电磁感应定律单杆模型ppt课件
- 格式:ppt
- 大小:500.50 KB
- 文档页数:24
第87讲电磁感应中的单杆模型1.(2022•上海)宽L=0.75m的导轨固定,导轨间存在着垂直于纸面且磁感应强度B=0.4T的匀强磁场。
虚线框Ⅰ、Ⅱ中有定值电阻R0和最大阻值为20Ω的滑动变阻器R。
一根与导轨等宽的金属杆以恒定速率向右运动,图甲和图乙分别为变阻器全部接入和一半接入时沿abcda方向电势变化的图像。
求:(1)匀强磁场的方向;(2)分析并说明定值电阻R0在Ⅰ还是Ⅱ中,并且R0大小为多少:(3)金属杆运动时的速率;(4)滑动变阻器阻值为多少时变阻器的功率最大?并求出该最大功率P m。
【解答】解:(1)a点电势比d点电势高,说明导体棒上端为电源正极,导体棒切割磁感线产生感应电流向上,根据右手定则判断得出匀强磁场的方向垂直纸面向里(2)滑动变阻器从全部接入到一半接入电路,回路里电流变大,定值电阻R0上电压变大,图甲的U cd小于图乙的U cd,可以推理得定值电阻在Ⅰ内,滑动变阻器在Ⅱ根据欧姆定律得:甲图中回路电流I甲=1.2R=1.220A=0.06A,乙图中回路电流I乙=1.0R2=1.010A=0.1A甲图中定值电阻R0上电压φ0﹣1.2=0.06R乙图中定值电阻R0上电压φ0﹣1.0=0.1R联立解得:R=5Ω,φ0=1.5V(3)金属杆产生的感应电动势E=BLv,E=φ0联立解得v=φ0BL= 1.50.4×0.75m/s=5m/s(4)根据甲乙两图可知导体棒电阻不计,由闭合电路欧姆定律得I=E R0+R滑动变阻器上的功率p=I2R=E2R(R0+R)2= 2.2525R+R+10,当R=5Ω时,滑动变阻器有最大功率P m=0.1125W答:(1)匀强磁场的方向垂直纸面向里(2)定值电阻R0在Ⅰ中,定值电阻R0=5Ω(3)金属杆运动时的速率为5m/s(4)滑动变阻器阻值为5Ω时变阻器的功率最大,最大功率为0.1125W一.知识回顾1.力学对象和电学对象的相互关系2.能量转化及焦耳热的求法(1)能量转化其他形式的能量――→克服安培力做功电能――→电流做功焦耳热或其他形式的能量(2)求解焦耳热Q的三种方法(纯电阻电路)3.单杆模型质量为m、电阻不计的单杆ab 以一定初速度v0在光滑水平轨道上滑动,两平行导轨间距为l 轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为l轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为l,拉力F恒定轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为l,拉力F恒定导体杆做加速度越来越小的减速运动,最终杆静止当E感=E时,v最大,且v m=EBl,最后以v m匀速运动当a=0时,v最大,v m=FRB2l2,杆开始匀速运动Δt时间内流入电容器的电荷量Δq=CΔU=CBlΔv电流I=ΔqΔt=CBlΔvΔt=CBla安培力F安=IlB=CB2l2aF-F安=ma,a=Fm+B2l2C,所以杆以恒定的加速度匀加速运动电能转化为动能外力做功转化为外力做功转化为二.例题精析题型一:单杆+电阻模型之动态分析(多选)例1.如图所示,MN和PQ是两根互相平行、竖直放置的足够长的光滑金属导轨,电阻不计,匀强磁场垂直导轨平面向里。
电磁感应中的单双杆问题一、单杆问题(一)与动力学相结合的问题1、水平放置的光滑金属轨道上静止一根质量为m的金属棒MN,电阻为R,左端连接一电动势为E,内阻为r的电源,其他部分及连接处电阻不计,试求:金属棒在轨道上的最大速度2、水平放置的光滑金属轨道上静止一根质量为m的金属棒MN,电阻为R,左端连接一电阻为R,MN在恒力F的作用下从静止开始运动,其他部分及连接处电阻不计,试求:金属棒在轨道上的最大速度3、金属导轨左端接电容器,电容为C,轨道上静止一长度为L的金属棒cd,整个装置处于垂直纸面磁感应强度为B的匀强磁场当中,现在给金属棒一初速度v,试求金属棒的最大速度与能量相结合的题型倾斜轨道与水平面夹角为 ,整个装置处于与轨道相垂直的匀强磁场当中,导轨顶端连有一电阻R,金属杆的电阻也为R其他电阻可忽略,让金属杆由静止释放,经过一段时间后达到最大速度V,且在此过程中电阻上生成的热量为Q。
m求:(1)金属杆达到最大速度时安培力的大小(2)磁感应强度B为多少(3)求从静止开始到达到最大速度杆下落的高度2.(20分)如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R。
在MN上方及CD下方有水平方向的匀强磁场I和II,磁感应强度大小均为B。
现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,两平行轨道中够长。
已知导体棒ab 下落r /2时的速度大小为v 1,下落到MN 处的速度大小为v 2。
(1)求导体棒ab 从A 下落r /2时的加速度大小。
(2)若导体棒ab 进入磁场II 后棒中电流大小始终不变,求磁场I 和II 之间的距离h 和R 2上的电功率P 2。
(3)当导体棒进入磁场II 时,施加一竖直向上的恒定外力F =mg 的作用,求导体棒ab 从开始进入磁场II 到停止运动所通过的距离和电阻R 2上所产生的热量。
法拉第电磁感应定律——单双杆模型单双杆模型一、知识点扫描1.无力单杆(阻尼式)整个回路仅有电阻,导体棒以一定初速度垂直切割磁感线,除安培力外不受其他外力。
根据右手定则确定电流方向,左手定则确定安培力方向,画出受力分析图。
这种情况下安培力方向与速度方向相反。
某时刻下导体棒的速度为v,则感应电动势E=BLv,感应电流I= E/ (R+r),安培力大小F=BLI。
根据牛顿定律,可知导体棒做加速度逐渐减小的减速运动,最终减速到零。
根据牛顿定律,整个过程中通过任一横截面的电荷量q=BLmv/(R+r)。
实际上也可通过牛顿定律求解电荷量:BLq=mv。
从能量守恒的角度出发,即导体棒减少的动能转化成整个回路产生的热量。
2.___单杆(发电式)整个回路仅有电阻,导体棒在恒力F作用下从静止出发垂直切割磁感线。
根据右手定则确定电流方向,左手定则确定安培力方向,画出受力分析图。
这种情况下安培力方向与速度方向相反。
某时刻下导体棒的速度为v,则感应电动势E=BLv,感应电流I=E/ (R+r),安培力大小F=BLI。
根据牛顿定律,可知导体棒做加速度逐渐减小的加速运动,当a=0时有最大速度,v_max=FL/(B^2L^2r)。
这种情况下仍有q=BLmv/ (R+r)。
电磁感应实验是物理学中的重要实验之一,通过实验可以研究电磁感应现象。
本文将介绍三种不同的电磁感应实验,分别是不含容单杆、含容单杆和含源单杆实验。
1.不含容单杆实验在不含容单杆实验中,电、电阻和导体棒通过光滑导轨连接成回路,导体棒以一定的初速度垂直切割磁感线,除安培力外不受其他外力。
当导体棒向右运动时,切割磁感线产生感应电动势,根据右手定则知回路存在逆时针的充电电流,电两端电压逐渐增大。
而又根据左手定则知导体棒受向左的安培力,因此导体棒做减速运动,又因E=BLv可知产生的感应电动势逐渐减小,当感应电动势减小至与电两端相同时,不再向电充电,充电电流为零,导体不受安培力,做匀速直线运动。
“单杆+导轨”模型1. 单杆水平式(导轨光滑) 物理模型动态分析 设运动过程中某时刻棒的速度为v ,加速度为a =F m -错误!,a 、v 同向,随v 的增加,a 减小,当a =0时,v 最大,I =错误!恒定收尾状态 运动形式 匀速直线运动力学特征 a =0,v 最大,v m =错误! (根据F=F 安推出,因为匀速运动,受力平衡)电学特征I 恒定注:加速度a 的推导,a=F 合/m (牛顿第二定律),F 合=F —F 安,F 安=BIL ,I=E/R整合一下即可得到答案。
v 变大之后,根据 上面得到的a 的表达式,就能推出a 变小这里要注意,虽然加速度变小,但是只要和v 同向,就是加速运动,是a 减小的加速运动(也就是速度增加的越来越慢,比如1s 末速度是1,2s 末是5,3s 末是6,4s 末是6。
1 ,每秒钟速度的增加量都是在变小的)2。
单杆倾斜式(导轨光滑)物理模型动态分析 棒释放后下滑,此时a =g sin α,速度v ↑E=BLv↑I=错误!↑错误!F=BIL↑错误!a↓,当安培力F=mg sin α时,a=0,v最大注:棒刚释放时,速度为0,所以只受到重力和支持力,合力为mgsin α收尾状态运动形式匀速直线运动力学特征a=0,v最大,v m=错误!(根据F=F安推出)电学特征I恒定【典例1】如图所示,足够长的金属导轨固定在水平面上,金属导轨宽度L=1.0 m,导轨上放有垂直导轨的金属杆P,金属杆质量为m=0。
1 kg,空间存在磁感应强度B=0。
5 T、竖直向下的匀强磁场。
连接在导轨左端的电阻R=3.0 Ω,金属杆的电阻r=1。
0 Ω,其余部分电阻不计。
某时刻给金属杆一个水平向右的恒力F,金属杆P由静止开始运动,图乙是金属杆P运动过程的v-t图象,导轨与金属杆间的动摩擦因数μ=0.5。
在金属杆P运动的过程中,第一个2 s内通过金属杆P的电荷量与第二个2 s内通过P的电荷量之比为3∶5。
电磁感应中的“单杆+电阻(电容,电源)+导轨”类问题(3大模型)电磁感应“杆+导轨”模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,从力学、图像、能量三种观点出发,分角度讨论如下:模型一单杆+电阻+导轨模型× × × × × × × × ×× × × ×× × × × ×× ×v θ cdabM Nl1、[母题] (2020·淮安模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。
整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。
重力加速度为g ,导轨电阻不计,杆与导轨接触良好。
求: (1) 杆cd 下滑的最大加速度和最大速度; (2)、速度为v (小于最大速度)时的加速度 (3)上述过程中,杆上产生的热量。
(4)[变式] 若已知金属杆与导轨之间的动摩擦因数为μ。
现用沿导轨平面向上的恒定外力F 作用在金属杆cd 上,使cd 由静止开始沿导轨向上运动,求cd 的最大加速度和最大速度。
2、如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l =0.5 m ,左端接有阻值R =0.3 Ω的电阻。
一质量m =0.1 kg 、电阻r =0.1 Ω的金属棒MN 放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B =0.4 T 。
棒在水平向右的外力作用下由静止开始以a =2 m/s 2的加速度做匀加速运动,当棒的位移x =9 m 时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q 1∶Q 2=2∶1。