单相桥式SPWM逆变电路
- 格式:ppt
- 大小:2.15 MB
- 文档页数:90
电力电子技术课程设计单极性SPWM单相桥式逆变电路的设计与仿真院、部:电气信息工程学院学生姓名:李旺指导教师:杨万里职称助教专业:自动化班级:1401班学号:1430740107完成时间:2017.6湖南工学院电力电子技术课程设计课题任务书学院:电气与信息工程学院专业:自动化摘要20世纪80年代以来,信息电子技术和电力电子技术在各自发展的基础上相结合而产生了一代高频化、全控型的电力电子器件,典型代表有门极可关断晶闸管、电力晶体管、电力场效应晶体管和绝缘栅双极型晶体管。
逆变电路是PWM控制技术最为重要的应用场合。
这里在研究单相桥式PWM逆变电路的理论基础上,采用Matlab的可视化仿真工具Simulink建立单相桥式单极性控制方式下PWM逆变电路的仿真模型,通过动态仿真,研究了调制深度、载波度对输出波形的影响。
仿真结果表明建模的正确性,并证明了该模型具有快捷、灵活、方便、直观等一系列特点,从而为电力电子技术教学和研究中提供了一种较好的辅助工具。
关键词:PWM控制技术;逆变电路;单极性SPWM;SimulinkAbstractSince 1980s, the electronic information technology and power electronics technology combined to produce a generation of high frequency phase in their development, full controlled power electronic devices, a typical gate turn off thyristor, power transistor, power MOSFET and insulated gate bipolar transistor.The inverter circuit is one of the most important applications of PWM control technology. Here in the theoretical basis of the single-phase bridge inverter circuit of the PWM, the simulation model of PWM inverter using Matlab visual simulation tool Simulink to establish the single-phase bridge unipolar control mode, through dynamic simulation, studied the modulation depth, the carrier frequency of the output voltage. Influence of load current; and analyzes the harmonic characteristics of output voltage, load current. The simulation results show that the model is correct, and it is proved that the model is fast, flexible, convenient, intuitive and a series of characteristics, so as to power electronic technology teaching Study and research provides an effective tool.Key words:PWM control technology; inverter circuit; SPWM waveform; Simulink目录1绪言 (1)1.1电力电子技术的概况 (1)1.2课程学习情况简介 (1)1.3设计要求及总体方案设计 (2)2主电路设计 (3)2.1主电路原理图及原理分析 (3)2.2器件选择及参数计算 (4)3控制与驱动电路设计 (5)3.1控制电路设计 (5)3.2驱动电路设计 (6)4保护电路设计 (7)4.1过电流保护 (7)4.2过电压保护 (7)5仿真分析 (8)5.1仿真软件介绍 (8)5.2仿真模型的建立 (8)5.3仿真结果分析 (10)6设计总结 (13)参考文献 (14)致谢 (15)附录 (16)1绪言1.1电力电子技术的概括随着电力电子技术的高速发展,逆变电路的应用非常广泛,蓄电池、干电池、太阳能电池等都是直流电源,当我们使用这些电源向交流负载供电时,就需要用到逆变电路了。
目录1.引言 .......................................................................................... - 2 -2.PWM控制的基本原理........................................................... - 2 -3.PWM逆变电路及其控制方法............................................... - 3 -4.电路仿真及分析 ...................................................................... - 4 -4.1双极性SPWM波形的产生 . (4)4.2三相SPWM波形的产生 (6)4.3双极性SPWM控制方式单相桥式逆变电路仿真及分析-7-5.双极性SPWM控制方式的单相桥式逆变电路和三相逆变电路比较分析 .................................................................................. - 12 -6.结论 ........................................................................................ - 13 -7.参考文献 ................................................................................ - 13 -1. 引言PWM 技术的的应用十分广泛,目前中小功率的逆变电路几乎都采用了PWM 技术。
它使电力电子装置的性能大大提高,因此它在电力电子技术的发展史上占有十分重要的地位。
PWM 控制技术正是有赖于在逆变电路中的成功应用,才确定了它在电力电子技术中的重要地位。
单极性全桥逆变SPWM控制方法以及解决过零点振荡的方案引言当前众多电源应用领域对交流电源的要求越来越高,传统的电网直接供电方式在很多场合已无法满足要求,因此,需要对电网或者其他能源处理后逆变输出。
高质量的逆变电源已经成为电源技术的重要研究对象。
全桥架构又是逆变器中非常重要的架构。
全桥逆变控制方式主要分为双极性控制方式和单极性控制方式。
双极性控制是对角的一对开关为同步开关,桥臂上下管之间除死区时间外为互补开关,控制相对简单,但是它的开关损耗高,存在很大的开关谐波,电磁干扰大,而单极性控制可以很好地解决这些问题。
全桥逆变器单极性控制仅用一对高频开关,相对于双极性控制具有损耗低、电磁干扰小、无开关频率级谐波等优点,正在取代双极性逆变控制方式。
但由于控制环路的延时作用,单极性控制方式的逆变器仍然受一个问题的困扰,即在过零点存在一个明显的振荡。
单极性控制方式又包括单边方式和双边方式,双边方式相对于单边方式在抑止过零点振荡方面有一定优势,但仍然无法做到过零点的平滑过渡。
为了提高逆变器的输出波形质量,本文分析了,单极性双边控制方式,分析了其振荡产生原因,并介绍一种解决过零点振荡的方案。
1 主电路拓扑单极性SPWM逆变器如图1所示,由2组桥臂构成,一组桥臂(S3,S4)以高频开关工作频率工作,称为高频臂;另一组桥臂(S1,S2)以输出的正弦波频率进行切换,称为低频臂。
2 单极性双边SPWM控制方式单极性逆变有两种产生SPWM的方法,分为单极性单边SPWM控制方式和单极性双边SPWM控制方式,文献l对此有比较详尽的介绍,这里只介绍过零点特性较好的双边控制方式,这种方式对于单边控制方式仍然有效。
在单极性双边SPSM控制方式中,给定的载波信号按正弦方式变化,三角调制波信号,当输出电压为正时三角波为正,输出电压为负时三角波为负,如图2所示。
高频臂上管S3的开关由载波与调制波相比较决定,载波幅值大于调制波则开通,载波幅值小于调制波则关断,除去死区时间,高频臂上管S3与高频臂下管S4的开关完全互补。
华中科技大学电气与电子工程学院实验教学中心 信号与控制综合实验指导书 实验五十一DC/AC SPWM单相全桥逆变电路设计及研究(信号与系统—自动控制理论—检测技术-电力电子学综合实验)一、实验原理SPWM单相全桥逆变电路的主要工作原理是依靠四个开关管的通、断状态配合,利用冲量等效原理,采用正弦脉宽调制(SPWM)策略将输入的直流电压变换成正弦波电压输出。
SPWM的调制原理是通过对每个周期内输出的脉冲个数和每个脉冲宽度来调节逆变器输出电压的频率和幅值。
要使输出的电压波形接近标准的正弦波,就要尽量保证SPWM电压波在每一时间段都与该时段中正弦电压等效。
除要求每一时间段的面积相等外,每个时间段的电压脉冲宽度还必须很窄,这就需要在一个正弦波形内脉冲的数量很多。
脉波数量越多,不连续的按正弦规律改变宽度的多脉冲电压就越等效于正弦电压。
目前,在电力电子控制技术中,SPWM技术应用极为广泛,SPWM波形的形成一般有自然采样法、规则采样法等等。
前者主要用于模拟控制中,后者适用数字控制。
本实验采用的是DSP控制的单相全桥逆变电路,采用对称规则采样法。
对称规则采样的基本思想是使SPWM波的每个脉冲均以三角载波中心线为轴线对称,因此在每个载波周期内只需一个采样点就可确定两个开关切换点时刻。
具体算法是过三角波的对称轴与正弦波的交点,做平行于时间轴的平行线,该平行线与三角波的两个腰的交点作为SPWM波“开通”和“关断”的时刻。
由于在每个三角载波周期中只需要进行一次采样,因此使得计算公式得到简化,并且可以根据脉宽计算公式实时计算出SPWM波的脉宽时间,可以实现数字化控制。
图51-1 对称规则采样法生成SPWM波根据相似三角形定理,可以分析出图1对称规则采样法生成的SPWM波脉宽时间T n华中科技大学电气与电子工程学院实验教学中心 信号与控制综合实验指导书为:()21sin n n T T MN Nπ−= (51-1) 式中,M 为调制度,T 为正弦调制波周期,N 为载波比。
单相正弦波脉宽调制(SPWM)逆变电路实验结果(1)控制信号的观测①观察正弦调制波信号U r的波形,测试其频率可调范围;U r频率最小时波形图,由图可知最小频率小于10HzU r频率最大波形图,由图可知最大频率等于62Hz②观察三角载波U c的波形,测试其频率,由图可知最大频率等于178.9Hz③改变正弦调制波信号U r的频率,再测量三角载波U c的频率改变正弦调制波信号U r的频率三角载波U c的频率是同步变化④比较“PWM+”,“PWM-”和“SPWM1”,“SPWM2”的区别PWM+”,“PWM-的区别:同一相上下两管驱动信号之间无死区SPWM1”,“SPWM2的区别:同一相上下两管驱动信号之间死区延迟时间是30ms(2)带电阻及电阻电感性负载①输出接灯泡负载,然后将主电路接通由控制屏左下侧的直流电源(通过调节单相交流自藕调压器,使整流后输出直流电压保持为200V)接入主电路,由小到大调节正弦调制波U r 的频率,观测负载电压的波形,记录其波形参数(幅值、频率)。
U O(V) 82.2 82.4 82.5 波形F(Hz) 13.56 28.23 29.59 U O(V) 82 82 82波形F(Hz) 34.63 42.73 55.81U O(V) 82 82 82波形②接入DJK06给定及实验器件和DJK02上的100mH电感串联组成的电阻电感性负载,然后将主电路接通由DJK09提供的直流电源,由小到大调节正弦调制波信号U r的频率观测负载电压的波形,记录其波形参数(幅值、频率)。
F(Hz) 17.67 20.53 22.67U O(V) 83 83 83波形U O(V) 83 83 83 波形F(Hz) 49.61 53.78 161.15 U O(V) 83 83 83波形。
实验报告课程名称:现代电力电子技术实验项目:单相正弦波脉宽调制(SPWM)逆变电路验实验时间:实验班级:总份数:指导教师:朱鹰屏自动化学院电力电子实验室二〇〇年月日广东技术师范学院实验报告学院:自动化学院专业:电气工程及其自动化班级:成绩:姓名:学号:组别:组员:实验地点:电力电子实验室实验日期:指导教师签名:实验(六)项目名称:单相正弦波脉宽调制(SPWM)逆变电路实验1.实验目的和要求(1)熟悉单相交直交变频电路原理及电路组成。
(2)熟悉ICL8038的功能。
(3)掌握SPWM波产生的基理。
(4)分析交直交变频电路在不同负载时的工作情况和波形,并研究工作频率对电路工作波形的影响。
2.实验原理采用SPWM正弦波脉宽调制,通过改变调制频率,实现交直交变频的目的。
实验电路由三部分组成:即主电路, 驱动电路和控制电路。
主电路部分:AC/DC (整流) DC/AC (逆变)图4-1 主电路结构原理图如图4-1所示, 交直流变换部分(AC/DC)为不可控整流电路(由实验挂箱DJK09提供);逆变部分(DC/AC)由四只IGBT管组成单相桥式逆变电路,采用双极性调制方式。
输出经LC低通滤波器,滤除高次谐波,得到频率可调的正弦波(基波)交流输出。
本实验设计的负载为电阻性或电阻电感性负载,在满足一定条件下,可接电阻启动式单相鼠笼式异步电动机。
(2)驱动电路:如图4-2(以其中一路为例)所示,采用IGBT管专用驱动芯片M57962L,其输入端接控制电路产生的SPWM信号,其输出可用以直接驱动IGBT管。
其特点如下:①采用快速型的光藕实现电气隔离。
②具有过流保护功能,通过检测IGBT管的饱和压降来判断IGBT是否过流,过流时IGBT 管CE结之间的饱和压降升到某一定值,使8脚输出低电平,在光藕TLP521的输出端OC1呈现高电平,经过流保护电路(见图4-3),使4013的输出Q端呈现低电平,送控制电路,起到了封锁保护作用。
课程名称:电力电子技术指导老师:马皓成绩:__________________ 实验名称:单相正弦波(SPWM)逆变电路实验类型:____________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的与要求熟悉单相桥式SPWM逆变电路的工作原理,对工作情况及其波形作全面的分析,并研究正弦波的频率和幅值及三角波载波频率的关系。
二、实验内容1. 测量SPWM波形产生过程中各点波形;2. 测量逻辑延时电路的延时时间;3. 观察不同负载时变频电路的输出波形。
三、实验仪器与设备1. MPE-I电力电子探究性实验平台2. NMCL-10B单相SPWM逆变实验箱3. NMCL-03D可调电阻4. NMCL-31B交直流仪表5. 万用表6. 示波器四、实验方法及操作步骤1.SPWM波形的观察(1) 观察“SPWM波形发生电路”输出的正弦波波形,改变正弦波频率调节电位器,测试其频率可调范围,改变正弦波幅值调节电位器,测试其幅值变化范围。
(2) 观察“SPWM波形发生电路”输出的三角形载波波形,改变三角波频率调节电位器,测试其频率可调范围,并观察三角波与正弦波波形的对应关系。
(3) 观察“SPWM波形发生电路”经过三角波和正弦波比较后得到的SPWM波形。
2. 逻辑延迟时间的测试将“SPWM波形发生电路”的输出SPWM波与“DLD逻辑延时”的输入端相连(以下实验均需保持连接),用双踪示波器同时观察“DLD逻辑延迟”的“1”和“2”与“SPWM波形发生电路”接地端之间电压波形,并记录延迟时间T d。
3. 同一桥臂上下开关管驱动信号死区时间测试分别将IGBT驱动芯片IR2110输出E1和E2,E3与E4相连,用双踪是比起分别测量G1、E1和G2、E2,G3、E3和G4、E4两端的波形,并测量死区时间。
单相桥式PWM逆变电路发布: 2011-9-6 | 作者: —— | 来源:luliangchao| 查看: 473次| 用户关注:单相桥式PWM逆变电路结合IGBT单相桥式电压型逆变电路对调制法进行说明工作时V1和V2通断互补,V3和V4通断也互补。
以uo正半周为例,V1通,V2断,V3和V4交替通断。
负载电流比电压滞后,在电压正半周,电流有一段区间为正,一段区间为负。
负载电流为正的区间,V1和V4导通时,uo等于Ud。
V4关断时,负载电流通过V1和VD3续流,uo=0负载电流为负的区间,V1和V4仍导通,io为负,实际上io从VD1和VD4流过,仍有uo=Ud。
V4关断V3开通后,io从V3单相桥式PWM逆变电路结合IGBT单相桥式电压型逆变电路对调制法进行说明工作时V1和V2通断互补,V3和V4通断也互补。
以uo正半周为例,V1通,V2断,V3和V4交替通断。
负载电流比电压滞后,在电压正半周,电流有一段区间为正,一段区间为负。
负载电流为正的区间,V1和V4导通时,uo等于Ud 。
V4关断时,负载电流通过V1和VD3续流,uo=0负载电流为负的区间,V1和V4仍导通,io为负,实际上io从VD1和VD4流过,仍有uo=Ud 。
V4关断V3开通后,io从V3和VD1续流,uo=0。
uo总可得到Ud和零两种电平。
单相桥式PWM逆变器电路图原理分析继上篇文章的介绍,本章我们将着重单相桥式逆变器电路图。
从原理上剖析该逆变电路的工作流程,让广大电子爱好者能得到帮助和启示,下面我们详细讲述这一原理。
图1是采用电力晶体管作为开关器件的电压型单相桥式逆变电路,设负载为电感性,对各晶体管的控制按下面的规律进行:在正半周期,让晶体管V1一直保持导通,而让晶体管V4交替通断。
当天V1和V4导通时,负载上所加的电压为直流电源电压Ud 。
当V1导通而使V4关断后,由于电感性负载中的电流不能突变,负载电流将通过二极管VD3续流,负载上所加电压为零。
单双极性SPWM单相桥电压型逆变电路课程设计单极性单极性PWM控制方式调制信号ur为正弦波,载波uc在ur的正半周为正极性的三角波,在ur的负半周为负极性的三角波。
在ur的正半周,V1保持通态,V2保持断态。
当ur>uc时使V4导通,V3关断,uo=Ud。
当ur<uc时使V4关断,V3导通,uo=0。
在ur的负半周,V1保持断态,V2保持通态。
当ur<uc时使V3导通,V4关断uo=-Ud。
当ur>uc时使V3关断,V4导通,uo=0。
主电路在每个开关周期内输出电压在正和零(或负和零)间跳变,正、负两种电平不会同时出现在一个开关周期内,故称为单极性SPWM。
七、单极性SPWM调制分析载波比和调制深度的定义与双极性SPWM相同。
它不适于半桥电路,而双极性SPWM在半桥、全桥电路中都可以使用。
与双极性SPWM相同,在m<=1和fc>>f的条件下,单极性SPWM逆变电路输出的基波电压u1的幅值U1m满足如下关系:U1m=mUd即输出电压的基波幅值随调制深度m线性变化,故其直流电压利用率与双极性时也相同。
就基波性能而言,单极性SPWM和双极性SPWM完全一致,但在线性调制情况下它的谐波性能优于双极性调制:开关次整数倍谐波消除,值得考虑的最低次谐波幅值较双极性调制时小得多,所需滤波器也较小。
八、建立单极性SPWM仿真模型单极性SPWM触发信号产生图:为[101]。
对脉冲电路进行封装:触发电路中三角载波(Triangle)参数设置:“TimeValue”为[01/fc/21/fc],“OutputValue”单极性SPWM主电路:触发电路参数设置:Ud=300v,R=1欧,L=2mH九、进行单极性SPWM仿真1、仿真时间设为0.06键入MATLAB语言命令:>>ubplot(4,1,1)>>ubplot(4,1,2)仿真结果如下:单极性SPWM单相逆变器m=0.8,N=15时的仿真波形图仿真结果分析:输出电压为单极性SPWM型电压,脉冲宽度符合正弦变化规律。
实验五十一DC/AC SPWM单相全桥逆变电路设计及研究(信号与系统—自动控制理论—检测技术-电力电子学综合实验)一、实验原理SPWM单相全桥逆变电路的主要工作原理是依靠四个开关管的通、断状态配合,利用冲量等效原理,采用正弦脉宽调制(SPWM)策略将输入的直流电压变换成正弦波电压输出。
SPWM的调制原理是通过对每个周期内输出的脉冲个数和每个脉冲宽度来调节逆变器输出电压的频率和幅值。
要使输出的电压波形接近标准的正弦波,就要尽量保证SPWM电压波在每一时间段都与该时段中正弦电压等效。
除要求每一时间段的面积相等外,每个时间段的电压脉冲宽度还必须很窄,这就需要在一个正弦波形内脉冲的数量很多。
脉波数量越多,不连续的按正弦规律改变宽度的多脉冲电压就越等效于正弦电压。
目前,在电力电子控制技术中,SPWM技术应用极为广泛,SPWM波形的形成一般有自然采样法、规则采样法等等。
前者主要用于模拟控制中,后者适用数字控制。
本实验采用的是DSP控制的单相全桥逆变电路,采用对称规则采样法。
对称规则采样的基本思想是使SPWM波的每个脉冲均以三角载波中心线为轴线对称,因此在每个载波周期内只需一个采样点就可确定两个开关切换点时刻。
具体算法是过三角波的对称轴与正弦波的交点,做平行于时间轴的平行线,该平行线与三角波的两个腰的交点作为SPWM波“开通”和“关断”的时刻。
由于在每个三角载波周期中只需要进行一次采样,因此使得计算公式得到简化,并且可以根据脉宽计算公式实时计算出SPWM波的脉宽时间,可以实现数字化控制。
图51-1 对称规则采样法生成SPWM波根据相似三角形定理,可以分析出图1对称规则采样法生成的SPWM波脉宽时间T n为:()21sin n n T T MN Nπ−= (51-1) 式中,M 为调制度,T 为正弦调制波周期,N 为载波比。
本实验中程序采用DSP 控制方式,载波频率固定为10KHZ ,调制波频率为50HZ 频率。
单相逆变器SPWM调制技术的仿真课程设计(论文)任务书电气学院学院11电力牵引专业(3)班一、课程设计(论文)题目单相逆变器SPWM调制技术的仿真二、课程设计(论文)工作自 2014年 6月 16日起至 2014年 6月 20 日止。
三、课程设计(论文) 地点: 电气学院机房四、课程设计(论文)内容要求:1.本课程设计的目的(1)熟练掌握MATLAB语言的基本知识和技能;(2)熟悉matlab下的simulink和simpowersystems工具箱;(3)熟悉构建单相桥式逆变器SPWM单极性和双极性调制的仿真模型;(4)培养分析、解决问题的能力;提高学生的科技论文写作能力。
2.课程设计的任务及要求1)基本要求:(1)要求对主电路和脉冲电路进行封装,并对调制度和载波比参数进行封装;(2)仿真参数为:E=100-300V; Ma=0.8-0.95; N=9-21; h=0.0001s,其他参数自定;(3)给出调制波原理图、相电压、相电流、线电压、不同器件所承受的电压波形以及频谱图,要求采用subplot作图;(4)选取不同参数进行仿真,比较仿真结果有何变化,给出自己的结论。
(5)利用matlab下的simulink和simpowersystems工具箱构建单相桥式逆变器spwm单极性和双极性调制的仿真模型。
2)创新要求:封装使仿真模型更加美观、合理3)课程设计论文编写要求(1)要按照课程设计模板的规格书写课程设计论文(2)论文包括目录、正文、心得体会、参考文献等目录1.引言.......................................... - 8 -2.软件介绍...................................... - 9 -3.电力电子电路的仿真实验系统设计 ............... - 10 - 3.1实验系统总体设计 (10)3.2电力电子电路S IMULINK仿真,具有以下特点 (11)4.单相逆变器SPWM调制技术的仿真 ................ - 11 - 4.1单相逆变器SPWM调制电路的基本结构图.. (11)4.2单相逆变器SPWM调制电路的工作原理 (12)4.2.1 逆变器SPWM调制原理................... - 12 -4.2.2 SPWM控制方式......................... - 14 -4.3单相逆变器SPWM调制电路的S IMULINK模型. (16)4.3.1 单极性SPWM仿真的模型图................ - 16 -4.3.1 单极性SPWM仿真的模型图................ - 18 -4.4模型参数的设定模型仿真图及其分析.. (20)4.3.1 单极性SPWM仿真 ....................... - 20 -4.3.2 双极性SPWM仿真 ....................... - 26 -5.结束语....................................... - 34 -6.参考文献..................................... - 35 -单相逆变器SPWM调制技术仿真的课程设计[摘要]:随着电力电子技术的不断发展,可控电路直流电动机控制,可变直流电源等方面得到了广泛的应用,而这些都是以逆变电路为核心。
PSIM仿真设计单相桥式PWM逆变器一、实验目的1.加深对SPWM基本原理的理解2.熟悉双极性脉冲宽度调制和单极倍频正弦脉宽调制的原理。
3.掌握PSIM仿真软件基本操作并搭建单相SPWM仿真验证双极性脉冲宽度调制和单极倍频正弦脉宽调制;实验验证单级倍频正弦脉宽调制的特点。
二、实验设备表4-1 实验所需设备表三、实验原理(一)、单相桥式电路(H桥)拓扑及其工作原理电压型全桥逆变电路共有四个开关管:T1、T2、T3、T4和四个续流二极管二极管D1、D2、D3、D4,如图4.1所示。
当T1、T4导通时,V ab=V D;当T2、T3导通时,V ab=-V D;当T1、T3导通时V ab=0;当T2、T4导通时,V ab=0(其中T1、T2不能同时导通;T3、T4不能同时导通)。
因此控制四个开关管的通断可以控制输出电压在V D、-V D、0之间变化。
(二)、SPWM 的原理采样控制理论有一个重要的原理——冲量等效原理:大小、波形不相同的窄脉冲变量,例如电压V(t),作用于惯性系统(例如RLC电路)时,只要它们的冲量,即变量对时间的积分相等,其作用效果相同。
V DV o 图3-1 单相桥式逆变电路的拓扑结构图3-2 用SPWM电压等效正弦电压如果将图3-2所示的标准正弦波等分成很多份,那么一个连续的正弦波也可以看作是一系列幅值为正弦波片段的窄脉冲组成。
如果每个片段的面积分别与①、②、③…所示一系列等宽不等高的矩形窄脉冲的面积相等,那么从冲量等效的观点看,由①、②、③…这些等宽不等高矩形脉冲波构成的阶梯波和标准正弦波是等效的。
进一步,如果让图3-1所示逆变器产生如图3-2所示一系列幅值为±U d 的等高不等宽矩形电压窄脉冲,每个电压脉冲的面积(冲量)分别与①、②、③…面积相等,于是图3-2中的登高不等宽的脉冲电压和正弦电压也是冲量等效的。
作用于R、L、C惯性系统后基本是正弦波。
※(三)、双极性正弦脉冲宽度调制(重点)图3-3 双极性正弦脉宽调制输出波形基于载波的SPWM如图3-3所示,图中的高频三角波v c成为载波,正弦波v r称为调制波或参考调制波。
PSIM仿真设计单相桥式PWM逆变器一、实验目的1.加深对SPWM基本原理的理解2.熟悉双极性脉冲宽度调制和单极倍频正弦脉宽调制的原理。
3.掌握PSIM仿真软件基本操作并搭建单相SPWM仿真验证双极性脉冲宽度调制和单极倍频正弦脉宽调制;实验验证单级倍频正弦脉宽调制的特点。
二、实验设备表4-1 实验所需设备表三、实验原理(一)、单相桥式电路(H桥)拓扑及其工作原理电压型全桥逆变电路共有四个开关管:T1、T2、T3、T4和四个续流二极管二极管D1、D2、D3、D4,如图4.1所示。
当T1、T4导通时,V ab=V D;当T2、T3导通时,V ab=-V D;当T1、T3导通时V ab=0;当T2、T4导通时,V ab=0(其中T1、T2不能同时导通;T3、T4不能同时导通)。
因此控制四个开关管的通断可以控制输出电压在V D、-V D、0之间变化。
(二)、SPWM 的原理采样控制理论有一个重要的原理——冲量等效原理:大小、波形不相同的窄脉冲变量,例如电压V(t),作用于惯性系统(例如RLC电路)时,只要它们的冲量,即变量对时间的积分相等,其作用效果相同。
V DV o 图3-1 单相桥式逆变电路的拓扑结构图3-2 用SPWM电压等效正弦电压如果将图3-2所示的标准正弦波等分成很多份,那么一个连续的正弦波也可以看作是一系列幅值为正弦波片段的窄脉冲组成。
如果每个片段的面积分别与①、②、③…所示一系列等宽不等高的矩形窄脉冲的面积相等,那么从冲量等效的观点看,由①、②、③…这些等宽不等高矩形脉冲波构成的阶梯波和标准正弦波是等效的。
进一步,如果让图3-1所示逆变器产生如图3-2所示一系列幅值为±U d 的等高不等宽矩形电压窄脉冲,每个电压脉冲的面积(冲量)分别与①、②、③…面积相等,于是图3-2中的登高不等宽的脉冲电压和正弦电压也是冲量等效的。
作用于R、L、C惯性系统后基本是正弦波。
※(三)、双极性正弦脉冲宽度调制(重点)图3-3 双极性正弦脉宽调制输出波形基于载波的SPWM如图3-3所示,图中的高频三角波v c成为载波,正弦波v r称为调制波或参考调制波。