、49D、1288、24.下列各数中,绝对值最大的数是()[单选题] *A.0B.2C.﹣3(正确答案)D.19、若a=-3 ?2,b=-3?2,c=(-)?2,d=(-)?,则( ) [单选题] *A. a<d<c<bB. b<a<d<cC. a<d<c<bD. a<b<d<c(正确答案)10、43、长度分别为3cm,5cm,7cm,9cm的四根木棒,能搭成(首尾连结)三角形的个数为[单选题] *A.1B.2C.3(正确答案)D.411、28.已知点A(2,3)、B(1,5),直线AB的斜率是()[单选题] *A.2B.-2C.1/2D.-1/2(正确答案)12、3.课间操时,小华、小军、小刚的位置如图.小华对小刚说:“如果我的位置用表示,小军的位置用表示,那么你的位置可以表示成()[单选题] *A.(5,4)B(4,5)C(3,4)D(4,3)(正确答案)13、39、在平面直角坐标系中,将点A(m,m+9)向右平移4个单位长度,再向下平移2个单位长度,得到点B,若点B在第二象限,则m的取值范围是()[单选题] *A.﹣11<m<﹣4B.﹣7<m<﹣4(正确答案)C.m<﹣7D.m>﹣414、36、下列生活实例中, 数学原理解释错误的一项是( ) [单选题] *A. 从一条河向一个村庄引一条最短的水渠, 数学原理: 在同一平面内, 过一点有且只有一条直线垂直于已知直线(正确答案)B. 两个村庄之间修一条最短的公路, 其中的数学原理是:两点之间线段最短C. 把一个木条固定到墙上需要两颗钉子, 其中的数学原理是: 两点确定一条直线D. 从一个货站向一条高速路修一条最短的公路, 数学原理: 连结直线外一点与直线上各点的所有线段中, 垂线段最短.15、31、点A(-2,-3)关于y轴对称的点的坐标是()[单选题] *(2,3)(-2,-3)(3,-2)(2,-3) (正确答案)16、28.下列计算结果正确的是()[单选题] *A.(a3)4=a12(正确答案)B.a3?a3=a9C.(﹣2a)2=﹣4a2D.(ab)2=ab217、6.方程x2=3x的根是()[单选题] *A、x = 3B、x = 0C、x1 =-3, x2 =0D、x1 =3, x2 = 0(正确答案)18、代数式a3?a2化简后的结果是()[单选题] *A. aB. a?(正确答案)C. a?D. a?19、若39?27?=321,则m的值是()[单选题] *A. 3B. 4(正确答案)C. 5D. 620、1.计算| - 5 + 3|的结果是[单选题] *A. - 2B.2(正确答案)C. - 8D.821、12.如图,数轴上的两个点分别表示数a和﹣2,则a可以是()[单选题] *A.﹣3(正确答案)B.﹣1C.1D.222、由数字1、2、3、4、5可以组成多少个不允许有重复数字的三位数?()[单选题]*A、125B、126C、60(正确答案)D、12023、已知10?=5,则100?的值为( ) [单选题] *A. 25(正确答案)B. 50C. 250D. 50024、下列各角中,是界限角的是()[单选题] *A. 1200°B. -1140°C. -1350°(正确答案)D. 1850°25、10. 如图所示,小明周末到外婆家,走到十字路口处,记不清哪条路通往外婆家,那么他一次选对路的概率是(? ? ?).[单选题] *A.1/2B.1/3(正确答案)C.1/4D.126、19、如果点M是第三象限内的整数点,那么点M的坐标是()[单选题] *(-2,-1)(-2,-2)(-3,-1)(正确答案)(-3,-2)27、从3点到6点,时针旋转了多少度?[单选题] *60°-90°(正确答案)-60°90°28、x3??(m为正整数)可写成( ) [单选题] *A. x3+x?B. x3-x?C. x3·x?(正确答案)D. x3?29、下列函数中奇函数是()[单选题] *A、y=2sin x(正确答案)B、y=3sin xC、y=2D、y=30、9.点(-3,4)到y轴的距离是()[单选题] * A.3(正确答案)B.4C.-3 D.-4。
2008年华南理工数学分析考研试题及解答n例1.设f:Rn?Rn,且f?C1?R???,满足f?x??f?yx?y,对于任意n,都成立.试证明f可逆,且其逆映射也是连续可导的. x,y?R证明显然,对于任意x,y?Rn,x?y,有f?x??f?y?,f 是单射,所以f?1存在,f?1?x??f?1?y??x?y,知f?1连续,f?x??f?y??x?y,得对任意实数t?0,向量x,h?Rn,有f?x?th??f?x??th,f?x?th??f?x??h在中令t?0,取极限,则有t得Jf(x)h?h,任何x,h?Rn,从而必有|Jf(x)|?0,Jf可逆,隐函数组存在定理,所以f?1存在,且是连续可微的。
例2. 讨论序列fn?t??sinnt在?0,???上一致收敛性. nt11解方法一显然fn?t???,nt对任意t??0,???,有limfn?t??0,n??fn?t??sinntnt??t,ntntt?0?limfn?t??0,关于n是一致的;对任意??0,当t???,???时,fn?t??11?,n?于是?fn?t??在??,???上是一致收敛于0的,综合以上结果,故?fn?t??在?0,???上是一致收敛于0的.1 方法二fn?t??sinntnt?sinntnt?nt1?,ntn即得?fn?t??在?0,???上是一致收敛于0的例3、判断?n?1?n在x?1上是否一致收敛. xn????例4. 设f?x?在???,???上一致连续,且?2f?x?dx收敛,证明limf?x??0. x??2?xy?z例5.求有曲面????2?1所围成的立体的体积其中常数a,b,c?0. ?ab?c例6、设D为平面有界区域,f?x,y?在D内可微,在D上连续,在D的边界上f?x,y??0,在D 内f满足方程试证:在D上f?x,y??0. ?f?f??f. ?x?y证明因为f?x,y?在D上连续,设M?maxf?x,y?,?x,y??D则M?0,假若M?0,则存在?x0y0??D,使得f?x0y0??M,于是有?f?f?x0y0??0,?x0y0??0,?x?y??f?f?这与????x0y0??f?x0y0??0矛盾,??x?y?假若M?0,亦可得矛盾. 同理,对m?minf?x,y?,亦有m?0,?x,y??D故f?x,y??0,?x,y??D. 华南理工大学2008年数学分析考研试题及解答一.求解下列各题1、设,数列{x}满足lima?0nn??xn?axn?a。
(一)1.计算81269322345++-+-=xx x x x P 时,为了减少乘除法运算次数,应把它改写成什么形式?成什么形式?2.设有递推公式,...2,1.1610=-==-n y y e y n n ,如果取'00718.2y e y =»=作近似计算,问计算到10y 时误差是初始误差的多少倍?这个计算过程数值稳定吗?时误差是初始误差的多少倍?这个计算过程数值稳定吗?(二)1.满足1+n 个相同插值条件的n 次牛顿插值多项式)(x N n 与n 次拉格朗日插值多项式)(x L n 是恒等的,对吗?(回答“对”或“错”)2.试用两种方法求满足插值条件2)2(,0)1()1(,1)0('====p p p p 的插值多项式)(x p 。
(三)1.若已有同一个量的多个近似值,通常取其算术平均作为该量的近似值。
指出这种做法的理论依据(不必详细推导)。
2.在某试验过程中,变量y 依赖于变量x 的试验数据如下:的试验数据如下::x 1 2 3 4 :y 0.8 1.5 1.8 2.0 试求其形如2bx ax y +=的拟合曲线。
的拟合曲线。
(四)1.设有插值型求积公式)()(011k n k k x f A dx x f åò=-»,则å=nk k A 0等于哪个常数?等于哪个常数?2.确定下列求积公式的求积系数101,,AA A -: )1()0()1()(10111f A f A f A dx x f ++-»--ò 使公式具有尽可能高的代数精度;并问所得公式是不是Gauss 型公式?型公式?(五)1.Gauss 消去过程中引入选主元技巧的目的是下列中的哪一项或哪几项?消去过程中引入选主元技巧的目的是下列中的哪一项或哪几项?A .提高计算速度;B 提高计算精度;C 简化计算公式;D.提高算法的数值稳定性;E.节省存储空间存储空间2.用列主元Gauss 消去法解方程组(用增广矩阵表示过程,不用求系数矩阵行列式值):úúúûùêêêëé-11.031045321úúúûùêêêëé321x x x =úúúûùêêêëé201(六)给定线性方程组úûùêëé-5.1112úûùêëé21x x =úûùêëé-48 试构造解此方程组的Jacobi 迭代公式和Guass-Seidel 迭代公式,这两种迭代收敛吗?迭代公式,这两种迭代收敛吗?2.已知求解线性方程组b Ax =的分量迭代格式的分量迭代格式ii k k a x x w +=+)()1(n i x a b n j k j ij i ,...,2,1),(1)(=-å= 试导出其矩阵迭代格式及迭代矩阵;并证明当A 是严格对角占优阵且21=w 时此迭代格式收敛。
例 1.设:n n f R R →,且()1nf C R ∈,满足()()f x f y x y -≥-,对于任意,n x y R ∈,都成立.试证明f 可逆,且其逆映射也是连续可导的.证明 显然,对于任意,n x y R ∈,x y ≠,有()()f x f y ≠,f 是单射,所以1f -存在,由()()11f x f y x y ---≤-,知1f -连续,由()()f x f y x y -≥-,得对任意实数0,t ≠向量,n x h R ∈,有()()f x th f x t h +-≥,在()()f x th f x ht+-≥中令0t →,取极限,则有 得()Jf x h h ≥,任何,n x h R ∈,从而必有|()|0Jf x ≠,Jf 可逆,由隐函数组存在定理,所以1f-存在,且是连续可微的。
例2. 讨论序列()sin n ntf t n t=在()0,+∞上一致收敛性. 解 方法一 显然()11n f t n t≤⋅, 对任意()0,t ∈+∞,有()lim 0n n f t →∞=,()sin n nt ntf t t n t n t=≤=, ()0lim 0n t f t +→=,关于n 是一致的;对任意0δ>,当[),t δ∈+∞时,()11n f t n δ≤⋅, 于是(){}n f t 在[),δ+∞上是一致收敛于0的, 综合以上结果,故(){}n f t 在()0,+∞上是一致收敛于0的.方法二 由()sin sin 1n nt nt nt f t n tn tn t n=≤≤≤, 即得(){}n f t 在()0,+∞上是一致收敛于0的 例3、 判断1nn nx ∞=∑在1x >上是否一致收敛. 例4. 设()f x 在(),-∞+∞上一致连续,且()f x dx +∞-∞⎰收敛,证明()lim 0x f x →∞=.例5.求有曲面2221x y za b c⎛⎫++= ⎪⎝⎭所围成的立体的体积其中常数,,0a b c >.例6、 设D 为平面有界区域,(),f x y 在D 内可微,在D 上连续,在D 的边界上(),0f x y =,在D 内f 满足方程f f f x y∂∂+=∂∂. 试证:在D 上(),0f x y ≡.证明 因为(),f x y 在D 上连续, 设()(),max ,x y DM f x y ∈=,则0M =,假若0M >,则存在()00x y D ∈,使得()00f x y M =, 于是有()000fx y x∂=∂,()000f x y y ∂=∂,这与()()00000f f x y f x y x y ⎛⎫∂∂+=> ⎪∂∂⎝⎭矛盾,假若0M <,亦可得矛盾.同理,对()(),min ,x y Dm f x y ∈=,亦有0m =,故(),0f x y =,(),x y D ∈.华南理工大学2008年数学分析考研试题及解答一.求解下列各题 1、设0a ≠,数列{}n x 满足lim0n n n x ax a→∞-=+,证明lim n n x a →∞=。
华南理工大学2005年攻读硕士学位研究生入学考试试题注:本题在解答过程中,参考了博士家园论坛的意见,特别是Zhubin846152 给出了3、10、11题的解答,在此表示感谢! 一、设2n 2n 1n 12a2ax x x ,0a x +-=>>+. 求极限n n x lim ∞→ 解:显然有()0a a a x x 22n 1n >≥+-=+,又11x a 2a 1x x n n 1n ≤⎪⎪⎭⎫ ⎝⎛-+=+ 即,序列为单调减小,且有下界,故存在极限,不妨设A x l i mn n =∞→,则对2n 2n 1n 2a2ax x x +-=+两边取极限,得222a 2aA A A +-=,即a A =,故a x lim n n =∞→ 二、求积分⎰+-C 4433yx dx y dy x , 其中C 是圆:1y x 22=+,逆时针为正向. 解:令[]πθθθ20,sin y ,cos x ,∈==,有()()[]πθθθθθθθθθθπππ23d 2sin 21-1d sin 2cos sin cos d sin cos y x dx y dy x 20220222222044C 4433=⎪⎭⎫⎝⎛=-+=+=+-⎰⎰⎰⎰三、讨论函数序列()tn nt sin t f n=在()∞,0上的一致收敛性.解:利用定义来做,就可以了。
2()()lim ()0(1)0,0,,0|()()||(2)0,0,0,0sin |()()||||(0,)0n n n n n f t f t f t t N f t f t t n ntf t f t nt εδδεεδδδε→∞===∀>>∀>∃=<-=≤<∀>>∀<≤∀>-==≤≤∈利用定义来做:令,根据一致收敛的定义知,上式一致收敛于四、设()y ,x z z =由方程0x z y ,y z x F =⎪⎪⎭⎫⎝⎛++所确定.证明: xy z y z y x z x -=∂∂⋅+∂∂⋅ 证明: 0x z y ,y z x F =⎪⎪⎭⎫⎝⎛++两边分别对x 和y 求偏导数, 0y z x 11F y 1z y z y 1F ,0x 1z x z x 1F x z y 11F 221221=⎪⎪⎭⎫ ⎝⎛∂∂+'+⎪⎪⎭⎫ ⎝⎛-∂∂'=⎪⎭⎫ ⎝⎛-∂∂'+⎪⎪⎭⎫ ⎝⎛∂∂+' 从而有,xF y F F F y z y z ,x F y F F x 1z F xz 2121221122'+''-'⋅=∂∂'+''-⋅⋅'=∂∂,故有 ()xy z xF y F x F y F xy z x F y F F F y z y x F y F F x 1z F x yz y x z x 21212121221122-='+'⎪⎪⎭⎫ ⎝⎛'+'-='+''-'⋅⋅+'+''-⋅⋅'⋅=∂∂+∂∂ 即,问题得证. 五、设()x f 是偶函数,在0x =的某个邻域中有连续的二阶导数,()()20f ,10f =''=,试证明无穷级数∑∞=⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛1n 1n 1f 绝对收敛.证明:由题意,可写出()x f 的在0x =处的Taylor 展开式()()()()()2222x o x 1x o x !20f 0f x f ++=+''+=从而有⎪⎭⎫⎝⎛+=-⎪⎭⎫ ⎝⎛22n 1o n 11n 1f ,故, 2222222n 2n 1n 1n 1o n 1n 1o n 1=+<⎪⎭⎫⎝⎛+<⎪⎭⎫ ⎝⎛+,而级数∑∞=1n 2n 2为收敛的, 由比较判别法知,级数∑∞=⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛1n 1n 1f 为绝对收敛的,问题得证.六、设曲线()()⎩⎨⎧==t y y t x x 由方程组()⎩⎨⎧=-+=-++2y 2x te 1t 12t y x y确定.求该曲线在0t =处的切线方程和法平面方程.(注:原题为法线方程,个人觉得 曲线不可能有法线,只能有法平面,平面才能有法线) 解:由题意得:0y ,1x ,2y 2x 1y x 0t ==⎩⎨⎧=-=+=有,时,当,()⎩⎨⎧-+=--++=2-y 2x te F 1t 12t y x F y21()()()()()(),3e 2t -21te 1t ,y D F ,F D ,-31te 121y ,x D F ,F D ,321e 2t 2x ,t D F ,F D 0t yy0t 210t y0t 210t y 0t 21=-==-==-=======故,有切线方程3y31x 3-t =-=,法平面()03y 1-x 33t =++-, 也即 切线方程 y 1x t -=-=,法平面1y x t =++-七、求幂级数()()∑∞=++-0n n2n x 1n n 1的收敛域,并求该级数的和.解: 收敛半径()()11n n 1lim 1R n 2nn =++-=∞→,当1x =时,级数变为()()∑∞=++-0n 2n 1n n 1, 显然为发散的.同样级数在1x -=处也发散. 从而,收敛域为()1,1-. 当()1,1x -∈时,有 ()()()()()()∑∑∑∑++=++-=∞=n n n 2n n 2n x -x -n x -n x 1n n 1x f 对第一部分,()()()()()()()()()()( ⎝⎛='⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛==∑∑∑∑∑∞=∞=+∞=∞=-∞=1n 0n 1n 0n n 21n 1n 20n n 21-n x -x -1n x -x -1n x -x -n x -x n x f第二部分,()()()()()()()()()()()20n 1n 0n n 1n 1n 0n n2x 1x x 1x -x -x -x -x -1n x -x -n x -x -n x f +='⎪⎭⎫⎝⎛+='⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛==∑∑∑∑∞=+∞=∞=-∞=故()()()()()321x 11x x x 1x x -x f +-='⎪⎪⎭⎫ ⎝⎛+=, 同样,对第三部分,()x1xx f 3+-=,从而有()()()()()333232223x 1xx x 1x 2x x x x x x x 1x x 1xx 11x x +--=+---++-=+-+++-=原式 八、求第二曲面积分: ⎰⎰+-S zdxdy ydxdz xdydz ,S 为椭球面1cz b y a x 222222=++的上半部分,其定向为下侧.解:不妨添加 交线所围的部分在0z 1cz b y a x 222222==++,方向取向上,记Q ,所围空间记体积为V,故有()abc 32-0abc 32zdxdy ydxdz xdydz dxdydz111zdxdy ydxdz xdydz zdxdy ydxdz xdydz Q VS Sππ=+-=+-++--=+--=+-⎰⎰⎰⎰⎰⎰⎰⎰⎰',其中S '为取外法线方向为正的曲面,九、 (1) 设0a 0>, 证明积分 ()⎰∞+0222axdx关于0a a ≥一致收敛;证明:()()()()()()()()()εδπεδεπεδεππππεπθθθπθθπ<-<-=>∀=<-≤-⎪⎪⎭⎫ ⎝⎛+++=-=->∀-=⋅=⎪⎭⎫⎢⎣⎡∈=+=⎰⎰∞2121404021402142321231414124214204240222a f a f a a a ,0a a a a a a a 1a a 1a a 1a 144a 4a a f a f ,0a f ,4a d cos cos 1a 1a f 20,, tg a x ,,a x dxa f 有时,,使得,当存在即可满足,对只需取要有一致收敛,故,对要从而,则,且记也即()⎰∞+0222axdx关于0a a ≥一致收敛(2) 0a >,计算积分⎰∞+022a x dx和()⎰∞+0322axdx解:()662620462026603222202202222216a 16a 1d 814cos2cos4a 1d cos a 1cos d cos a 1a xdx2a d a 1cos d cos 11a 1a x dx ,20,, tg a x ππθθθθθθθθπθθθθπθθπππππ=⋅=+-===+==⋅=+⎪⎭⎫⎢⎣⎡∈=⎰⎰⎰⎰⎰⎰⎰∞∞则有,令十、设 ()x f 在[)∞,0上有连续的二阶导数, ()()B x f ,A x f ≤''≤. 试证明()AB 2x f ≤'.证明:利用到了一元二次函数的判别式来做的[0,)22()lim '()0'()'()max {|'()|}||,(1)||0b Taylor "()||2|||()()||'()()()|||||()22||2||(2x x f x f x f x f b f x C A f B A f x f b f b x b x b C x b x b B A x b ξ→∞∈+∞∴===≠≥-=-+-≥---⇔+-首先由于有界,。
,考试作弊将带来严重后果! 华南理工大学期末考试 《数学分析(三)》试卷 1. 考前请将密封线内各项信息填写清楚; 所有答案请直接答在试卷上(或答题纸上); .考试形式:闭卷; 本试卷共五大题,满分100分, 考试时间120分钟。
一、选择题(每小题3分,共15分) 1、以下四个命题: (a)两个二次极限都不存在,则二重极限必不存在; (b)两个二次极限存在但不相等,则二重极限必不存在; (c)两个二次极限存在且相等,则二重极限存在; (d)若两个二次极限和二重极限都存在,则它们相等; ( ) 、1 B 、2 C 、3 D 、4 、考虑二元函数),(y x f 的以下性质: ①),(y x f 在点),(00y x 处连续; ②),(y x f 在点),(00y x 处的两个偏导数连续; ③),(y x f 在点),(00y x 处可微; ④),(y x f 在点),(00y x 处的两个偏导数存在; Q P ⇒”表示可由性质P 推出性质Q ,则有( ) 、②⇒③⇒① B 、③⇒②⇒① C 、③⇒④⇒① D 、③⇒①⇒④ 3、二元函数22,(,)(0,0)(,)0,(,)(0,0)xy x y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点(0,0)处( ) A 、连续,偏导数存在; B 、连续,偏导数不存在; C 、不连续,偏导数存在; D 、不连续,偏导数不存在. 4、设)(x f 为连续函数,⎰⎰=t t y dx x f dy t F 1)()(,则=)2('F ( ) A 、2f(2) B 、f(2) C 、-f(2) D 、0 5、已知2)()(y x ydy dx ay x +++为某函数的全微分,则a 等于( ) A 、-1; B 、0; C 、1; D 、2。
二、填空题(每小题3分,共15分)
1、叙述平面点集E 的聚点的定义:____________________________________________ ______________________________________________________________________________。
2、设)sin ,(2
x y xy f z =,其中f 具有二阶连续偏导数,则y x z ∂∂∂2=__________________ ______________________________________________________________________________。
3、设),(y x y x f u -+=可微,则它的全微分du=________________________________。
4、函数y x e y x f +=),(在点(0,0)处的n 阶泰勒展开式为____________________________ ______________________________________________________________________________。
5、曲面2
2y x z +=与平面042=-+z y x 平行的切平面方程是_____________。
三、解答题(每小题6分,共36分)
1、设z xy w y x v y x u -=-=+=,,,变换方程0222222=∂∂+∂∂∂+∂∂y z y x z x
z 。
2、一页长方形白纸,要求印刷面积占2 cm A ,并使所留叶边空白为:上部与下部宽度之和为cm h ,左部与右部之和为cm r ,试确定该页纸的长)(y 和宽)(x ,使得它的总面积为最小。
3、求球面2222a z y x =++与圆柱面)0(2
2>=+a ax y x 的公共部分的体积。
4、应用对参数求导法计算:
)1|(|)cos 21ln(02<+-⎰a dx a x a π。
5、计算:⎰-+-l
dy xy y dx xy x )2()2(22,l 为2
x y =从(1,1)到(-1,1)。
6、计算曲面积分:dxdy z
dzdx y dydz x I S )1(322233-++=⎰⎰,S 是曲面
221y x z --=(0≥z )的上侧。
四、证明题:(每小题7分,共21分)
1、设),(y x f 在区域D 内连续,并且在D 内两点),(),,(111111βαN b a M 异号,则用完全位于D 内的任意的折线l 联结11,N M 时,在l 上必有一点),(y x M 满足0),(=y x f 。
2、设⎪⎩⎪⎨⎧=+≠+++=0,00,1sin )(),(22222222y x y x y x y x y x f
证明:),(),,(y x f y x f y x 存在但不连续,在(0,0)点的任何邻域中无界,但在(0,0)点可微。
3、设)(t f 当0>t 时连续,若
dt t f t )(0⎰+∞λ当b a ==λλ,时收敛,则dt t f t )(0⎰+∞λ关于λ在],[b a 上一致收敛。
五、讨论题:(第1小题6分,第2小题7分,共13分)
1、讨论函数⎰>+=
1022)0(,)()(y dx y x x yf y F 的连续性,)(x f 是]1,0[上连续且为正的函数。
2、讨论)0(20+∞<<-+∞⎰αααdx e x 的一致收敛性。