高三数学期末复习题.doc
- 格式:doc
- 大小:159.53 KB
- 文档页数:9
北京市顺义区2021届高三数学上学期期末考试试题(含解析)第一部分(选择题共40分)一.选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项)1.设集合()(){}=310M x x x -+<,{}04N x x =<<,则M N =( )A. ()0,3B. ()1,4-C. 0,1D. ()1,3-【答案】A 【解析】 【分析】先化简M ,再和N 求交集.【详解】解:()(){}{}=310|13M x x x x x -+<=-<<, 又因为{}04N x x =<< 所以{}|03M N x x =<<,即()0,3.故选:A【点睛】本题考查集合的交集运算,属于基础题. 2.设复数121iz i+=-,则z 在复平面内对应的点在( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】B 【解析】 【分析】先把复数化成z a bi =+的形式,即可得出对于的象限.【详解】解:()()()()21211212213131112222i i i i i i i z i i i i ++++++-+=====-+--+ 所以z 在复平面内对应的点在第二象限. 故选:B【点睛】本题考查复数的运算和几何意义,属于基础题. 3.若3log 0.2a =,0.22b =,20.2c =,则( )A. a c b <<B. a b c <<C. c a b <<D.b c a <<【答案】A 【解析】 【分析】利用对数函数、指数函数的单调性求解. 【详解】解:33log 0.2log 10a =<=,0.20221b =>=, 2000.20.21c <<==,所以01a c b ,即a c b <<. 故选:A【点睛】本题考查三个数大小的比较,是基础题,要注意对数函数、指数函数的单调性的合理运用.4.若1b a >>,则下列不等式一定正确的是( ) A. 2ab >B. 2a b +<C.11a b< D.2b aa b+> 【答案】D 【解析】 【分析】利用不等式的性质,特殊值排除法和基本不等式解题. 【详解】因为:1b a >> 对于A :当34,23ab ,所以34223ab ,故A 错误;对于B :因为1b a >>,所以2a b +>,故B 错误; 对于C :因为1b a >>,所以1101b a<<<,故C 错误;对于D :因为1b a >>,所以2b a a b +≥=, 又因为1b a >>,则b aa b ≠,故不取等,即2b a a b+>,故D 正确;【点睛】本题考查了不等式的性质、基本不等式的性质,考查了推理能力与计算能力.5.抛物线()220y px p =>的焦点是双曲线22x y p -=的一个焦点,则p =( )A. 22B. 8C. 4D. 1【答案】B 【解析】 【分析】分别求出抛物线与双曲线的焦点,两焦点为同一焦点,即可得出p 的值. 【详解】解:抛物线()220y px p =>的焦点为,02p ⎛⎫⎪⎝⎭, 双曲线22x y p -=,为221x y p p-=, 则22c p =,2c p =,焦点为:()2,0p 或()2,0p -,所以有22pp =,解得0p =或8p =,又因为0p >, 所以8p =. 故选:B【点睛】本题考查抛物线与双曲线的焦点,是基础题.6. 如图,一个简单空间几何体的三视图其主视图与侧视图都是边长为2的正三角形,俯视图轮廓为正方形,则此几何体的侧面积是A. 43+B. 12C. 43D. 8【解析】试题分析:由三视图知:原几何体是一个正四棱锥,正四棱锥的底面边长为2,所,所以该几何体的侧面积为1=224=82s ⨯⨯⨯. 考点:三视图;四棱锥的侧面积.点评:解决这类题的关键是准确分析出几何体的结构特征,发挥自己的空间想象力,把立体图形和平面图形进行对照,找出几何体中的数量关系.7.设非零向量,a b 满足()2a b a -⊥,则“a b =”是“a 与b 的夹角为3π”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】C 【解析】 【分析】先根据()2a b a -⊥求出当“a b =”时a 与b 的夹角,再判断命题间的关系. 【详解】因为设非零向量,a b 满足()2a b a -⊥,所以()20a b a -⋅=,即220a b a -⋅=,即22cos 0a b a a b -⋅<⋅>= 若 “a b =”时,1cos 2a b <⋅>=,3a b π<⋅>=, 即a 与b 的夹角为3π. 反之,若a 与b 的夹角为3π,则222cos 0a b a a b a b a a b -⋅<⋅>=-⋅=⇒=,所以“a b =”是“a 与b 的夹角为3π”充分必要条件.故选:C【点睛】本题考查向量垂直的定义和命题间的基本关系,属于基础题. 8.当[]0,1x ∈时,若函数()()21f x mx =-的图象与()2mg x x =+的图象有且只有一个交点,则正实数m 的取值范围是( )A. [)2,+∞B. (]50,2,+2⎡⎫∞⎪⎢⎣⎭C. 5,2⎡⎫+∞⎪⎢⎣⎭D.(][)20,1,+∞【答案】B 【解析】 【分析】根据题意,由二次函数的性质分析可得()()21f x mx =-为二次函数,在区间10,m ⎛⎫⎪⎝⎭为减函数,在区间1,1m为增函数,分01m <≤和1m 两种情况,结合图象分析两个函数的单调性与值域,即可得出正实数m 的取值范围.【详解】解:当[]0,1x ∈时,又因为m 为正实数, 函数()()21f x mx =-的图象二次函数, 在区间10,m ⎛⎫ ⎪⎝⎭为减函数,在区间1,1m 为增函数; 函数()22m mg x x x =+=+,是斜率为1的一次函数. 最小值为min2mg x ,最大值为max12m g x ; ①当11m≥时,即01m <≤时, 函数()()21f x mx =-在区间0,1 为减函数,()2mg x x =+在区间0,1 为增函数, ()f x 的图象与()g x 的图象有且只有一个交点,则()()max min f x g x ≥,()()max min 00f g ≥即()2012mm ⨯-≥,解得2m ≤, 所以01m <≤ ②当101m<<时,即1m 时,函数()()21f x mx =-在区间10,m ⎛⎫ ⎪⎝⎭为减函数,在区间1,1m 为增函数, ()2mg x x =+在区间0,1 为增函数, ()f x 的图象与()g x 的图象有且只有一个交点,则()()max min f x g x ≥,()()max min 00f g ≥即()()21f x mx =-的图象与()2mg x x =+的图象有且只有一个交点 ()()()()10011m f g f g ⎧>⎪≥⎨⎪<⎩,()()2201021112m m m m ⎧⨯-≥+⎪⎪⎨⎪⨯-≥+⎪⎩ 解得12m <≤或52m >综上所述:正实数m 的取值范围为(]50,2,+2⎡⎫∞⎪⎢⎣⎭. 故选:B【点睛】本题考查函数的交点问题,涉及函数单调性的应用,关键是确定实数m 的分类讨论. 二、填空题9.sin 6π⎛⎫-= ⎪⎝⎭____ 【答案】12- 【解析】 【分析】根据诱导公式三将角化为正角,再计算对应的三角函数值. 【详解】解:1sin sin 662ππ⎛⎫-=-=- ⎪⎝⎭. 故答案为:12-【点睛】本题考查诱导公式和特殊角的三角函数.10.设n S 为公比1q ≠的等比数列{}n a 的前n 项和,且13a ,22a ,3a 成等差数列,则q =__________,42S S =________. 【答案】 (1). 3 (2). 10 【解析】 【分析】先设等比数列的通项公式11n n a a q -=,再根据13a ,22a ,3a 成等差数列,利用等差中项列方程,求出公比,再代入42S S 即可解出本题.【详解】解:设等比数列的通项公式11n n a a q -=,又因为13a ,22a ,3a 成等差数列,所以213322a a a =+⨯,即211143q a a a q =+,又因为等比数列中10a ≠,则243q q =+,解得1q =或3q =,又因为1q ≠,所以3q =.所以()()4144422221111380110113811a q S q q S q a q q-----=====-----. 故答案为:(1).3 (2). 10【点睛】本题考查等比数列的通项公式、等差中项以及等比数列的前n 项和公式,属于基础题.11.若函数()2,01,0x e x f x x x ⎧≤=⎨->⎩,则函数()1y f x =-的零点是___________.【答案】0【解析】 【分析】先令()1y f x =-等于0,再根据分段函数分情况求解. 【详解】解:要求函数()1y f x =-的零点,则令()10y f x =-=,即1f x,又因为:()2,01,0x e x f x x x ⎧≤=⎨->⎩,①当0x ≤时,()xf x e =,1x e =,解得0x =.②当0x >时,()21f x x =-,211x -=,解得x =,所以x =.综上所以,函数()1y f x =-的零点是0.故答案为:0【点睛】本题考查函数的零点,以及已知函数值求分段函数的定义域,属于基础题. 12.在ABC ∆中,若8ac =,7a c +=,3B π=,则b =_________.【答案】5 【解析】 【分析】根据余弦定理和三角形的边之间的关系求解. 【详解】解:因为在ABC ∆中,8ac =,7a c +=,3B π=,由余弦定理:2222cos b a c ac B =+-, 2222cos3b ac ac ac ,22172828252b所以5b =. 故答案为:5【点睛】本题题考查余弦定理求三角形的边,属于基础题.13.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,当AOB ∆的面积达到最大时,k =________. 【答案】±1【解析】 【分析】由圆的方程找出圆心O 坐标和半径r ,同时把直线的方程整理为一般式方程,然后利用点到直线的距离公式表示出圆心O 到直线的距离d ,即为圆O 中弦AB 的弦心距,根据垂径定理得到垂足为弦AB 的中点,由圆的半径,弦心距及弦的一半构成的直角三角形,利用勾股定理表示出弦AB 的长度,然后利用三角形的面积公式底乘以高除2,用含有d 的式子表示出三角形AOB ∆的面积,2a b+<求出面积的最大值,以及面积取得最大值时d 的值,从而列出关于k 的方程,求出方程的解即可得到面积最大时k 的值. 【详解】解:由圆22:1O x y +=, 得到圆心坐标为()0,0O ,半径1r =, 把直线的方程为:1l y kx =+,整理为一般式方程得::10l kx y -+=, .圆心()0,0O 到直线AB 的距离211dk弦AB 的长度AB ==2222111212111AOBk k Sk k k k k, 又因为1122k kkk,12AOBS当且仅当1kk时取等号,AOB S 取得最大值,最大值为12. 解得1k =± 故答案为:±1【点睛】此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,直线的一般式方程,点到直线的距离公式,垂径定理,勾股定理,以及基本不等式的应用,当直线与圆相交时,常常由弦长的一半,弦心距,以及圆的半径构造直角三角形,利用勾股定理来解决问题.14.某部影片的盈利额(即影片的票房收入与固定成本之差)记为y ,观影人数记为x ,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y 与x 的函数图象.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本; ②图(2)对应的方案是:保持票价不变,并降低成本; ③图(3)对应的方案是:提高票价,并保持成本不变; ④图(3)对应的方案是:提高票价,并降低成本.其中,正确的说法是____________.(填写所有正确说法的编号) 【答案】②③ 【解析】 【分析】根据图象可知盈利额y 与观影人数x 成一次函数关系,再分别根据(2)和(3)的图象进行分析即可得出答案.【详解】解:由图象(1)可设盈利额y 与观影人数x 的函数为y kx b =+,0,0k b ><,即k 为票价,当0k =时,y b =,则b -为固定成本, 由图象(2)知,直线向上平移,k 不变,即票价不变,b 变大,则b -变小,成本减小.故①错误,②正确;由图象(3)知,直线与y 轴的交点不变,直线斜率变大,k 变大,即提高票价,b 不变,则b -不变,成本不变.故③正确,④错误;故答案为:②③【点睛】本题考查一次函数图象的变化,以及k 和b 对一次函数图象的影响,是基础题. 三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤) 15.函数23()sin cos 3sin 2f x x x x ωωω=⋅-+(0>ω)的部分图象如图所示.(1)求ω的值; (2)求()f x 在区间,33ππ⎡⎤-⎢⎥⎣⎦的最大值与最小值. 【答案】(1)1ω=(2)最大值为1,最小值为3【解析】 【分析】 先用降幂公式将23()sin cos 32f x x x x ωωω=⋅+化为()1333sin 222f x x x ωω=-+,再利用三角函数的和差公式化为()sin 23f x x πω⎛⎫=+ ⎪⎝⎭,根据图象可得最小正周期,利用2T |2|πω=求出ω即可. (2)由,33x ππ⎡⎤∈-⎢⎥⎣⎦,得出2,33x πππ⎡⎤+∈-⎢⎥⎣⎦,即可求出3sin 2,132x π⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦,则得到最大最小值.【详解】解:(1)23()sin cos 3f x x x x ωωω=⋅-+11cos 232sin cos 322x x x ωωω-=⋅⋅-⋅+1333sin 2cos 22222x x ωω=-++13sin 2cos 222x x ωω=+ sin 23x πω⎛⎫=+ ⎪⎝⎭∴()f x 的最小正周期25T 2(0)|2|63πππωω⎛⎫==-> ⎪⎝⎭∴1ω= (2)∵,33x ππ⎡⎤∈-⎢⎥⎣⎦∴2,33x πππ⎡⎤+∈-⎢⎥⎣⎦∴3sin 2,132x π⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦ ∴求()f x 在区间,33ππ⎡⎤-⎢⎥⎣⎦的最大值为1,最小值为3-【点睛】本题考查根据三角函数图象求函数解析式,以及求三角函数在给定区间内的最大最小值.16.已知四棱锥P ABCD -中,底面ABCD 是正方形,PD ⊥平面ABCD ,PD AB =,E 是PB 的中点.(1)求证:平面PBC ⊥平面PCD ;(2)求二面角E AD B --的大小;(3)试判断AE 所在直线与平面PCD 是否平行,并说明理由.【答案】(1)证明见解析(2)45︒(3)AE 与平面PCD 不平行,详见解析 【解析】 【分析】(1)先根据条件证BC ⊥平面PCD ,又因为BC ⊂平面PBC ,所以可以证得平面PBC ⊥平面PCD .(2)根据条件得,,DA DC DP 两两垂直,以此建立空间直角坐标系,求出平面ADB的法向量(0,0,1)DP =,设平面ADE 的法向量(,,)n x y z =,求出法向量(0,1,1)n =-,根据公式求出两个法向量的余弦值,即可得出二面角E AD B --的大小.(3)依题意可证AD ⊥平面PCD ,则平面PCD 的法向量为(1,0,0)DA =,又∵1111,,02222AE AE DA ⎛⎫=-⋅⋅=-≠ ⎪⎝⎭,则AE 与DA 不垂直,证得AE 与平面PCD 不平行.【详解】(1)证明:∵ABCD 是正方形BC CD ∴⊥ ∵PD ⊥平面ABCD , BC ⊂平面ABCD ∴PD BC ⊥ ∵PD CD D ⋂=,PD CD ⊂平面PCD ∴BC ⊥平面PCD 又∵BC ⊂平面PBC ∴平面PBC ⊥平面PCD(2)∵PD ⊥平面ABCD , ,AD CD ⊂平面ABCD ∴,PD AD PD CD ⊥⊥ 又∵ABCD 是正方形∴AD CD ⊥ ∴,,DA DC DP 两两垂直∴以D 为原点如图建系,设1PD AB∴0,0,0D (),(1,0,0)A ,(0,1,0)C ,(1,1,0)B ,(0,0,1)P , 111,,222E ⎛⎫⎪⎝⎭∴111(1,0,0),,,222DA DE ⎛⎫== ⎪⎝⎭又∵PD ⊥平面ABCD∴平面ADB 的法向量(0,0,1)DP = 设平面ADE 的法向量(,,)n x y z = 则DA n ⊥,DE n ⊥∴01110222DA n x DE n x y z ⎧⋅==⎪⎨⋅=++=⎪⎩ 令1z =,得1,0y x =-=∴(0,1,1)n =- ∴2cos ,2||||12DP n DP n DP n ⋅<>===⋅⋅∴二面角E AD B --的大小为45︒(3)∵PD AD ⊥,AD CD ⊥ ,PD CD D ⋂= 又,PD CD ⊂平面PCD ,∴AD ⊥平面PCD ∴平面PCD 的法向量为(1,0,0)DA =又∵1111,,02222AE AE DA ⎛⎫=-⋅⋅=-≠ ⎪⎝⎭∴AE 与DA 不垂直,∴AE 与平面PCD 不平行【点睛】本题考查线面平行、面面垂直的证明,考查用向量法求二面角的夹角,是立体几何中的基础题,掌握证明的条件是解题的关键.17.某学校高三年级有400名学生参加某项体育测试,根据男女学生人数比例,使用分层抽样的方法从中抽取了100名学生,记录他们的分数,将数据分成7组:[30,40),[40,50),[90,100],整理得到如下频率分布直方图:(1)若该样本中男生有55人,试估计该学校高三年级女生总人数;(2)若规定小于60分为“不及格”,从该学校高三年级学生中随机抽取一人,估计该学生不及格的概率;(3)若规定分数在[80,90)为“良好”,[]90,100为“优秀”.用频率估计概率,从该校高三年级随机抽取三人,记该项测试分数为“良好”或“优秀”的人数为X ,求X 的分布列和数学期望.【答案】(1)180人(2)0.1(3)详见解析 【解析】 【分析】(1)根据样本总人数100人,中男生有55人,则可算出女生45人.再根据总人数是400人,按样本中的女生人数与样本总人数的比例即可估算出的估计总体中女生人数. (2)由表可用1减去及格人数的概率得到不及格人数的概率.(3)设“样本中“良好”或“优秀””为事件B ,则()0.20.10.3B P =+=,根据二项分布列出频率分布列,计算数学期望【详解】解:(1)∵样本中男生有55人,则女生45人 ∴估计总体中女生人数45400180100⨯=人 (2)设“不及格”为事件A ,则“及格”为事件A∴()1()1(0.20.40.20.1)0.1P A P A =-=-+++=(3)设“样本中“良好”或“优秀””为事件B ,则()0.20.10.3B P =+= 依题意可知:~(3,0.3)X B3(0)0.7P B ==,1123(1)0.30.7P X C == 22133(2)0.30.7,(3)0.3P X C X P ====所以,X 的分布列为()30.30.9E X np ==⨯=【点睛】本题考查频率分布直方图的概率问题,概率分布问题注意一些常用的概率分布,如二项分布,超几何分布等,会计算概率,正确列出分布列,正确计算数学期望及方差. 18.已知函数2()2ln f x x a x =-,其中a R ∈(1)当2a =时,求曲线()y f x =在点()()1,1A f 处的切线方程; (2)若函数()f x 存在最小值Q ,求证:1Q ≤. 【答案】(1)230x y +-=(2)证明见解析 【解析】 【分析】(1)将2a =代入函数2()2ln f x x a x =-,对函数求导,将1x =代入导函数求斜率,将1x =代入原函数求切点,最后用点斜式求曲线()y f x =在点()()1,1A f 处的切线方程;(2)先求导得()22()(0)x a f x x x-'=>,讨论当0a ≤时,()0f x '≥恒成立,则()f x 在(0,)+∞单调递增,()f x 无最小值.当0a >时,令()0f x '=得x =x =分别讨论(x ∈时和 )x ∈+∞时的单调性,得出所以()f x 存在最小值,ln Q f a a a ==-.再对新函数求导,根据单调性即可得出最大值为1,则1Q ≤得证.【详解】解:(1)2a =时,22()4ln ,(1)1f x x x f =-=4()2f x x x'=-切线斜率(1)242k f '==-=-曲线()y f x =在点(1,(1))A f 处的切线方程为:12(1)y x -=--即:230x y +-=(2)()222()2(0)x a a f x x x x x-'=-=> ①当0a ≤时,()0f x '≥恒成立()f x 在(0,)+∞单调递增,()f x 无最小值②当0a >时,由()0f x '=得x =x =(x ∈时,()0f x '<,()f x 在(单调递减)x ∈+∞时,()0f x '>,()f x )+∞单调递增所以()f x 存在最小值,ln Q f a a a ==-下面证明1Q ≤.设函数()ln (0),()1(ln 1)ln g a a a a a g a a a '=->=-+=-由()0g a '=得1a =,易知()g a 在(0,1)单调递增,在(1,)+∞单调递减 所以()g a 的最大值为(1)1g = 所以()1g a ≤恒成立,1Q ≤得证.【点睛】本题考查利用导数求切线方程,以及含有参数的不等式的证明,利用导数求极值,属于中档题,分类讨论是关键.19.已知椭圆C :223412x y +=. (1)求椭圆C 的离心率;(2)设,A B 分别为椭圆C 的左右顶点,点P 在椭圆C 上,直线AP ,BP 分别与直线4x =相交于点M ,N .当点P 运动时,以M ,N 为直径的圆是否经过x 轴上的定点?试证明你的结论. 【答案】(1)12(2)以MN 为直径的圆经过x 轴上的定点()1,0和()7,0,证明见解析 【解析】 【分析】(1)先将223412x y +=转化为22143x y +=,根据椭圆的性质得到,,a b c ,即可求出离心率.(2)根据椭圆方程求出(2,0),(2,0)A B -,设()00,P x y ,则2200:3412C x y +=①,分别求出直线AP 和BP 的方程,再分别与4x =相交于点 M 0064,2y x ⎛⎫⎪+⎝⎭和N 0024,2y x ⎛⎫ ⎪-⎝⎭,设以MN 为直径的圆经过x 轴上的定点()1,0Q x ,则MQ NQ ⊥,即0MQ NQ ⋅=得()()()22100124022y x x x -+=+-②,将①代入②得()2149x -= 解得11x =或17x =,得出MN 为直径的圆是过定点()1,0和()7,0.【详解】解:(1)由223412x y +=得22143x y +=,那么224,3a b ==所以2221c a b =-=解得2a =,1c =所以离心率12c e a == (2)由题可知(2,0),(2,0)A B -,设()00,P x y ,则2200:3412C x y +=① 直线AP 的方程:00(2)2y y x x =++令4x =,得0062M y y x =+,从而M 点坐标为0064,2y x ⎛⎫⎪+⎝⎭直线BP 的方程:00(2)2y y x x =-- 令4x =,得0022N y y x =-,从而N 点坐标为0024,2y x ⎛⎫⎪-⎝⎭设以MN 为直径的圆经过x 轴上的定点()1,0Q x ,则MQ NQ ⊥由0MQ NQ ⋅=得()()()22100124022y x x x -+=+-② 由①式得()2220001236994y x x =-=-,代入②得()2149x -=解得11x =或17x =所以MN 为直径的圆经过x 轴上的定点()1,0和()7,0.【点睛】本题考查已知椭圆的方程求离心率和证明椭圆中的定点问题,属于中档题.20.若无穷数列{}n a 满足:只要*(,)p q a a p q N =∈,必有11p q a a ++=,则称{}n a 具有性质P .(1)若{}n a 具有性质P ,且1241,3,1,a a a ===67819a a a ++=,求3a ; (2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是等比数列,141b c ==,4164b c ==,n n n a b c =+.判断{}n a 是否具有性质P ,并说明理由; (3)设{}n b 是无穷数列,已知*1sin ()n n n a b a n N +=+∈.求证:“对任意1,{}n a a 都具有性质P ”的充要条件为“{}n b 是常数列”.【答案】(1)315a =(2){}n a 不具有性质P ,详见解析(3)证明见解析 【解析】 【分析】(1)根据{}n a 具有性质P ,且14=1a a =,可得25=3a a =,又因为36a a =,471a a ==,583a a ==,则367845a a a a a a =++--,代入数据即可得结果.(2)141b c ==,4164b c ==得出{}n b 的公差和{}n c 的公比,即可设{}n b 和{}n c 的通项公式,得出421204nn n n a b c n -=+=-+.因为1465a a ==,则238a =,53414a =,得出25a a ≠,所以{}n a 不具有性质P .(3)先证充分性:当{}n b 为常数列时,11sin n n a b a +=+.对任意给定的1a ,只要p q a a =,则由11sin sin p q b a b a +=+,必有11p q a a ++=.充分性得证.再证必要性:用反证法证明.假设{}n b 不是常数列,则存在k *∈N ,使得12k b b b b ==⋅⋅⋅==,而1k b b +≠.证明存在满足1sin n n n a b a +=+的{}n a ,使得121k a a a +==⋅⋅⋅=,但21k k a a ++≠.设()sin f x x x b =--,取m *∈N ,使得m b π>,再根据条件类推,得出{}n a 不具有性质P ,矛盾.必要性得证即可得出结论.【详解】解:(1)因为14=1a a =,所以25=3a a =,36a a =,471a a ==,583a a ==. 所以678313a a a a ++=++,又因为67819a a a ++=,解得315a = (2){}n b 的公差为21,所以()12112120n b n n =+-=-,{}n c 的公比为14,所以1416444n n n c --⎛⎫=⋅= ⎪⎝⎭所以421204n n n n a b c n -=+=-+.所以1465a a ==,238a =,53414a =,因为25a a ≠, 所以{}n a 不具有性质P . (3)证明充分性: 当{}n b 常数列时,11sin n n a b a +=+.对任意给定的1a ,只要p q a a =,则由11sin sin p q b a b a +=+,必有11p q a a ++=. 充分性得证.证明必要性:用反证法证明.假设{}n b 不是常数列,则存在k *∈N , 使得12k b b b b ==⋅⋅⋅==,而1k b b +≠.下面证明存在满足1sin n n n a b a +=+的{}n a ,使得121k a a a +==⋅⋅⋅=,但21k k a a ++≠.优质资料\word 可编辑- 21 - / 21- 21 - 设()sin f x x x b =--,取m *∈N ,使得m b π>,则()0f m m b ππ=->,()0f m m b ππ-=--<,故存在c 使得()0f c =.取1a c =,因为1sin n n a b a +=+(1n k ≤≤),所以21sin a b c c a =+==,依此类推,得121k a a a c +==⋅⋅⋅==.但2111sin sin sin k k k k a b a b c b c ++++=+=+≠+,即21k k a a ++≠.所以{}n a 不具有性质P ,矛盾.必要性得证.综上,“对任意1a ,{}n a 都具有性质P ”的充要条件为“{}n b 是常数列”【点睛】本题考查数列新定义,考查等差、等比数列的定义,考查数列为基础的证明题.。
北京市通州区2021届高三数学上学期期末考试试题(含解析)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21A x x =-<<,{}13B x x =-<<,则A B =( )A. {}23x x -<<B. {}11x x -<<C. {}13x x <<D.{}21x x -<<-【答案】A 【解析】 【分析】根据并集运算法则求解即可.【详解】由题:集合{}21A x x =-<<,{}13B x x =-<<, 则{}23AB x x =-<<.故选:A【点睛】此题考查根据描述法表示的集合,并求两个集合的并集. 2.在复平面内,复数1ii-+(其中i 是虚数单位)对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】A 【解析】 【分析】化简复数,得出其在复平面内的点,即可判定位置. 【详解】由题:复数()1111i i i i i i-+--==+⋅-,在复平面内对应的点为()1,1, 位于第一象限. 故选:A【点睛】此题考查复数的基本运算和复数对应复平面内的点的辨析,关键在于准确计算,熟练掌握几何意义.3.已知点A (2,a )为抛物线24y x =图象上一点,点F 为抛物线的焦点,则AF 等于( )A. 4B. 3C.D. 2【答案】B 【解析】 【分析】写出焦点坐标,根据抛物线上的点到焦点距离公式即可求解. 【详解】由题:点A (2,a )为抛物线24y x =图象上一点, 点F 为抛物线的焦点,所以()1,0F , 根据焦半径公式得:02132pAF x =+=+=. 故选:B【点睛】此题考查求抛物线上的点到焦点的距离,结合几何意义根据焦半径公式求解即可. 4.若0x y >>,则下列各式中一定正确的是( )A.11x y> B. tan tan x y >C. 11()()22xy>D.ln ln x y >【答案】D 【解析】 【分析】 若0x y >>,11x y <,11()()22x y <所以AC 错;3,,tan tan 44x y x y ππ==<,所以B 错;若0x y >>,ln ln x y >,所以D 正确.【详解】由题:若0x y >>,根据反比例函数性质11x y<,所以A 错误; 若0x y >>,取3,,tan tan 44x y x y ππ==<,所以B 错; 若0x y >>,根据指数函数性质11()()22x y<所以C 错;若0x y >>,根据对数函数性质ln ln x y >,所以D 正确. 故选:D【点睛】此题考查不等式的基本性质,结合不等关系和函数单调性进行判断,也可考虑特值法推翻命题.5.某三棱锥的三视图如图所示,则该三棱锥最长棱的长度为( )A. 7B. 2C. 211D. 3【答案】C 【解析】 【分析】根据三视图还原几何体,即可求解.【详解】根据三视图还原几何体如图所示:其中AB AC ⊥,PC ⊥平面ABC , 由图可得:4,23CP AC AB ===,所以27,4227BC AP ==>224421142BP PC BC +==>所以最长的棱长211故选:C【点睛】此题考查根据三视图还原几何体,计算几何体中的棱长,关键在于正确认识三视图,准确还原.6.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.若老师站在正中间,甲同学不与老师相邻,乙同学与老师相邻,则不同站法种数为( ) A. 24 B. 12 C. 8 D. 6【答案】C 【解析】 【分析】根据特殊元素优先考虑原则,先排乙,再排甲,结合左右对称原则求解. 【详解】由题:老师站中间,第一步:排乙,乙与老师相邻,2种排法;第二步:排甲,此时甲有两个位置可以站,2种排法; 第三步:排剩下两位同学,2种排法, 所以共8种. 故选:C【点睛】此题考查计数原理,关键在于弄清计数方法,根据分步和分类计数原理解决实际问题.7.对于向量a ,b , “a a b =+”是“0b =”的( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】B 【解析】 【分析】根据向量的运算法则:“a a b =+”不能推出“0b =”, “0b =”能够推出“a a b =+”.【详解】当20b a =-≠时,满足a a b =+,不能推出0b =, 若0b =,则a b a +=,所以a a b =+,所以“a a b =+”是“0b =”的必要不充分条件. 故选:B【点睛】此题考查充分条件与必要条件的关系判断,关键在于弄清向量间的关系,正确辨析即可.8.关于函数()21()1x f x x ax e-=+-有以下三个判断①函数恒有两个零点且两个零点之积为-1; ②函数恒有两个极值点且两个极值点之积为-1; ③若2x =-是函数的一个极值点,则函数极小值为-1. 其中正确判断的个数有( ) A. 0个 B. 1个C. 2个D. 3个【答案】C 【解析】 【分析】函数的零点个数即210x ax +-=的根的个数,利用判别式求解;对函数求导讨论导函数的零点问题即可得极值关系.【详解】因为10x e ->,方程210x ax +-=,240a ∆+>=,所以关于x 的方程210x ax +-=一定有两个实根,且两根之积为-1,所以21`()(1)x f x x ax e -=+-恒有两个零点且两个零点之积为-1,即①正确;()()()2121x f x x a x a e -'=+++-,10x e ->,对于()2210x a x a +++-=,()()2224180a a a ∆=+--=+>,所以()2210x a x a +++-=恒有两个不等实根,且导函数在这两个实根附近左右异号,两根之积为1a -,函数恒有两个极值点且两个极值点之积为1a -,所以②错误;若2x =-是函数的一个极值点, ()()242410f a a '-=--+-=,则1a =-,()()211x f x x x e -=--,()()()()211221x x f x x x e x x e --'=+-=+-,()()(),21,,0x f x '∈-∞-+∞>,()()2,1,0x f x '∈-<,所以函数的增区间为()(),2,1,-∞-+∞,减区间为()2,1-, 所以函数的极小值为()11f =-,所以③正确. 故选:C【点睛】此题考查函数零点问题,利用导函数导论单调性和极值问题,综合性比较强.第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.已知向量()3,2a →=-,()1,b m =,若()a a b →→→⊥-,则m =___________. 【答案】5- 【解析】 【分析】根据向量垂直,数量积为0列方程求解即可.【详解】由题:()a a b →→→⊥-,所以()0a a b →→→⋅-=,20a a b →→→-⋅= 所以()94320m +--=, 解得:5m =-. 故答案为:5-【点睛】此题考查向量数量积的坐标运算,根据两个向量垂直,数量积为0建立方程计算求解.10.在公差不为零的等差数列{a n }中,a 1=2,且a 1,a 3,a 7依次成等比数列,那么数列{a n }的前n 项和n S 等于____________. 【答案】21322n n + 【解析】 【分析】根据a 1,a 3,a 7依次成等比数列,求出公差,即可求解.【详解】在公差不为零的等差数列{a n }中,a 1=2,设公差为,0d d ≠ 且a 1,a 3,a 7依次成等比数列,即()()222226d d +=+,20d d -=,0d ≠,所以1d =,所以数列{a n }的前n 项和()211321222n n n n n n S -=+⨯=+. 故答案为:21322n n + 【点睛】此题考查等差数列基本量的计算,根据等比中项的关系列出方程解出公差,根据公式进行数列求和.11.已知中心在原点的双曲线的右焦点坐标为0),且两条渐近线互相垂直,则此双曲线的标准方程为_____. 【答案】221x y -= 【解析】 【分析】根据两条渐近线互相垂直得出渐近线方程,即求出ba的值,结合焦点坐标即可求解. 【详解】由题双曲线焦点在x 轴,设双曲线方程()22221,0,0x ya b ba -=>>,两条渐近线互相垂直,即1b ba a-⋅=-,得a b =,又因为右焦点坐标为0), 所以222a b +=, 解得1a b ==,所以双曲线的标准方程为:221x y -=. 故答案为:221x y -=【点睛】此题考查根据渐近线的关系结合焦点坐标求双曲线的基本量,进而得出双曲线的标准方程,考查通式通法和基本计算.12.在ABC ∆中, 3a =,b =2B A ∠=∠,则cos B =____. 【答案】13【解析】 【分析】根据正弦定理建立等量关系求解即可. 【详解】在ABC ∆中,由正弦定理得:sin sin b B a A=,sin 23sin AA=2sin cos 2cos 3sin A A A A==所以cos 3A =261cos cos 22cos 12193B A A ==-=⨯-=.故答案为:13【点睛】此题考查正弦定理的应用,结合三角恒等变换二倍角公式,求三角函数值,关键在于准确掌握基本计算方法正确求解.13.已知,,a b a m +均为大于0的实数,给出下列五个论断:①a b >,②a b <,③0m >,④0m <,⑤b m ba m a+>+.以其中的两个论断为条件,余下的论断中选择一个为结论,请你写出一个正确的命题___________.【答案】①③推出⑤(答案不唯一还可以①⑤推出③等) 【解析】 【分析】选择两个条件根据不等式性质推出第三个条件即可,答案不唯一. 【详解】已知,,a b a m +均为大于0的实数,选择①③推出⑤. ①a b >,③0m >, 则()()()()0a b mb m b ab am ab bm am bm a m a a a m a a m a a m -++----===>++++, 所以b m ba m a+>+. 故答案为:①③推出⑤【点睛】此题考查根据不等式的性质比较大小,在已知条件中选择两个条件推出第三个条件,属于开放性试题,对思维能力要求比较高.14.如图,某城市中心花园的边界是圆心为O ,直径为1千米的圆,花园一侧有一条直线型公路l ,花园中间有一条公路AB (AB 是圆O 的直径),规划在公路l 上选两个点P ,Q ,并修建两段直线型道路PB ,QA .规划要求:道路PB ,QA 不穿过花园.已知OC l ⊥,BD l ⊥(C 、D 为垂足),测得OC =0.9,BD =1.2(单位:千米).已知修建道路费用为m 元/千米.在规划要求下,修建道路总费用的最小值为_____元.【答案】2.1m 【解析】 【分析】根据几何关系考虑道路不穿过花园,求解最小距离,即可得到最小费用.【详解】如图:过点B 作直线BP AB ⊥交l 于P ,取BD 与圆的交点M , 连接,MA MB ,则MA MB ⊥, 过点A 作直线AQ AB ⊥交l 于Q , 过点A 作直线AC l '⊥交l 于C ',根据图象关系可得,直线上,点P 左侧的点与B 连成线段不经过圆内部, 点Q 右侧的点与A 连成的线段不经过圆的内部, 最短距离之和即PB AC '+,根据几何关系:PBD BAM QAC '∠=∠=∠,3sin 5BAM ∠=, 所以4cos cos cos 5PBD BAM QAC '∠=∠=∠=, 所以 1.5BP =,2BD AC OC '+=,所以0.6AC '=,最小距离为2.1千米.修建道路总费用的最小值为2.1m 元. 故答案为:2.1m【点睛】此题考查与圆相关的几何性质,根据几何性质解决实际问题,需要注意合理地将实际问题抽象成纯几何问题求解.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.已知函数()2cos()sin 3f x x x π=-.(1)求f (x )的最小正周期;(2)求f (x )在区间π[0,]2上的最大值和最小值.【答案】(1)π;(2) 最小值01+ 【解析】 【分析】(1)对函数进行三角恒等变换得()sin(2)32f x x π=-+,即可得最小正周期; (2)整体考虑2π2[,]333x ππ-∈-的取值范围,求出最大值和最小值.【详解】解:1()2cos()sin 2(cos )sin 322f x x x x x x π=-=+1sin 2cos 2)sin(2)23x x x π=+-=-+(1) f (x )的最小正周期T =2=2ππ; (2)因为π[0,]2x ∈,所以2π2[,]333x ππ-∈-所以当233x ππ-=-,即0x =时,f (x )取得最小值(0)0f =;当232x ππ-=,即512x π=时,f (x )取得最大值5112f π⎛⎫= ⎪⎝⎭, 所以f (x )在区间π[0,]2上的最小值01+. 【点睛】此题考查利用三角恒等变换对函数进行化简,求最小正周期和闭区间上的值域,关键在于利用公式准确化简,正确求值.16.为了解某地区初中学生的体质健康情况,统计了该地区8所学校学生的体质健康数据,按总分评定等级为优秀,良好,及格,不及格.良好及其以上的比例之和超过40%的学校为先进校.各等级学生人数占该校学生总人数的比例如下表:(1)从8所学校中随机选出一所学校,求该校为先进校的概率;(2)从8所学校中随机选出两所学校,记这两所学校中不及格比例低于30%的学校个数为X ,求X 的分布列;(3)设8所学校优秀比例的方差为S 12,良好及其以下比例之和的方差为S 22,比较S 12与S 22的大小.(只写出结果) 【答案】(1) 12;(2)见解析; (3)S 12=S 22【解析】 【分析】(1)统计出健康测试成绩达到良好及其以上的学校个数,即可得到先进校的概率; (2)根据表格可得:学生不及格率低于30%的学校有学校B 、F 、H 三所, 所以X 的取值为0,1,2,分别计算出概率即可得到分布列;(3)考虑优秀的比例为随机变量Y ,则良好及以下的比例之和为Z =1-Y ,根据方差关系可得两个方差相等.【详解】解:( 1)8所学校中有ABEF 四所学校学生的体质健康测试成绩达到良好及其以上的比例超过40% ,所以从8所学校中随机取出一所学校,该校为先进校的概率为12; (2)8所学校中,学生不及格率低于30%的学校有学校B 、F 、H 三所,所以X 的取值为0,1,2.25285(0)14C P X C ===11532815(1)28C C P X C ===23283(2)28C P X C ===所以随机变量X 的分布列为:(3)设优秀的比例为随机变量Y ,则良好及以下的比例之和为Z =1-Y , 则()()D Y D Z =, 所以:S 12=S 22.【点睛】此题考查简单的几何概率模型求概率,求分布列,以及方差关系的辨析,关键在于熟练掌握分布列的求法和方差关系.17.如图,在四棱锥S -ABCD 中,底面ABCD 为直角梯形,AD //BC ,∠SAD =∠DAB =90︒ ,SA =3,SB =5,4AB =,2BC =,1AD =.(1)求证:AB ⊥平面SAD ;(2)求平面SCD 与平面SAB 所成的锐二面角的余弦值; (3)点E ,F 分别为线段BC ,SB 上的一点,若平面AEF //平面SCD ,求三棱锥B -AEF 的体积.【答案】(1) 见解析;(2) 1213; (3)1 【解析】 【分析】(1)通过证明AB SA ⊥,AB AD ⊥得线面垂直;(2)结合第一问结论,建立空间直角坐标系,求出两个平面的法向量,即可得二面角的余弦值;(3)根据面面平行关系得出点F 的位置,即可得到体积.【详解】(1)证明:在SAB 中,因为3,4,5SA AB SB ===, 所以AB SA ⊥. 又因为∠DAB =900所以AB AD ⊥, 因为SAAD A =所以AB ⊥平面SAD .(2)解:因为 SA ⊥AD ,AB SA ⊥,AB AD ⊥, 建立如图直角坐标系:则A (0,0,0)B (0,4,0), C (2,4,0),D (1,0,0),S (0,0,3). 平面SAB 的法向量为(1,0,0)AD =. 设平面SDC 的法向量为(,,)m x y z =所以有·0·0m CD m SD ⎧=⎨=⎩即4030x y x z +=⎧⎨-=⎩,令1x =,所以平面SDC 的法向量为11(1,,)43m =-所以12cos 13m SD m SDθ==(3)因为平面AEF //平面SCD,平面AEF 平面ABCD=AE ,平面SCD 平面ABCD=CD , 所以AECD ,平面AEF 平面SBC=EF ,平面SCD 平面SBC=SC , 所以FE SC ∥ 由AECD ,AD //BC得四边形AEDC 为平行四边形. 所以E 为BC 中点. 又FE SC ∥, 所以F 为SB 中点. 所以F 到平面ABE 的距离为32, 又ABE △的面积为2,所以1B AEF F ABE V V --==.【点睛】此题考查立体几何中的线面垂直的证明和求二面角的大小,根据面面平行的性质确定点的位置求锥体体积.18.已知椭圆C :22221x y a b +=(0)a b >>的长轴长为4,,点P 在椭圆C 上.(1)求椭圆C 的标准方程;(2)已知点M (4,0),点N (0,n ),若以PM 为直径的圆恰好经过线段PN 的中点,求n 的取值范围.【答案】(1) 22142x y +=; (2) n -≤≤【解析】 【分析】(1)根据长轴长和离心率求出标准方程;(2)取PN 的中点为Q ,以PM 为直径的圆恰好经过线段PN 的中点,所以MQ ⊥NP ,根据垂直关系建立等量关系,结合点P 的坐标取值范围,即可得解. 【详解】解:( 1)由椭圆的长轴长2a =4,得a =2又离心率2c e a ==,所以c =所以2222b a c =-=.所以椭圆C 的方程为:22142x y +=.(2)法一:设点00()P x y ,,则2200142x y +=所以PN 的中点00()22x y nQ +, 00(4)22x y nMQ +=-,,00()NP x y n =-,, 因为以PM 为直径的圆恰好经过线段PN 的中点 所以MQ ⊥NP ,则0MQ NP ⋅=, 即0000(4)()()022x y n x y n +-+-=,又因为2200142x y +=,所以22008202x x n -+-=,所以2200082[22]2x n x x =-+∈-,,,函数20000()82[22]2x f x x x =-+∈-,,的值域为[1220]-,所以2020n ≤≤所以n -≤≤法二:设点00()P x y ,,则2200142x y +=.设PN 的中点为Q因为以PM 为直径的圆恰好经过线段PN 的中点 所以MQ 是线段PN 的垂直平分线, 所以MP MN ==所以2200822x n x =-+,函数20000()82[22]2x f x x x =-+∈-,,的值域为[1220]-,所以2020n ≤≤,所以n -≤≤【点睛】此题考查求椭圆的标准方程,根据垂直关系建立等量关系,结合椭圆上的点的坐标特征求出取值范围.19.已知函数()sin cos f x x x x =+.(1)求曲线()y f x =在点(0())0f ,处的切线方程; (2)求函数21()()4g x f x x =-零点的个数.【答案】(1) 1y =;(2)零点的个数为2. 【解析】 【分析】(1)求出导函数,得出(0)0f '=,(0)1f =即可得到切线方程; (2)根据21()()4g x f x x =-为偶函数,只需讨论在(0,)x ∈+∞的零点个数,结合导函数分析单调性即可讨论.【详解】解:( 1)因为()cos f x x x '=, 所以(0)0f '=, 又因为(0)1f =,所以曲线()y f x =在点(0())0f ,处的切线方程为1y =; (2)因为21()()4g x f x x =-为偶函数,(0)1g = 所以要求()g x 在R x ∈上零点个数, 只需求()g x 在(0,)x ∈+∞上零点个数即可.11()cos (cos ),022g x x x x x x x '=-=->令()0g x '=,得23x k ππ=+,523x k ππ=+,N k ∈ 所以()g x 在(0,)3π单调递增,在5(,)33ππ单调递减,在57(,)33ππ单调递增,在5(2,2)33k k ππππ++单调递减,在(2,2)33k k ππππ-+单调递增N k *∈ 列表得:由上表可以看出()g x 在23x k ππ=+(N k ∈)处取得极大值,在523x k ππ=+(N k ∈)处取得极小值,21()036236g ππ=+->;25125()03236g ππ=+-<. 当*N k ∈且1k时221115(2)(2)(2)(2033243434g k k k k ππππππππ+=+-+=-+-+<(或21()14g x x x <+-,21(2)(2)1(2)03343g k k k ππππππ+<++-+<)所以()g x 在(0,)x ∈+∞上只有一个零点 函数21()()()4R g x f x x x =-∈零点的个数为2. 【点睛】此题考查求函数在某点处的切线方程,求函数零点的个数,根据奇偶性分类讨论,结合单调性和极值分别考虑函数值的符号得解.20.已知项数为*(,2)N m m m ∈≥的数列{}n a 满足如下条件:①*(1,2,,)n a N n m ∈=;②12m a a a <<<.若数列{}n b 满足*12()1m nn a a a a b N m +++-=∈-,其中1,2,,n m =,则称{}n b 为{}n a 的“伴随数列”.(1)数列1,3,5,7,9是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(2)若{}n b 为{}n a 的“伴随数列”,证明:12m b b b >>>;(3)已知数列{}n a 存在“伴随数列”{}n b ,且11a =,2049m a =,求m 的最大值. 【答案】(1) 不存在“伴随数列”,见解析 ;(2) 见解析;(3)33 【解析】 【分析】(1)根据“伴随数列”的定义检验即可判定;(2)根据“伴随数列”的定义,结合数列的单调性讨论1n n b b +-的符号即可得解;(3)根据数列{}n a 和其“伴随数列”{}n b 项的特征,结合单调性分析出2(1)2048m -≤,即可求解.【详解】(1)解:数列1,3,5,7,9不存在“伴随数列” 因为*41357979512b N ++++-==∉-,所以数列1,3,5,7,9不存在“伴随数列”. (2)证明:因为111n n n n a a b b m ++--=-,*11,n m n N ≤≤-∈又因为12m a a a <<<,所以有10n n a a +-<所以1101n n n n a a b b m ++--=<-所以12m b b b >>> 成立(3)∀1≤i <j ≤m ,都有1j i i j a a b b m --=-,因为*i b N ∈,12m b b b >>>.所以*i j b b N -∈, 所以*1j i i j a a b b N m --=∈-所以*11204811m m a a b b N m m --==∈-- 因为*111nn n n a a b b N m ----=∈-, 所以11n n a a m --≥-又112211()()()m m m m m a a a a a a a ----=-+-++-(1)(1)(1)m m m ≥-+-++-=2(1)m -所以2(1)2048m -≤,所以46m ≤ 又*20481N m ∈-, 所以33m ≤例如:6463n a n =-(133n ≤≤),满足题意, 所以m 的最大值是33.【点睛】此题考查数列新定义相关问题,关键在于读懂题意,建立恰当的等量关系或不等关系,求解得值,综合性比较强.。
2022-2023学年高三上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知三棱锥D ABC -的外接球半径为2,且球心为线段BC 的中点,则三棱锥D ABC -的体积的最大值为( )A .23B .43C .83D .163 2.若不等式32ln(1)20a x x x +-+>在区间(0,)+∞内的解集中有且仅有三个整数,则实数a 的取值范围是( )A .932,2ln 2ln 5⎡⎤⎢⎥⎣⎦B .932,2ln 2ln 5⎛⎫ ⎪⎝⎭C .932,2ln 2ln 5⎛⎤ ⎥⎝⎦D .9,2ln 2⎛⎫+∞ ⎪⎝⎭ 3.双曲线﹣y 2=1的渐近线方程是( )A .x±2y=0B .2x±y=0C .4x±y=0D .x±4y=04.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A .56B .60C .140D .120 5.设1,0(){2,0x x x f x x ≥=<,则((2))f f -=( ) A .1- B .14 C .12 D .326.设x ,y 满足约束条件34100640280x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,则2z x y =+的最大值是( )A .4B .6C .8D .107.洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( ).A .15B .25C .310D .148.四人并排坐在连号的四个座位上,其中A 与B 不相邻的所有不同的坐法种数是( )A .12B .16C .20D .89.如图,在正方体1111ABCD A B C D -中,已知E 、F 、G 分别是线段11A C 上的点,且11A E EF FG GC ===.则下列直线与平面1A BD 平行的是( )A .CEB .CFC .CGD .1CC 10.函数||1()e sin 28x f x x =的部分图象大致是( )A .B .C .D .11.如图,在圆锥SO 中,AB ,CD 为底面圆的两条直径,AB ∩CD =O ,且AB ⊥CD ,SO =OB =3,SE 14SB =.,异面直线SC 与OE 所成角的正切值为( ) A .222 B .53C .1316 D .11312.已知符号函数sgnx 100010x x x ⎧⎪==⎨⎪-⎩,>,,<f (x )是定义在R 上的减函数,g (x )=f (x )﹣f (ax )(a >1),则( )A .sgn [g (x )]=sgn xB .sgn [g (x )]=﹣sgnxC .sgn [g (x )]=sgn [f (x )]D .sgn [g (x )]=﹣sgn [f (x )] 二、填空题:本题共4小题,每小题5分,共20分。
函数y=Asin(ωx+φ)的图象与性质(40分钟)一、选择题1.函数f(x)=sin的图象的一条对称轴是( )A.x=B.x=C.x=-D.x=-2.(2013·浙江高考)函数f(x)=sinxcosx+cos2x的最小正周期和振幅分别是( )A.π,1B.π,2C.2π,1D.2π,23.函数y=2cos2-1是( )A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数4.(2013·兰州模拟)已知函数f(x)=sin(ωx+φ)-cos(ωx+φ),其图象相邻的两条对称轴方程为x=0与x=,则( )A.f(x)的最小正周期为2π,且在 (0,π)上为单调递增函数B.f(x)的最小正周期为2π,且在(0,π)上为单调递减函数C.f(x)的最小正周期为π,且在上为单调递增函数D.f(x)的最小正周期为π,且在上为单调递减函数5.设函数f(x)=tan(ωx+φ)(ω>0),条件p:“f(0)=0”;条件q:“f(x)为奇函数”,则p是q的( )A.充分不必要条件B.既不充分也不必要条件C.必要不充分条件D.充分必要条件6.(2013·山东高考)将函数y=sin(2x +φ)的图象沿x轴向左平移个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A. B. C.0 D.-二、填空题7.(2013·江西高考)设f(x)=sin3x+cos3x,若对任意实数x都有|f(x)|≤a,则实数a的取值范围是.8.将函数y=f(x)图象上所有点的纵坐标变为原来的4倍,横坐标变为原来的2倍,然后把所得图象上的所有点沿x轴向左平移个单位长度,这样得到的曲线和函数y=2sinx的图象相同,则函数y=f(x)的解析式为.9.(2013·重庆高考)设0≤α≤π,不等式8x2-(8sinα)x+cos 2α≥0对x∈R恒成立,则α的取值范围为.三、解答题10.已知f(x)=sin+sin+2cos2x-1,x∈R.(1)求函数f(x)的最小正周期.(2)求函数f(x)在区间上的最大值和最小值.11.已知函数f(x)=2acos2x+bsinxcosx-,且f(0)=,f=.(1)求f(x)的单调递减区间.(2)函数f(x)的图象经过怎样的平移才能使所得图象关于原点对称?12.(2013·宿州模拟)已知函数f(x)=2sinx-2cosx.(1)若x∈[0,π],求f(x)的最大值和最小值.(2)若f(x)=0,求.答案解析1.【解析】选C.函数f(x)=sin的图象的对称轴是x-=kπ+,k∈Z,即x=kπ+,k∈Z.当k=-1时,x=-π+=-.2.【解析】选A.f(x)=sinxcosx+cos2x=sin2x+cos2x=sin ,所以A=1,T=π.3.【解析】选A.y=2cos 2-1=cos=sin2x 为奇函数,T==π.4.【解析】选C.f(x)=2sin,由题意知函数f(x)的周期为T=π,则ω==2,由x=0为f(x)的对称轴,f(0)=2sin ()3πϕ-且|φ|<知φ=-,因此,f(x)=2sin =-2cos2x,故选C.5.【解析】选A.f(0)=0,则tan φ=0,所φ=k π(k ∈Z),所以f(x)=tan(ωx+k π)=tan ωx(k ∈Z),故f(x)为奇函数;而φ=时f(x)为奇函数,但是f(0)≠0, 故p 是q 的充分不必要条件.6.【解析】选 B.将函数y=sin(2x +φ)的图象沿x 轴向左平移个单位,得到函数y=sin =sin,因为此时函数为偶函数,所以+φ=+k π,k ∈Z,即φ=+k π,k ∈Z.【变式备选】为了使变换后的函数的图象关于点成中心对称,只需将原函数y=sin 2x+的图象( ) A.向左平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向右平移个单位长度 【解析】选C.函数y=sin 的图象的对称中心为(k ∈Z),其中离点最近的对称中心为,故只需将原函数的图象向右平移个单位长度即可.7.【解析】由于f(x)=sin3x+cos3x=2sin,则|f(x)|=2≤2,要使|f(x)|≤a 恒成立,则a ≥2. 答案:[2,+∞)8.【解析】本题只需将函数y=2sinx逆过来思考即可,即先将函数y=2sinx图象上的所有点向右平移个单位长度,再将纵坐标变为原来的,横坐标变为原来的即可.答案:y=sin9.【解析】因为不等式8x2-(8sinα)x+cos2α≥0对x∈R恒成立,所以Δ=64sin2α-32cos2α≤0,即64sin2α-32+64sin2α≤0,解得0≤sinα≤(0≤α≤π).因为0≤α≤π,所以α∈∪.答案:∪10.【解析】(1)f(x)=sin2x·cos+cos2x·sin+ sin2x·cos- cos2x·sin+cos2x=sin2x+cos2x=sin,所以f(x)的最小正周期T==π.(2)因为f(x)在区间上是增函数,在区间上是减函数,又f=-1,f=,f=1,故函数f(x)在区间上的最大值为,最小值为-1.11.【解析】(1)由f(0)=,得2a-=,故a=.由f=,得+-=,所以b=1.可得f(x)=cos2x+sinxcosx-=cos2x+sin2x=sin.由+2kπ≤2x+≤+2kπ,k∈Z,得+kπ≤x≤+kπ,k∈Z.所以f(x)的单调递减区间是(k∈Z).(2)因为f(x)=sin2,所以由奇函数y=sin2x的图象向左平移个单位即得到y=f(x)的图象,故函数f(x)的图象向右平移+π(k∈Z)个单位或向左平移+π(k∈Z)个单位后,对应的函数即成为奇函数,图象关于原点对称.【方法总结】三角函数的性质问题的解题策略(1)三角函数的性质问题,往往都要先化成f(x)=Asin(ωx+φ)的形式再求解.(2)要正确理解三角函数的性质,关键是记住三角函数的图象,根据图象并结合整体代入的基本思想即可求三角函数的单调性、最值与周期.12.【解析】(1)f(x)=2sinx-2cosx=4=4sin,又因为x∈[0,π],所以,-≤x-≤,所以,-2≤4sin≤4,所以f(x)max=4,f(x)min=-2.(2)由f(x)=0,所以2sinx=2cosx,得tanx=,=====2-.。
北京市海淀区北京师大附中2024年数学高三第一学期期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设向量a ,b 满足2=a ,1b =,,60a b =,则a tb +的取值范围是 A .)2,⎡+∞⎣B .)3,⎡+∞⎣C .2,6⎡⎤⎣⎦D .3,6⎡⎤⎣⎦2.已知集合{}|1A x x =>-,集合(){}|20B x x x =+<,那么A B 等于( )A .{}|2x x >-B .{}1|0x x -<<C .{}|1x x >-D .{}|12x x -<<3.如图所示,用一边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为43π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为( )A .212 B .212C .612D .3124.若复数z 满足2312z z i -=+,其中i 为虚数单位,z 是z 的共轭复数,则复数z =( ) A .35B .25C .4D .55.已知集合A ={﹣2,﹣1,0,1,2},B ={x |x 2﹣4x ﹣5<0},则A ∩B =( ) A .{﹣2,﹣1,0}B .{﹣1,0,1,2}C .{﹣1,0,1}D .{0,1,2}6.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是( )A .13B .310C .25D .347.如图,正四面体P ABC -的体积为V ,底面积为S ,O 是高PH 的中点,过O 的平面α与棱PA 、PB 、PC 分别交于D 、E 、F ,设三棱锥P DEF -的体积为0V ,截面三角形DEF 的面积为0S ,则( )A .08V V ≤,04S S ≤B .08V V ≤,04S S ≥C .08V V ≥,04S S ≤D .08V V ≥,04S S ≥8.在复平面内,复数z a bi =+(a ,b R ∈)对应向量OZ (O 为坐标原点),设OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则()cos sin z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:()1111cos sin z r i θθ=+,()2222cos sin z r i θθ=+,则()()12121212cos sin z z rr i θθθθ=+++⎡⎤⎣⎦,由棣莫弗定理可以导出复数乘方公式:()()cos sin cos sin nn r i r n i n θθθθ+=+⎡⎤⎣⎦,已知)43z i =,则z =( )A .23B .4C .83D .169.已知函数()3cos f x x m x =+,其图象关于直线3x π=对称,为了得到函数2()3g x m x =+的图象,只需将函数()f x 的图象上的所有点( ) A .先向左平移6π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 B .先向右平移6π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 C .先向右平移3π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 D .先向左平移3π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 10.已知{}n a 为正项等比数列,n S 是它的前n 项和,若116a =,且4a 与7a 的等差中项为98,则5S 的值是( )A .29B .30C .31D .3211.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).A .6500元B .7000元C .7500元D .8000元12.已知定义在R 上函数()f x 的图象关于原点对称,且()()120f x f x ++-=,若()11f =,则()1(2)(3)(2020)f f f f ++++=( )A .0B .1C .673D .674二、填空题:本题共4小题,每小题5分,共20分。
一、选择题:(每题5分,共60分)1.已知集合A={x|x2-x-2≤0},B={x|-2<x≤1},则A∩B=() A.[-1,2]B.[-1,1]C.(-2,1]D.[-2,2]2.i是虚数单位,复数z满足i·z=1+3i,则|z|=()A.10B.10C.8D.223.设向量a,b满足|a+2b|=5,|a|=2,|b|=3,则a,b夹角的余弦值为()A.58B.-58C.35D.-134.已知曲线C:y2=2px(y>0,p>0)的焦点为F,P是C上一点,以P为圆心的圆过点F且与直线x=-1相切,若圆P的面积为25π,则圆P的方程为() A.(x-1)2+(y-1)2=25B.(x-2)2+(y-4)2=25C.(x-4)2+(y-4)2=25D.(x-4)2+(y-2)2=255.已知公差不为0的等差数列{an }中,a2+a4=a6,a9=a26,则a10=()A.52B.5C.10D.406.四名数学老师相约到定点医院接种新冠疫苗,若他们一起登记后,等待电脑系统随机叫号进入接种室,则甲不被第一个叫到,且乙、丙被相邻叫到的概率为()A.18B.16C.14D.137.函数f(x)=e x sin x在区间[-π,π]的图象大致是()B C DA8.若非零实数x ,y ,z 满足2x =3y =6z ,则与x +yz最接近的整数是()A.3B.4C.5D.69.若x ,y满足约束条件≥0,+2y ≥3,x +y ≤3,z =x -y 的最大值为M ,最小值为m ,则M -m =()A.0B.32C.-3D.310.半正多面体(semiregular solid)亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它是以八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为()A.83B.4C.163D.20311.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-1,0),过F 且与x 轴垂直的直线与双曲线交于A ,B 两点,O 为坐标原点,△AOB 的面积为32,则下列结论不正确的有()A.双曲线C 的方程为4x 2-4y23=1B.双曲线C 的两条渐近线所成的锐角为60°C F 到双曲线C 渐近线的距离为3D.双曲线C 的离心率为212.若函数f (x )=sin|x |-cos 2x ,则()A.f (x )是周期函数B.f (x )在[-π,π]上有3个零点C.f (xD.f (x )的最小值为-1二、填空题(每题5分,共20分)13.设a ,b ,c 为单位向量,且c =3a +2b ,则a 与b 夹角的余弦值是__________.14.已知函数f (x1-2a x +3a ,x <1,x -1,x ≥1的值域为R ,则实数a 的取值范围是________.15.“敕勒川,阴山下.天似穹庐,笼盖四野.”《敕勒歌》形象描写了中国北方游牧民族建筑的特征,诗中的“穹庐”即“毡帐”,屋顶近似圆锥,为了烘托节日气氛,计划在屋顶安装灯光带.某个屋顶的圆锥底面直径长8米,母线长6米,其中一条灯光带从该圆锥一条母线的下端点开始,沿侧面经过与该母线在同一轴截面的另一母线的中点,环绕一圈回到起点,则这条灯光带的最短长度是________米.16.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sin A sin B cos C=sin 2C ,则a 2+b 2c2=________,sin C 的最大值为________.三、解答题(共70分)17.(本题12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a =3c ,b =27,求△ABC 的面积;(2)若sin A +3sin C =22,求C .18.(本题12分)为了弘扬国学文化,某地区在高一年级开设了“书法”选修课,并为每个同学配备了书法训练手册.学期末该地区某个学校的校团委为了调查学生学习“书法”选修课的情况,随机抽取了高一100名学生进行调查.根据调查结果绘制了学生日均进行书法训练时间的频率分布直方图(如图所示),将日均进行书法训练时间不低于40分钟的学生称为“书法爱好者”.(1)根据已知条件完成如图列联表,并据此资料判断是否有95%的把握认为“书法爱好者”与学生性别有关?(2)将上述调查所得到的频率视为概率.现在从该地区高一所有学生中,采用随机抽样的方法每次抽取1名学生,抽取3次,记所抽取的3名学生中的“书非书法爱好者书法爱好者合计男女1055合计法爱好者”人数为X .若每次抽取的结果是相互独立的,求X 的分布列、期望E (X )和方差D (X ).附:K 2=n ad -bc 2a +bc +d a +c b +d ,其中n =a +b +c +d .P (K 2≥k 0)0.050.010k 03.8416.63519.(本题12分)如图所示,在长方体ABCD A1B 1C 1D 1中,AD =AA 1=1,AB =3,点E 在棱AB 上.(1)求异面直线D 1C 与A 1D 所成角的余弦值;(2)若二面角D 1EC D 的大小为45°,求点B 到平面D 1EC 的距离.20.(本题12分)已知椭圆C :x 2a 2+y2b2=1(a >b >0)的焦距为8,且点M 在C 上.(1)求C 的方程;(2)若直线l 与C 相交于A ,B 两点,且线段AB 被直线OM 平分,求△AOB (O 为坐标原点)面积的最大值.21.(本题12分)设函数f (x )=x (e x -1)-ax 2.(1)若a =12,求f (x )的单调区间;(2)若当x >0时,f (x )>0恒成立,求实数a 的取值范围.22.(本题10分)在极坐标系中,方程为ρ=2sin 2θ的曲线为如图所示的“幸运四叶草”,该曲线又被称为玫瑰线.(1)当玫瑰线的θ∈0,π2时,求以极点为圆心的单位圆与玫瑰线的交点的极坐标;(2)求曲线ρ=22M 与玫瑰线上的点N 距离的最小值及取得最小值时的点M ,N 的极坐标.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、B [∵A ={x |-1≤x ≤2},B ={x |-2<x ≤1},∴A ∩B =[-1,1].故选B .2、B [∵i·z =1+3i ,∴-i·i·z =-i·(1+3i),∴z =3-i ,则|z |=32+(-1)2=10,故选B .3、【解析】选B.由|a +2b|=5两边平方得a2+4|a|·|b|cos <a ,b>+4b2=25,所以cos <a ,b>=-58.4、C[由圆P 的面积为25π,即πr 2=25π,可得圆P 的半径r =5,以P 为圆心的圆过点F 且与直线x =-1相切,可得|PF |=5,x P +1=5,即x P =4,由抛物线的定义可得4+p2=5,解得p =2,则抛物线的方程为y 2=4x (y >0),可得P 的坐标为(4,4),则圆P 的方程为(x -4)2+(y -4)2=25,故选C .5、A[设等差数列{a n }的公差为d (d ≠0),∵a 2+a 4=a 6,a 9=a 26,∴2a 1+4d =a 1+5d ,a 1+8d =(a 1+5d )2,解得:a 1=d =14,则a 10=a 1+9d =10×14=52,故选6、D [四名教师总的进入注射室的顺序有A 44=24种,则:①甲第二个被叫到,且乙、丙被相邻叫到的方法数有A 22=2种;②甲第三个被叫到,且乙、丙被相邻叫到的方法数有A 22=2种;③甲第四个被叫到,且乙、丙被相邻叫到的方法数有2A 22=4种,所以“甲不被第一个叫到,且乙、丙被相邻叫到”的概率为2+2+424=13.7、D [当x ∈(-π,0)时,sin x <0,e x >0,则f (x )<0,故排除AB ,∵f (x )=e x sinx ,当x ∈(0,π)时,∴f ′(x )=e x (sin x +cos x )=2e x f ′(x )=0,解得x=3π4,当0<x <3π4时,f ′(x )>0,函数单调递增,当3π4<x <π时,f ′(x )<0,函数单调递减,在x =3π4取最大值,故选项D 符合,故选D .8、B[设2x =3y =6z =t ,则x =log 2t ,y =log 3t ,z =log 6t ,所以x +y z =log 2t +log 3tlog 6t=lg t lg 2+lg t lg 3lg t lg 6=(lg 2+lg 3)lg tlg 2lg 3lg tlg 6=lg 26lg 2lg 3>lg 26=4,故选B .9、D [由题意,作出平面区域如下,z =x -y 可化为y =x -z ,+2y =3x +y =3=1,=1.过点B (1,1)时,截距最小,z 有最大值M =1-1=0,过点C (0,3)时,截距最大,z 有最小值m =0-3=-3,故M -m =3,故选D .10、D[如图所示,将该二十四等边体的直观图置于棱长为2的正方体中,由三视图可知,该几何体的棱长为2,它是由棱长为2的正方体沿各棱中点截去8个三棱锥所得到的,∴该几何体的体积为V =2×2×2-8×13×12×1×1×1=203,故选D .11、C [双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-1,0),则c =1,又过F且与x 轴垂直的直线与双曲线交于1B 1∴△AOB 的面积S =12×1×2b 2a =32,即b 2a =32,又a 2+b 2=c 2=1,∴a =12,b 2=34,∴双曲线方程为4x 2-4y 23=1,故A 正确;双曲线C 的渐近线方程为y =±3x ,则两渐近线的夹角为60°,故B 正确;F 到双曲线C 的渐近线的距离d =32,故C 错误;双曲线C 的离心率为e =c a =112=2,故D 正确.故选C .12、C[函数f (x )=sin|x |-cos 2x ,对于A :函数y =sin|x |不是周期函数,故A错误;对于B :f (x )2x +sin x -1(x >0)2x -sin x -1(x <0),令f (x )=0,在[-π,π]上,求得x =-56π,-π6,56π,π6,故B 错误;对于C :当x f (x )=2sin 2x +sin x -1,所以f ′(x )=4sin x cos x +cos x ,由于x sin x >0且cos x>0,故f ′(x )>0,故函数f (x )在x C 正确;对于D :由于f (x )=2sin 2x +sin x -1=x -98,当sin x =-14时,f (x )min =-98,故D错误.故选C .二、填空题:13、-63[根据题意,设a 与b 的夹角为θ,若c =3a +2b ,则有(3a +2b )2=c 2,变形可得:3a 2+2b 2+26a ·b =c 2,则有cos θ=-63.14、0[当x ≥1时,f (x )=2x -1≥1,∵函数f (x )1-2a )x +3a ,x <1,x -1,x ≥1的值域为R ,∴当x <1时,y =(1-2a )x +3a 必须取遍(-∞,1]内的所有实数,-2a >0,-2a +3a ≥1,解得0≤a <12.15、67[将侧面沿母线SA 展开,A 点对应于点A1,轴截面对应的另一条母线为SB ,SB 的中点为C ,连接AC 、A 1C ,则AC +A 1C 为灯光带的最短长度,如图所示:因为SA =6,底面圆的直径为8,则半径为4,所以AB ︵=4π,所以∠ASB =4π6=2π3,又SC =3,由余弦定理得AC 2=62+32-2×6×3×cos 2π3=63,解得AC =37,所以A 1C =AC =37,所以灯光带的最短长度为2AC =67(米).16、353[∵sin A sin B cos C =sin 2C ,∴由正弦定理得到:ab cos C =c 2,可得cos C =c 2ab .又cos C =a 2+b 2-c 22ab ,∴a 2+b 2-c 22ab =c 2ab ,整理可得a 2+b 2c 2=3.∵cos C =a 2+b 2-c 22ab =a 2+b 2-a 2+b 232ab=a 2+b 23ab ≥2ab 3ab =23,当且仅当a =b 时等号成立,∴(sin C )max =1-cos 2C =53.三、解答题17、解:(1)由题设及余弦定理,得28=3c 2+c 2-2×3c 2×cos 150°,易错点:求cos 150°,求c 解得c =-2(舍去)或c =2,从而a =2 3.因此△ABC 的面积为12×23×2×sin 150°=3.(2)在△ABC 中,A =180°-B -C =30°-C ,卡壳点:A 与C 的转化所以sin A +3sin C =sin(30°-C )+3sin C =sin(30°+C ),故sin(30°+C )=22.而0°<C <30°,所以30°<30°+C <60°,易错点:忽略角的范围所以30°+C =45°,故C =15°.18、解:(1)由频率分布直方图可知,在抽取的100人中,“书法爱好者”有25人,从而2×2列联表如下:非书法爱好者书法爱好者合计男301545女451055合计7525100将2×2列联表中的数据代入公式计算,得K 2=100×(30×10-45×15)275×25×45×55=10033≈3.030.因为3.030<3.841,所以没有95%的把握认为“书法爱好者”与学生性别有关.(2)由频率分布直方图知抽到“书法爱好者”的频率为0.25,将频率视为概率,即从学生中抽取一名“书法爱好者”的概率为14.由题意得X ~X 的分布列为X 0123P27642764964164故E (X )=np =3×14=34,D (X )=3×14×34=916.19、解:如图所示,以D 为坐标原点,分别以DA →,DC →,DD 1→的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.(1)易知D (0,0,0),A 1(1,0,1),D 1(0,0,1),C (0,3,0),得DA 1→=(1,0,1),CD 1→=(0,-3,1),|cos 〈DA 1→,CD 1→〉|=|DA 1→·CD 1→|DA 1→|·|CD 1→||=122=24.由图知异面直线D 1C 与A 1D 所成角为锐角,所以异面直线D 1C 与A 1D 所成角的余弦值为24.(2)由题意知,m =(0,0,1)为平面DEC 的一个法向量.设n =(x ,y ,z )为平面D 1EC 的法向量,则|cos 〈m ,n 〉|=|m ·n ||m |·|n |=|z |x 2+y 2+z 2=cos 45°=22,所以z 2=x 2+y 2.①由C (0,3,0),得D 1C →=(0,3,-1),由n ⊥D 1C →,得n ·D 1C →=0,所以3y -z =0.②令y =1,由①②知n =(2,1,3)为平面D 1EC 的一个法向量,又易知CB →=(1,0,0),所以点B 到平面D 1EC 的距离d =|CB →·n ||n |=26=33.20、解:(1)+14b 2=1,8,b 2+c 2,2=20,2=4,故椭圆C 的方程为x 220+y 24=1.(2)易得直线OM 的方程为y =-153x ,设A (x 1,y 1),B (x 2,y 2),R (x 0,y 0)为AB 的中点,其中y 0=-153x 0.因为A ,B 在椭圆上,+y 214=1,+y 224=1,则k AB =y 1-y 2x 1-x 2=-420×x 1+x 2y 1+y 2=-15×2x02y 0= 3.可设直线l 的方程为y =3x +m =3x +m ,+y 24=1,整理得16x 2+103mx +5m 2-20=0,则Δ=300m 2-64(5m 2-20)>0,解得-8<m <8,则x 1+x 2=-53m8,x 1x 2=5m 2-2016.|AB |=1+3·(x 1+x 2)2-4x 1x 2=275m 264-5m 2-204=-5m 2+3204,原点到直线l 的距离d =|m |1+3=|m |2,则△AOB 的面积S =12d ·|AB |=12×|m |2×-5m 2+3204=-5(m 2-32)2+512016,∴当m 2=32时,S 有最大值,512016=2 5.此时m =±4 2.21、解:(1)若a =12,则f (x )=x (e x -1)-12x 2,f ′(x )=e x -1+x e x -x =(e x -1)(x +1),当x ∈(-∞,-1)时,f ′(x )>0;当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.故f (x )的单调递增区间是(-∞,-1),(0,+∞),单调递减区间是(-1,0).(2)f (x )=x (e x -1)-ax 2=x (e x -1-ax ).令g (x )=e x -1-ax ,则g ′(x )=e x -a ,若a ≤1,则当x ∈(0,+∞)时,g ′(x )>0,g (x )为增函数,而g (0)=0,从而当x >0时,g (x )>0,则f (x )>0.若a >1,则当x ∈(0,ln a )时,g ′(x )<0,g (x )为减函数,而g (0)=0.从而当x ∈(0,ln a )时,g (x )<0,即f (x )<0不符合题意.综上可得a 的取值范围是(-∞,1].22、解:由题意可得单位圆的极坐标方程为ρ=1.=1,=2sin 2θ,得sin 2θ=12.因为θ∈0,π2,所以θ=π12θ=5π12,(2)以极点为坐标原点,极轴为x 轴,建立平面直角坐标系xOy .曲线ρ=22坐标方程为x +y =4.玫瑰线关于原点中心对称,而原点O 到直线x +y =4的最小距离|OM |min =|-4|2=22,原点到玫瑰线上的点的最大距离|ON |max =2,当且仅当θ=π4时,|OM |min 和|ON |max 同时取到,所以|MN |min =|OM |min -|ON |max =22-2,此时2223解:(1)f (x )=|x -2|+|3x -4|x -6,x ≥2,x -2,43<x <2,4x +6,x ≤43,由f (x )>2≥2,x -6>2x <2,-2>2≤43,4x +6>2,解得x >2或∅或x <1,所以不等式的解集为{x |x <1或x >2}.(2)根据函数f (x )的图象知,f (x )min ==23,所以3a +4b =2,所求可看作点(2,0)到直线3x +4y -2=0的距离d 的平方,又d =|3×2-2|32+42=45.所以(a -2)2+b 2的最小值为1625.。
一、复习目标1. 巩固和深化对高中数学知识的理解和掌握,提高解题能力。
2. 培养良好的数学思维和逻辑推理能力。
3. 提高应试技巧,增强考试信心。
二、复习内容1. 集合与函数概念(1)集合的基本概念、运算及性质;(2)函数的概念、分类、性质及图像;(3)函数的单调性、奇偶性、周期性。
2. 导数与微分(1)导数的概念、计算方法及性质;(2)导数的应用:求函数的极值、最值、单调性、凹凸性等;(3)微分及其应用。
3. 解析几何(1)直线、圆、圆锥曲线(椭圆、双曲线、抛物线)的基本性质及方程;(2)直线与圆、圆锥曲线的位置关系;(3)解析几何的应用。
4. 立体几何(1)空间几何图形的基本概念、性质及计算;(2)空间几何体的表面积、体积及投影;(3)空间几何问题的解决方法。
5. 数列(1)数列的概念、分类、性质;(2)数列的通项公式、求和公式及求和技巧;(3)数列的应用。
6. 概率与统计(1)概率的基本概念、性质及计算;(2)古典概型、几何概型及伯努利概型;(3)统计量的计算、分布及推断。
7. 不等式(1)不等式的基本性质及解法;(2)不等式的应用:不等式组、不等式与不等式组的应用;(3)不等式证明。
三、复习方法1. 系统复习:按照复习内容,逐个知识点进行复习,确保全面掌握。
2. 重点突破:针对高考高频考点,进行重点复习和训练。
3. 方法总结:总结各类题型的解题方法和技巧,提高解题效率。
4. 模拟训练:通过做历年高考真题和模拟题,熟悉考试题型和难度,提高应试能力。
5. 定期检测:每周进行一次模拟考试,检验复习效果,调整复习策略。
四、复习时间安排1. 前期(第1-4周):系统复习基础知识,重点突破重点题型。
2. 中期(第5-8周):加强解题训练,提高解题速度和准确率。
3. 后期(第9-12周):模拟考试,查漏补缺,调整心态。
五、注意事项1. 保持良好的作息习惯,保证充足的睡眠和休息时间。
2. 合理安排学习时间,避免拖延和过度劳累。
湖南省株洲二中2025届高三数学第一学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合{}2,A x x x R =>∈,{}2230B x x x =-->,则AB =( ) A .(3,)+∞ B .(,1)(3,)-∞-+∞C .(2,)+∞D .(2,3) 2. “角谷猜想”的内容是:对于任意一个大于1的整数n ,如果n 为偶数就除以2,如果n 是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入10n =,则输出i 的( )A .6B .7C .8D .93.已知x ,y 满足条件0020x y y x x y k ≥≥⎧⎪≤⎨⎪++≤⎩,(k 为常数),若目标函数3z x y =+的最大值为9,则k =( )A .16-B .6-C .274-D .2744.已知数列满足:.若正整数使得成立,则( )A .16B .17C .18D .195.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<6.定义在R 上的奇函数()f x 满足()()330f x f x --+-=,若()11f =,()22f =-,则()()()()1232020f f f f ++++=( ) A .1- B .0C .1D .2 7.已知复数z 满足32i z i ⋅=+(i 是虚数单位),则z =( )A .23i +B .23i -C . 23i -+D . 23i -- 8.函数()()23ln 1x f x x +=的大致图象是A .B .C .D .9.记集合(){}22,16A x y x y =+≤和集合(){},4,0,0B x y x y x y =+≤≥≥表示的平面区域分别是1Ω和2Ω,若在区域1Ω内任取一点,则该点落在区域2Ω的概率为( )A .14πB .1πC .12πD .24ππ- 10.设i 为虚数单位,则复数21z i =-在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限 11.已知命题p :1m =“”是“直线0x my -=和直线0x my +=互相垂直”的充要条件;命题q :对任意()2,∈=+a R f x x a 都有零点;则下列命题为真命题的是( )A .()()p q ⌝∧⌝B .()p q ∧⌝C .p q ∨D .p q ∧12.若(1+2ai)i =1-bi ,其中a ,b ∈R ,则|a +bi|=( ).A .12B .5C .52D .5二、填空题:本题共4小题,每小题5分,共20分。
2025届浙江省杭州地区重点中学数学高三第一学期期末考试试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是( )A .48B .60C .72D .1202.空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离.已知平面α,β,λ两两互相垂直,点A α∈,点A 到β,γ的距离都是3,点P 是α上的动点,满足P 到β的距离与P 到点A 的距离相等,则点P 的轨迹上的点到β的距离的最小值是( )A .33-B .3C .332-D .32 3.已知数列{}n a 的通项公式是221sin 2n n a n π+⎛⎫=⎪⎝⎭,则12312a a a a +++⋅⋅⋅+=( ) A .0 B .55 C .66 D .784.如图,在底面边长为1,高为2的正四棱柱1111ABCD A B C D -中,点P 是平面1111D C B A 内一点,则三棱锥P BCD -的正视图与侧视图的面积之和为( )A .2B .3C .4D .55.复数12z i =+,若复数12,z z 在复平面内对应的点关于虚轴对称,则12z z 等于( ) A .345i +- B .345i + C .34i -+ D .345i -+6.椭圆是日常生活中常见的图形,在圆柱形的玻璃杯中盛半杯水,将杯体倾斜一个角度,水面的边界即是椭圆.现有一高度为12厘米,底面半径为3厘米的圆柱形玻璃杯,且杯中所盛水的体积恰为该玻璃杯容积的一半(玻璃厚度忽略不计),在玻璃杯倾斜的过程中(杯中的水不能溢出),杯中水面边界所形成的椭圆的离心率的取值范围是( )A .6⎛ ⎝⎦B .,15⎫⎪⎪⎣⎭C .0,5⎛ ⎝⎦D .,15⎡⎫⎪⎢⎪⎣⎭7.已知函数f (x )=223,1ln ,1x x x x x ⎧--+≤⎨>⎩,若关于x 的方程f (x )=kx -12恰有4个不相等的实数根,则实数k 的取值范围是( )A .12⎛ ⎝B .12⎡⎢⎣C .1,2e ⎛ ⎝⎦D .12⎛ ⎝⎭8.设复数z 满足2z iz i -=+(i 为虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限9.若()()()32z i a i a R =-+∈为纯虚数,则z =( )A .163iB .6iC .203iD .2010.已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是A .2()(2)3-∞+∞,, B .2(2)3, C .22()33-, D .22()()33-∞-+∞,, 11.若函数32()2()f x x mx x m R =-+∈在1x =处有极值,则()f x 在区间[0,2]上的最大值为( )A .1427B .2C .1D .312.小张家订了一份报纸,送报人可能在早上6:307:30-之间把报送到小张家,小张离开家去工作的时间在早上7.008:00-之间.用A 表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为x ,小张离开家的时间为y ,(,)x y 看成平面中的点,则用几何概型的公式得到事件A 的概率()P A 等于( )A .58B .25C .35D .78二、填空题:本题共4小题,每小题5分,共20分。
陕西省西安市西北工业大学2025届数学高三上期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若向量(1,5),(2,1)a b ==-,则(2)a a b ⋅+=( )A .30B .31C .32D .332.设集合{|0}A x x =>,{}2|log (31)2B x x =-<,则( ).A .50,3AB ⎛⎫= ⎪⎝⎭ B .10,3A B ⎛⎤= ⎥⎝⎦C .1,3A B ⎛⎫⋃=+∞ ⎪⎝⎭ D .(0,)A B =+∞3.已知集合{}2|230A x x x =--<,集合{|10}B x x =-≥,则()A B ⋂=R( ). A .(,1)[3,)-∞+∞ B .(,1][3,)-∞+∞ C .(,1)(3,)-∞+∞D .(1,3) 4.已知抛物线2()20C x py p :=>的焦点为1(0)F ,,若抛物线C 上的点A 关于直线22l y x +:=对称的点B 恰好在射线()113y x ≤=上,则直线AF 被C 截得的弦长为( ) A .919 B .1009 C .1189 D .12795.如图,四边形ABCD 为正方形,延长CD 至E ,使得DE CD =,点P 在线段CD 上运动.设AP x AB y AE =+,则x y +的取值范围是( )A .[]1,2B .[]1,3C .[]2,3D .[]2,46.已知函数()f x 的定义域为()0,∞+,且()()2224m f m f f n n ⎛⎫ ⎪⎝⎭⋅=,当01x <<时,()0f x <.若()42f =,则函数()f x 在[]1,16上的最大值为( )A .4B .6C .3D .87.若平面向量,,a b c ,满足||2,||4,4,||3a b a b c a b ==⋅=-+=,则||c b -的最大值为( ) A .523+ B .523- C .2133+ D .2133-8.做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X 的期望为( )A .B .C .1D .2 9.已知函数,其中04?,?04b c ≤≤≤≤,记函数满足条件:(2)12{(2)4f f ≤-≤为事件A ,则事件A 发生的概率为A .14B .58C .38D .12 10.若2332a b a b +=+,则下列关系式正确的个数是( ) ①0b a << ②a b = ③01a b <<< ④1b a <<A .1B .2C .3D .411.若将函数()2sin 16f x x π⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( )A .函数()g x 在0 6π⎛⎫ ⎪⎝⎭,上单调递增 B .函数()g x 的周期是2π C .函数()g x 的图象关于点 012π⎛⎫- ⎪⎝⎭,对称 D .函数()g x 在0 6π⎛⎫ ⎪⎝⎭,上最大值是1 12.已知函数1()2x f x e x -=+-的零点为m ,若存在实数n 使230x ax a --+=且||1m n -≤,则实数a 的取值范围是( )A .[2,4]B .72,3⎡⎤⎢⎥⎣⎦C .7,33⎡⎤⎢⎥⎣⎦D .[2,3]二、填空题:本题共4小题,每小题5分,共20分。
高三数学期末复习
一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目 要
求的一项.
1. 已知集合M R|X 2 + 2X -3<0}, N={xe R|x + l<0},那么MC\N=()
B. { — 3, — 2,-1} D. {x|—3 5 x v -1}
x+y>0, 2. 若实数兀,y 满足条件{x —歹+ 3»0,则Ix-y 的最人值为()
0<x<3,
3.
执行右边的程序框图,输出k 的值是(
)
A. 3
B. 4
C. 5
D ・ 6
4. 已知{%}为等差数列,S”为其前〃项和.若坷+為=18,偽=7,则几二(
)
A. 55
B. 81
C. 90
D. 100
5. 设平|fil&与平面0相交于直线加,直线a 在平Ifii©内,直线b 在平面0内,且/?丄加,
则“a 丄0”是“a 丄方”的()
A.充分不必要条件
B.必要不充分条件
A. 9
B. 3
c. o
C.充分必要条件
D.既不充分也不必要条件
6. 已知抛物线关于x 轴对称,它的顶点在朋标原点0,并且经过点M(2,)b ),若点M 到
该抛物线焦点的距离为3,贝\\\0M 1=()
7. 某三棱锥的三视图如图所示,
则其表面中,直角三角形的个数为
A. 1
B. 2
C. 3
D. 4
二、填空题共6小题,每小题5分,共30分.
9. _________________________________________ 设复数一=x+yi,其中 x , y G R ,贝ijx + y= _______________________________________
2 + i 10. 在(%2
--)5
的展开式中,兀的系数为.
11. 在AABC 中,角A , B ,C 的对边分别为a , b , c ,若a=6, c = 4, cosB=-,贝仏=
3
12. 己知圆C 的极坐标方程为p=2,以极点为原点,极轴为x 轴的正半轴建立平面直角坐
标系,则圆C 的直角坐标方程为 ______________ ,若直线/:恋+ y + 3 = 0与圆C 相 切,则实数R 的值为 ___________ ・
13. 从0,1中选一个数字,从2,4,6中选两个数字,组成无重复数字的三位数,其屮偶数
的个数为(用数字作答) ______________ .
三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.
15.(本小题满分13分)
已知函数/(x) = 2>/^sinxcosx + cos2x + l (xe R).
A. 2>/2
B. 2V3
C. 4
左视图
(II)求函数/(兀)在
4 4 上的最小值,并写出/(Q取最小值时相应的无值.
(I)求函数于(兀)的单调递增区间;
16.(木小题满分13分)
北京市各级各类中小学每年都要进行“学生体质健康测试”,测试总成绩满分为100分, 规定测试成绩在[85,100]Z 间为体质优秀;在[75,85)Z 间为体质良好;在[60,75)Z 间 为体质合格;在10,60)之间为体质不合格.
现从某校高三年级的300名学生中随机抽取30名学生体质健康测试成绩,其茎叶图如下:
(I) 试估计该校高三年级体质为优秀的学生人数;
(II) 根据以上30名学生体质健康测试成绩,现采用分层抽样的方法,从体质为优秀 和
良好的学生中抽取5名学生,再从这5名学生中选出3人.
(i )求在选出的3名学生中至少有1名体质为优秀的概率;
9
8 7 6 5 I 0 0 4 6
3 1 5 5 5 1 6 8
6
2233344566779 6 7 9
(ii)记X为在选出的3名学生小体质为良好的人数,求X的分布列及数学期望.
17.(本小题满分14分)
如图,在四棱锥P-ABCD中,平面PAC丄平面ABCD ,且PA丄AC , PA = AD = 2.四边
形ABCD满足B CHAD , AB 丄AD , AB = BC = 1•点E,F分pp pp
别为侧棱PB,PC上的点,且一=——=2 .
PB PC
(I )求证:EF//平面PAD;
(II)当Q二丄时,求异面肓线与CD所成角的余弦值;
2
(III)是否存在实数2,使得平面AFD丄平面PCD?若存在,试求出2的值;若不存在,请说明理由.
D
B
C
18.(本小题满分13分)
已知函数f(x) = e x -ax(幺为自然对数的底数).
(I )当a = 2时,求曲线/(兀)在点(0/(0))处的切线方程;
(II)求函数/(兀)的单调区间;
(III)己知函数/(兀)在x = 0处収得极小值,不等式/(x) < mx的解集为P,若M ={x\-<x<2},且MCPH0,求实数加的取值范围.
2
19.(本小题满分14分)
2 2 1
已知椭圆C:亠+ \ = 1 (d>b>o)过点(2,0), 一几椭圆C的离心率为丄.
cr lr2(I)求椭圆C的方程;
(II)若动点P在肓线x = -l±,ilP作肓线交椭圆C于M ,N两点,且MP = PN ,再过P作肓线/丄伽•证明:肓线/恒过定点,并求出该定点的坐标•
20.(本小题满分13分)
已知集合A = {—1,0,1},对于数列{%}中纠w A (21,2,3,…,n).
50 50
(I )若50项数列⑷}满足乂>产—9,工(卩―1)2=107,则数列{①}小有多少项
/=! r=l
/t
取值为零?(工4 =Q] + d? + ••• + % ,斤启N")
匸1
(II)若各项非零数列a}和新数列仮}满足(Z = 2,3,•••,«).
(i )若首项勺=0,末项b n =n-l,求证数列{仇}是等差数列;(ii)若首项b{ =0,末项h n=0,
记数列{仇}的前兀项和为S”,求S“的最大值和最
小值.。