5.7 杆模型
- 格式:ppt
- 大小:562.50 KB
- 文档页数:16
杆的模型应用及受力情况分析中学物理研究问题的思想方法,虽然在课本中没有明确指出,但它已经渗透到各部分内容的叙述中,只要留心就会发现这样的事实,物理学研究问题时,往往先从大量的事实中,抽象出它们的化身———理想化模型(如描述物体的有:质点、点电荷等;描述运动的有:匀变速直线运动、匀速圆周运动、简諧振动等;描述过程的有:弹性碰撞、等温变化、等幅振荡等;描述状态的有:热学中的平衡状态、电学中的静电平衡等;描述器件的有:如单摆、理想电表、理想变压器等……),再对模型进行研究,得出有关的定义、概念、规律等知识,最后用这些规律性的知识去解决问题,这就是中学物理研究问题的基本方法。
即从实际问题分析总结得出模型研究得出规律运用解决实际问题。
因此,在解决实际问题时,能否全面的掌握已经学过的模型(条件、范围、意义等),是否能从问题所设定的情境中恰当地确认模型、正确地建立模型、熟练地应用模型是解决问题的关键。
物理学中杆是很常见的。
由于杆在实际中往往起到传递力和力矩的作用,它受到的可能是压力、拉力,有时可能是切力。
其方向可能沿杆的方向,也可能和杆有一定的夹角。
正是因为这样,实际中在没有明确给出杆的质量的情况下,我们通常将杆简化为:没有质量,不考虑粗细及形变的轻质细杆,即轻质细杆模型。
但实际问题是复杂的,在有些情况下只能将杆简化为:没有质量、没有形变,但必须考虑粗细的轻质粗杆,即轻质粗杆模型。
对杆的这两种模型来说,无论杆受力怎样,运动状态如何,总有:其合力为零;力矩的代数和为零,这是分析轻质杆受力问题的依据。
现举例分析两种模型的应用。
例1.小车上有轻质杆支架,B端固定一质量为m的小球,ADC端为铰链,D为AB的中点,CB 两点在同一水平线上,如图1所示,则1)当小车静止时,球和CD杆对AB杆的作用力各多大?2)当小车以加速度a向左运动时,球和CD杆对AB杆的作用力又怎样?分析:1)当小车静止时,系统平衡,要分析小球和CD杆对AB杆的作用力,必须先分析小球和CD杆的受力情况。
模型专题(7)杆+导轨模型【重点模型解读】“杆+导轨”模型是电磁感应问题高考命题的“基本道具”之一,也是高考的热点,考查的知识点多,题目的综合性强,物理情景富于变化,是我们复习中的难点。
“杆+导轨”模型又分为“单杆”型和“双杆”型(江苏高考基本要求单杆较多);导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂形式多变。
情景1(v0≠0)情景2(v0=0)情景三(v0=0)情景四(v0=0)说明杆cd以一定初速度v0在光滑水平轨道上滑动,质量为m,电阻不计,两导轨间距为L轨道水平光滑,杆cd质量为m,电阻不计,两导轨间距为L,拉力F恒定倾斜轨道光滑,倾角为α,杆cd质量为m,两导轨间距为L竖直轨道光滑,杆cd质量为m,两导轨间距为L示意图力学观点杆以速度v切割磁感线产生感应电动势E=BLv,电流I=BLvR,安培力F=BIL=B2L2vR。
杆做减速运动:v↓⇒F↓⇒a↓,当v=0时,a=0,杆保持静止开始时a=Fm,杆cd速度v↑⇒感应电动势E=BLv↑⇒I↑⇒安培力F安=BIL↑,由F-F安=ma知a↓,当a=0时,v最大,v m=FRB2L2开始时a=g sin α,杆cd速度v↑⇒感应电动势E=BLv↑⇒I↑⇒安培力F安=BIL↑,由mg sin α-F安=ma知a↓,当a=0时,v最大,v m=mgR sin αB2L2开始时a=g,杆cd速度v↑⇒感应电动势E=BLv↑⇒I↑⇒安培力F安=BIL↑,由mg-F安=ma知a↓,当a=0时,v最大,v m=mgRB2L2图像观点能量观点动能全部转化为内能:Q=12mv02F做的功一部分转化为杆的动能,一部分转化为内能:W F=Q+12mv m2重力做的功(或减少的重力势能)一部分转化为杆的动能,一部分转化为内能:W G=Q+12mv m2重力做的功(或减少的重力势能)一部分转化为杆的动能,一部分转化为内能:W G=Q+12mv m2情景1(v0=0)情景2(v0=0)情景3(v0=0)情景4(v0=0)说明轨道水平光滑,杆cd质量为m,电阻不计,两导轨间距为L轨道水平光滑,杆cd质量为m,电阻不计,两导轨间距为L,拉力F恒定倾斜轨道光滑,杆cd质量为m,电阻不计,两导轨间距为L竖直轨道光滑,杆cd质量为m,电阻为R,两导轨间距为L示意图力学观点S闭合,杆cd受安培力F=BLEr,a=BLEmr,杆cd速度v↑⇒感应电动势E感=BLv↑⇒I↓⇒安培力F=BIL↓⇒加速度a↓,当E感=E时,v最大,且v m=EBL开始时a=Fm,杆cd速度v↑⇒E=BLv↑,经过Δt速度为v+Δv,E′=BL(v+Δv),Δq=C(E′-E)=CBLΔv,I=ΔqΔt=CBLa,F安=CB2L2a,a=Fm+B2L2C,所以杆匀加速运动开始时a=g sinα,杆cd速度v↑⇒E=BLv↑,经过Δt速度为v+Δv,E′=BL(v+Δv),Δq=C(E′-E)=CBLΔv,I=ΔqΔt=CBLa,F安=CB2L2a,mg sin α-F安=ma,a=mg sin αm+CB2L2,所以杆匀加速运动开始时a=g,杆cd速度v↑⇒E=BLv↑,经过Δt速度为v+Δv,E′=BL(v+Δv),Δq=C(E′-E)=CBLΔv,I=ΔqΔt=CBLa,F安=CB2L2a,mg-F安=ma,a=mgm+CB2L2,所以杆匀加速运动图像观点能量观点电源输出的电能转化为动能:W电=12mv m2F做的功一部分转化为动能,一部分转化为电场能:W F=12mv2+E C重力做的功一部分转化为动能,一部分转化为电场能:W G=12mv2+E C重力做的功一部分转化为动能,一部分转化为电场能:W G=12mv2+E C【例1】如图所示,间距L=1.0m的固定平行光滑金属导轨平面与水平面成θ=37°角,导轨上端接有阻值为R=1.0Ω的电阻,整个装置处在磁感应强度大小为B=1.0T,方向垂直于导轨平面向下的匀强磁场中。
2.常见双杆情景及解题思路常见情景(以水平光滑导轨为例) 过程分析三大观点的应用双杆切割式杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相同的速度匀速运动,对系统动量守恒,对其中某杆适用动量定理动力学观点:求加速度能量观点:求焦耳热动量观点:整体动量守恒求末速度,单杆动量定理求冲量、电荷量不等距导轨杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,两杆以不同的速度做匀速运动,所围的面积不变,v1L1=v2L2动力学观点:求加速度能量观点:求焦耳热动量观点:动量不守恒,可分别用动量定理联立末速度关系求末速度双杆切割式a PQ减小,a MN增大,当a PQ=a MN时二者一起匀加速运动,存在稳定的速度差动力学观点:分别隔离两导体棒, F-B2L2△vR总=m PQ a,B2L2△vR总=m MN a,求加速度1.如图所示,宽为L的两固定足够长光滑金属导轨水平放置,空间存在竖直向上的匀强磁场,磁感应强度大小为B。
质量均为m、电阻值均为r的两导体棒ab和cd静止置于导轨上,其间距也为L,现给cd一向右的初速度v0,对它们之后的整个运动过程说法正确的是( )A.ab的加速度越来越大,cd的加速度越来越小B.cd克服安培力所做的总功为14mv2C.通过ab的电荷量为mv02BLD.两导体棒间的距离最终变为L+mv0rB2L22.竖直放置的平行光滑导轨,其电阻不计,磁场方向如图所示,磁感应强度B=0.5T,导体杆ab和cd的长均为0.2m,电阻均为0.1Ω,所受重力均为0.1N,现在用力向上推导体杆ab,使之匀速上升(与导轨接触始终良好),此时cd恰好静止不动,ab上升时下列说法正确的是( )A.ab受到的推力大小为2NB.ab向上的速度为2m/sC.在2s内,推力做功转化的电能是0.4JD.在2s内,推力做功为0.6J3.如图所示,相距为L 的两条足够长的平行金属导轨右端连接有一定值电阻R ,整个装置被固定在水平地面上,整个空间存在垂直于导轨平面向下的匀强磁场,磁感应强度大小为B ,两根质量均为m ,电阻都为R ,与导轨间的动摩擦因数都为μ的相同金属棒MN 、EF 垂直放在导轨上。
杆模型知识点总结一、概念杆模型是指在力学中用于研究棒状物体受力情况的一种模型。
在杆模型中,棒状物体通常被视为无质量、无弹性的理想化对象,用来分析棒状物体在受外力作用下的受力情况和运动规律。
杆模型是力学学科中的一个重要概念,广泛应用于工程技术、物理学、工业设计、建筑等领域。
二、杆模型的基本属性1. 无质量在杆模型中,棒状物体通常被假设为无质量的对象。
这是为了简化问题的分析,将物体的质量对力学分析的影响忽略掉。
由于棒状物体的质量与受力情况并无直接的关系,因此可以将棒状物体视为无质量的理想化对象。
2. 刚性杆模型中的物体通常被视为刚体,即在受力情况下不发生形变的物体。
这是为了使问题的分析更加简化,忽略掉物体的变形对受力情况的影响。
在杆模型中,通常假设棒状物体是刚性的,使得分析更为方便。
3. 无弹性在杆模型中,棒状物体通常被假设为无弹性的。
这意味着在受到外力作用后,棒状物体不会发生形变或者变形极小,忽略掉物体的变形对受力情况的影响。
这样假设可以使问题的分析更加简化,减少了变形引起的复杂计算。
三、杆模型的应用1. 物体受力分析杆模型广泛应用于物体受力分析的问题中。
通过建立杆模型,可以便于分析物体受力的情况,包括受到的外力和支持反力等。
利用杆模型,可以清晰地了解物体受力的方向和大小,从而进行有效的受力分析。
2. 结构设计在工程技术和建筑领域中,杆模型常常用于结构设计中。
通过建立杆模型,可以对结构的受力情况进行分析和计算,以确保结构在受力情况下能够满足设计要求,保证结构的稳定和安全。
3. 力的传递杆模型在力的传递问题中也有着重要的应用。
通过建立杆模型,可以分析和计算力的传递过程,包括力的大小、方向和传递路径等。
通过杆模型的分析,可以有效地设计和优化力的传递系统。
四、杆模型的基本原理1. 受力分析杆模型的基本原理之一是受力分析。
通过建立杆模型,可以清晰地了解物体受力的情况,包括受到的外力和支持反力等。
在受力分析过程中,可以利用受力平衡的原理,确定物体受力的方向和大小,实现对受力情况的全面分析。
第五章 杆系结构的有限元法 5.1 引言杆系结构是工程中应用较为广泛的结构体系,包括平面或空间形式的梁、桁架、刚架、拱等。
其组成形式虽然复杂多样,但用计算机进行分析时却较为简单。
杆系结构中的每个杆件都是一个明显的单元。
杆件的两个端点自然形成有限元法的节点,杆件与杆件之间则用节点相连接。
显然,只要建立起杆件两端位移与杆端力之间的关系,则整体平衡方程的建立与前几章完全相同。
杆端位移与杆端力之间的关系,可用多种方法建立,包括前面几章一直采用的虚功原理,但是采用材料力学、结构力学的某些结论,不仅物理概念清晰、直观,而且推导过程简单明了。
因此,本章将采用这种方法进行单元分析。
至于整体平衡方程的建立,则和前面几章所讲的方法一样,即借助于单位定位向量,利用单元集成法进行。
5.2 平面桁架的有限元分析平面桁架在计算上有以下几个特点: 1. 杆件的每个节点仅有两个线位移; 2. 杆件之间的连接为理想铰,即在节点处各杆件可相对自由转动,且杆件轴线交于一点。
3. 外载荷均为作用于节点的集中力。
由于以上特点,所以在理论上各杆件只产生轴向拉、压力,截面应力分布均匀,材料可得到充分利用,因此桁架结构往往用于大跨结构。
5.2.1 局部坐标系下的单元刚度矩阵从平面桁架中任取一根杆件作为单元,称作桁架单元,单元长为L ,横截面面积为A ,图5.1。
两端节点分别用i 和j 表示,规定从i 到j 的连线方向为局部坐标x 轴,垂直于x 的方向为y 轴。
图5.1由于桁架中各杆只产生轴向力和轴向变形,所以节点i 和j 只发生沿x 方向的位移,用i u 和j u 表示,相应的杆端轴力分别用xi F 和xj F 表示。
由虎克定律可推得)()()(j i i j xj j i xi u u L EA u u L EA F u u LEAF --=-=-=将这两个式子写成矩阵形式,就是e j i exj xi u u L EA LEA L EA L EA F F ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧ (5.1)显然,在局部坐标系下,i 、j 两节点沿y 轴方向的位移0==j i v v ,在y 轴方向的节点力0==yj yi F F 。
轻绳模型、轻杆模型和轻弹簧模型建议用时:50分钟考点序号考点题型分布考点1轻绳模型10单选考点2轻杆模型7单选考点3轻弹簧模型4单选+3多选考点01:轻绳模型(10单选)一、单选题1(2023·甘肃·统考一模)如图所示,一轻绳的一端系在竖直墙上M点,轻绳穿过一轻质光滑圆环O,另一端系一质量为m的物体A。
现用力F拉住轻环上一点,使物体A从图中虚线位置缓慢上升到实线位置。
则在此过程中,绳中张力F T、力F和力F与水平方向夹角θ的变化情况正确的是()A.F T保持不变,F保持不变,夹角θ逐渐减小B.F T保持不变,F逐渐增大,夹角θ逐渐增大C.F T逐渐增大,F逐渐减小,夹角θ逐渐减小D.F T逐渐减小,F保持不变,夹角θ逐渐增大【答案】B【详解】F T等于物体A的重力,故保持不变;因为圆环两边绳子的拉力相等,故当物体A从图中虚线位置缓慢上升到实线位置时,两边绳子的夹角减小,由力的合成知识可知,两边绳子的合力变大,即F变大;因F 的方向总是在两边绳子夹角的平分线向上的方向,故当物体A从图中虚线位置缓慢上升到实线位置时,夹角θ逐渐增大。
故选B。
2(2023·全国·高三专题练习)如图所示,光滑半圆形轨道MAN固定在竖直平面内,MN为水平直径,一轻质小环A套在轨道上,轻绳一端固定在M点,另一端穿过小环系一质量为m的小球恰好静止在图示位置,不计所有摩擦,重力加速度大小为g。
下列说法正确的是()mg B.轻绳对M点拉力的大小为2mgA.轻绳对M点拉力的大小为32C.轻绳对小环A作用力的大小为3mgD.轻绳对小环A作用力的大小为2mg【答案】C【分析】本题考查共点力的平衡,从重物端开始受力分析,得到绳上的力后对轻环受力分析即可。
【详解】AB.因为小球恰好静止,绳上拉力等于小球重力,轻绳上拉力处处相等,轻绳对M点的拉力为mg,所以AB错误;CD.轻环受轻绳的两股力以及轨道的支持力共三个力而平衡,绳上的两股力的合力与环的支持力等大反向,所以绳的合力沿AO方向,又绳上的力相等,所以AO是两股绳夹角的角平分线,所以∠OAM=30°,所以合力F=2mg cos30°=3mg,所以C正确,D错误。
绳(杆)端速度分解模型1.模型特点沿绳(杆)方向的速度分量大小相等. 2.思路与方法合速度→绳(杆)拉物体的实际运动速度v分速度→⎩⎪⎨⎪⎧其一:沿绳(杆)的速度v 1其二:与绳(杆)垂直的分速度v 2方法:v 1与v 2的合成遵循平行四边形定则. 3.解题的原则把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解.常见的模型如图7所示.关联体:通过绳子、轻杆或者其他之间联系的两个相互作用的物体 【核心方法点拨】(1)如果物体是通过杆或者绳子关联,由于高中研究的绳都是不可伸长的,杆都是不可伸长和压缩的,即绳或杆的长度不会改变,所以解题的原则是:把物体的实际速度分解为垂直于绳(或杆)和平行于绳(或杆)的两个分量,根据沿绳(杆)方向的分速度大小相同求解.(2)若两物体是通过接触面接触的,则将物体的实际速度沿平行与垂直接触面方向进行分解,在垂直接触面方向上速度相等题型一 通过轻绳关联1.(2021·安徽·定远县育才学校高一阶段练习)如图所示,物体A 和B 的质量均为m ,分别与跨过定滑轮的轻绳连接(不计绳与滑轮、滑轮与轴之间的摩擦)。
现用水平变力F 拉着物体A 沿水平方向向右做匀速直线运动。
则下列说法中正确的是( )A .物体B 做匀速直线运动 B .物体B 做加速直线运动C .绳子对物体B 的拉力等于mgD .绳子对物体B 的拉力小于mg2.(2021·河南·濮阳南乐一高高二开学考试)如图所示,已知m A =3m B ,C 为内壁光滑、半径为R 的半圆形轨道,D 为定滑轮,开始时A 、B 均处于静止状态,释放后,A 沿圆弧轨道下滑,若已知A 球下滑到最低点时的速度为v ,则此时B 的速度为( )A vB .12v C v D .2v3.(2022·广东高州·高一期末)如图所示绳子通过固定在天花板上的定滑轮,左端与套在固定竖直杆上的物体A 连接,右端与放在水平面上的物体B 相连,到达如图所示位置时,绳与水平面的夹角分别为夹角为37︒、53︒,两物体的速率分别为A v 、B v ,且此时20m /s 3+=A B v v ,3sin 375︒=、4cos375︒=,则A v 的大小为( )A .10m/s 3 B .4m/s 3C .2m/sD .4m/s4.(多选)(2022·山东·威海市教育教学研究中心高一期末)如图所示,不可伸长的轻绳绕过光滑定滑轮C 与物体A 连接,绳的另一端和套在固定竖直杆上的物体B 连接,开始时,BC 连线沿水平方向。