电工学-第二章习题答案
- 格式:ppt
- 大小:2.15 MB
- 文档页数:64
精选全文完整版第2章 习题解答(部分)2.3.3 计算图2.13中的电流 I 3。
解: 用电源等值互换法将电流源变换成电压源,将电阻R 2和R 3合并成电阻R 23,其中 V R I U R S S 2125.043,2=⨯=⨯=Ω=参考方向如图2.34所示。
求电路中电流IA R R R U U I S 2.115.012143,211=+++=+++= I 即为原电路中R 1上流过的电流,用分流公式,可求原电路中I 3A I R R R I 6.02.11113223=⨯+=⨯+= 2.4.1 图2.16是两台发电机并联运行的电路。
已知E 1=230V , R 01=0.5Ω,E 2=226V , R 02=0.3 Ω,负载电阻R L =5.5Ω,试分别用支路电流法和结点电压法求各支路电流 。
解:(1)用支路电流法:各支路电流参考方向已画在图2.16中。
列结点电压方程 L I I I =+21列回路电压方程S Ω 图 2.13 习题2.3.3的图U S U 图解 2.34101202图2.16 习题2.4.1的图L L 0222LL 0111R I R I E R I R I E +=+=联立求解上述三各方程式组成的方程组,可得A 40A2021===L I I I验算:按非独立回路方程进行02201121R I R I E E -=-代入数据443.0205.020226230==⨯-⨯=- (正确!)(2)用结点电压法求解:先求端电压U ,有V 2205.513.015.013.02265.02301110201022011=+++=+++=L R R R R E R E U A 405.0220A 205.0220226A 205.022023002220111====-=-==-=-=L L R U I R U E I R U E I 结果与上相同。
2.5.1 试用结点电压法求图2.18所示电路中的各支路电流解:在原图2.18中用O 和O ’标明两个结点,则有A 5.0505025V 505015015015025501005025a O ,O'-=-==++++=I U A 5.0505025A 15050100c b -=-==-=I I 2.6.1 用叠加原理计算图2.19中各支路的电流。
基础课程教学资料第二章习题2-1 图2-1所示的电路中,U S=1V,R1=1Ω,I S=2A.,电阻R消耗的功率为2W。
试求R的阻值。
2-2 试用支路电流法求图2-2所示网络中通过电阻R3支路的电流I3及理想电流源两端的电压U。
图中I S=2A,U S=2V,R1=3Ω,R2=R3=2Ω。
2-3 试用叠加原理重解题2-2.2-4再用戴维宁定理求题2-2中I3。
2-5 图2-3所示电路中,已知U S1=6V,R1=2Ω,I S=5A,U S2=5V,R2=1Ω,求电流I。
2-6 图2-4所示电路中,U S1=30V,U S2=10V,U S3=20V,R1=5kΩ,R2=2kΩ,R3=10kΩ,I S=5mA。
求开关S在位置1和位置2两种情况下,电流I分别为多少?2-7 图2-5所示电路中,已知U AB=0,试用叠加原理求U S的值。
2-8 电路如图2-6所示,试用叠加原理求电流I。
2-9 电路如图2-7所示,试用叠加原理求电阻R4上电压U的表达式。
2-10电路如图2-8所示,已知R1=Ω,R2=R3=2Ω,U S=1V,欲使I=0,试用叠加原理确定电流源I S的值。
2-11 画出图2-9所示电路的戴维宁等效电路。
2-12 图2-10所示的电路接线性负载时,U 的最大值和I的最大值分别是多少?2-13 电路如图2-11所示,假定电压表的内阻无穷大,电流表的内阻为零。
当开关S处于位置1时,电压表的读数为10V,当S处于位置2时,电流表的读数为5mA。
试问当S处于位置3SHI 4,电压表和电流表的读数各为多少?2-14 图2-12所示电路中,各电源的大小和方向均未知,只知每个电阻均为6Ω,又知当R=6Ω时,电流I=5A。
今欲使R支路电流I=3A,则R应该多大?2-15 图2-13所示电路中,N为线性有源二端网络,测得AB之间电压为9V,见图(a);若连接如图(b)所示,可测得电流I=1A。
现连接如图(c)所示形式,问电流I为多少?2-16 电路如图2-14所示,已知R1=5Ω时获得的功率最大,试问电阻R是多大?本章小结1、支路电流法是分析和计算电路的基本方法,适用于任何电路。
《电工学》作业答案第二章 2-9解:变换过程如图所示,解得I 4 = 2A 。
2-10解:对结点a 列KCL 方程1230I I I对左、右边的网孔列KVL 方程1122S1S20R I R I U U 2233S2S30R I R I U U将数据代入上述方程,联立求解方程组12312230124243204432120I I I I I I I解得1231A 5A 6A I I I ,, 2-11解:对结点a 和b 列KCL 方程13S1S223S2S300I I I I I I I I对回路abca 列KVL 方程22S 11330R I U R I R I将数据代入上述方程,联立求解方程组132321362023022420I I I I I I I解得1232A 1A 2A I I I ,,2-12 解:根据两个结点电路中结点电压方程的一般形式得S1S2S3123a 12312612346V 6V 111111346U U U R R R U R R R 电流I 3可用欧姆定律求得a S333612A 3A 6U U I R2-14解:(a)电路图; (b)电压源U S 单独作用的电路; (c)电流源I S 单独作用的电路电压源U S1单独作用时,将U S2短路,电路如 (b)所示S1123123321232312318A 3.6A 6336333.6A 1.2A 6363.6A 2.4A63U I R R R R R R I I R R R I I R R电压源U S2单独作用时,将U S1短路,电路如图 (c)所示S2213213312131321315A 2A 3362332A 1A3332A 1A33U I R R R R R R I I R R R I I R RU S 和I S 共同作用时111222333 3.61A 2.6A 1.22A 0.8A 2.41A 3.4A I I I I I I I I I 2-16解:(a)I S1单独作用的电路; (b)I S2单独作用的电路; (c)U S 单独作用的电路电流源I S1单独作用时,电路如 (a)所示2S12333A 1.8A 32R I I R R电流源I S2单独作用时,电路如 (b)所示3S22325A 2A 32R I I R R电压源U S2单独作用时,电路如 (c)所示S 2315A 3A 32U I R RI S1、I S1和U S 共同作用时1.823A 6.8A I I I I2-19 解:(a) 求开路电压的电路; (b)求除源电阻的电路; (c) 戴维南等效电路求开路电压的等效电路如 (a)所示。
电工学第二章习题一、填空题1. 两个均为40F μ的电容串联后总电容为 80 F μ,它们并联后的总电容为 20 F μ。
2. 表征正弦交流电振荡幅度的量是它的 最大值 ;表征正弦交流电随时间变化快慢程度的量是 角频率ω ;表征正弦交流电起始位置时的量称为它的 初相 。
三者称为正弦量的 三要素 。
3. 电阻元件上任一瞬间的电压电流关系可表示为 u = iR ;电感元件上任一瞬间的电压电流关系可以表示为dtdiLu =L ;电容元件上任一瞬间的电压电流关系可以表示为dtduCi =C 。
由上述三个关系式可得, 电阻 元件为即时元件; 电感 和 电容 元件为动态元件。
4. 在RLC 串联电路中,已知电流为5A ,电阻为30Ω,感抗为40Ω,容抗为80Ω,那么电路的阻抗为 50Ω ,该电路为 容 性电路。
电路中吸收的有功功率为 750W ,吸收的无功功率又为 1000var 。
二、选择题1. 某正弦电压有效值为380V ,频率为50Hz ,计时始数值等于380V ,其瞬时值表达式为( B )A 、t u 314sin 380=V ;B 、)45314sin(537︒+=t u V ;C 、)90314sin(380︒+=t u V 。
2. 一个电热器,接在10V 的直流电源上,产生的功率为P 。
把它改接在正弦交流电源上,使其产生的功率为P/2,则正弦交流电源电压的最大值为( D ) A 、7.07V ; B 、5V ; C 、14V ; D 、10V 。
3. 提高供电电路的功率因数,下列说法正确的是( D )A 、减少了用电设备中无用的无功功率;B 、减少了用电设备的有功功率,提高了电源设备的容量;C 、可以节省电能;D 、可提高电源设备的利用率并减小输电线路中的功率损耗。
4. 已知)90314sin(101︒+=t i A ,︒+=30628sin(102t i )A ,则( C )A 、i1超前i260°;B 、i1滞后i260°;C 、相位差无法判断。
电工学-电工技术(艾永乐)课后答案第二章第二章 电阻电路的分析本章的主要任务是学习电阻电路的分析计算方法,并运用这些方法分析计算各种电阻电路中的电流、电压和功率。
本章基本要求1. 正确理解等效电路的概念,并利用等效变换化简电路。
2. 掌握电阻串、并联等效变换、电源的等效变换。
3. 电阻电路的分压公式和分流公式的应用。
4. 运用支路电流法和结点电压法分析计算电路。
5. 运用叠加定理分析计算电路。
6. 熟练应用戴维宁定理分析计算电路。
7. 应用戴维宁定理求解电路中负载电阻获得的最大功率。
8. 学会含有受控源电路的分析计算。
9. 了解非线性电阻电路的分析方法。
本章习题解析2-1 求习题2-1所示电路的等效电阻,并求电流I 5。
3Ω2Ω2Ω4Ω4Ω6Ω1ΩI 5 a+-3V b 3Ω2Ω2ΩΩ6Ω1ΩI 5a+-3V解:电路可等效为题解2-1图由题解2-1图,应用串并联等效变换得5.1)6//)12(2//2//(3ab =++=R Ω由分流公式3136********=⋅+++⋅+=ab R I A 2-2 题2-2图所示的为变阻器调节分压电路。
50=L R Ω,电源电压220=U V ,中间环节是变阻器。
变阻器的规格是100Ω 3A 。
今把它平题解2-1题2-1图分为4段,在图上用a 、b 、c 、d 、e 等点标出。
试求滑动触点分别在a 、b 、c 、d 四点是,负载和变阻器所通过的电流及负载电压,并就流过变阻器的电流与其额定电流比较来说明使用时的安全问题。
+-Ud ab c e L+-U L I L解:1)a 点: 0L =U 0L =I 2.2100220ea ea ===R U I A 2) c 点:75eq =R Ω 93.275220eq ec ===R U I A 47.121ec L ==I I A 5.73L =U V3) d 点:55eq =R Ω 455220eq ed ===R U I A 4.2L =I A 6.1da =I A 120L =U V4) e 点: 2.2100220ea ea ===R U I A 4.450220L ==I A 220L =U V 2-3 试求习题2-3ab 之间的输入电阻。
× R R R 2 电路的分析方法2.1 电阻串并联接的等效变换2.1.1在 图1所 示 的 电 路 中 ,E = 6V ,R 1 = 6Ω,R 2 = 3Ω,R 3 = 4Ω,R 4 =3Ω,R 5 = 1Ω,试求I 3 和I 4。
[解]图 1: 习题2.1.1图本 题 通 过 电 阻 的 串 联 和 并 联 可 化 为 单 回 路 电 路 计 算 。
R 1 和R 4并 联 而 后 与R 3 串联,得出的等效电阻R 1,3,4 和R 2并联,最后与电源及R 5组成单回路电路, 于是得出电源中电流EI =R 2 (R 3 +R 1R 4 )R 5 +R 1 + R 4R 1R 4R 2 + (R 3 +1 6) + R 4=3 (4 +6 × 3 )1 +6 + 3 6 × 3= 2A 3 + (4 + )6 + 3而后应用分流公式得出I 3和I 4I 3 =R 2R 1 R 4I = 36 × 3 2× 2A = 3 A R 2 + R 3 + 1+ R 4 3 + 4 + 6 + 3 R 16 2 4 I 4 = − 1 + R 4I 3 = − 6 + 3 × 3 A = − 9 AI4的实际方向与图中的参考方向相反。
2.1.2有 一 无 源 二 端 电 阻 网 络[图2(a )], 通 过 实 验 测 得 : 当U = 10V 时 ,I =2A ;并已知该电阻网络由四个3Ω的电阻构成,试问这四个电阻是如何连接的? [解]图 2: 习题2.1.2图 按题意,总电阻为U R = = I 10Ω = 5Ω2四个3Ω电阻的连接方法如图2(b )所示。
2.1.3在图3中,R 1 = R 2 = R 3 = R 4 = 300Ω,R 5 = 600Ω,试求开关S 断开和闭和 时a 和b 之间的等效电阻。
[解]图 3: 习题2.1.3图 当开关S 断开时,R 1与R 3串联后与R 5 并联,R 2与R 4 串联后也与R 5并联,故U = × 5 = U = × 5 = 5 有R ab = R 5//(R 1 + R 3)//(R 2 + R 4 )1=1600 1 + +300 + 300 1 300 + 300= 200 Ω当S 闭合时,则有R ab = [(R 1//R 2) + (R 3//R 4 )]//R 51=1R +R 1 R 2 R 1 + R 2=1 +1 R 3 R 4 +R 3 + R 411 600 300 × 300 +300 × 300= 200 Ω300 + 300 300 + 3002.1.5[图4(a)]所示是一衰减电路,共有四挡。
第二章 电路的分析方法2.1.1 在图2.01的电路中,V 6=E ,Ω=61R ,Ω=32R ,Ω=43R ,Ω=34R ,Ω=15R 。
试求3I 和4I 。
4I ↓图2.01解:图2.01电路可依次等效为图(a )和图(b )。
R 3R 1R(b)Ω=+×=+×=23636414114R R R R R Ω=+++×=+++×=2243)24(3)(14321432R R R R R R R A 22165=+=+=R R E IA 322363)(214323=×+=++=I R R R R IA 943263631414−=×+−=+−=I R R R I2.3.3 计算图2.12中的电流3I 。
Ω=1R A2S =图2.12解:根据电压源与电流源的等效变换,图2.12所示电路可依次等效为图(a )和图(b ),由图(b )可求得A 2.15.023=+=I由图(a )可求得:A 6.02.121213=×==I IΩ=1R V22=Ω=14R(b)Ω=12R2.6.1 在图2.19中,(1)当将开关S 合在a 点时,求电流1I ,2I 和3I ;(2)当将开关S 合在b 点时,利用(1)的结果,用叠加定理计算电流321,I I I 和 。
I图2.19I (a)I (b)解:(1)当将开关S 合在a 点时,图2.19所示电路即为图(a ),用支路电流法可得:=+=+=+12042130423231321I I I I I I I 解得:===A 25A 10A 15321I I I(2)开关S 合在b 点时,利用叠加原理图2.19所示电路可等效为图(a )和图(b ),其中图(a )电路中130V 和120V 两个电压源共同作用时所产生的电流已在(1)中求得,即:A 151=,I A 102=,I A 253=,I由图3(b )可求得:A 642422202=+×+=,,I A 464241−=×+−=,,IA26422=×+=则:A 11415111=−=+=,,,I I IA 16610,222=+=+=,,I I IA 27225333=+=+=,,,I I I2.6.2 电路如图2.20(a )所示,V 10ab ,,V 124321=====U R R R R E 。