第五章 留数 留数在定积分计算中的应用
- 格式:ppt
- 大小:1.60 MB
- 文档页数:48
留数定理在定积分中的应用摘 要 留数理论是复积分和复级数理论相结合的产物,利用留数定理可以把沿闭路的积分转化为计算孤立点处的留数.此外,在数学分析及实际问题中,往往一些被积函数的原函数不能用初等函数表示,有时即便可以,计算也非常复杂.我们利用留数定理可以把要求的积分转化为复变函数沿闭曲线的积分,从而把待求积分转化为留数计算.本文介绍留数定义和留数定理以及一些改进的留数计算方法,并讨论了留数理论在定积分计算中的应用。
关键词 留数定理;定积分;应用1. 留数定义定理及其他一些定理1.1 留数的定义设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域0z a R <⋅<内解析,则积分()()1:,02f z dz z a R i ρρπΓΓ⋅=<<⎰为()f z 在点a 的留数,记为:()Re z as f z =.1.2 留数定理介绍留数定理之前,我们先来介绍复周线的柯西积分定理:设D 是由复周线012C C C C --=+++…nC -所围成的有界连通区域,函数()f z 在D 内解析,在_D D C =+上连续,则()0Cf z dz =⎰.定理1 []1(留数定理) 设()f z 在周线或复周线C 所范围的区域D 内,除12,,a a …,n a 外解析,在闭域_D D C =+上除12,,a a …,n a 外连续,则( “大范围”积分)()()12Re knz a k Cf z dz i s f z π===∑⎰.2.留数定理在计算积分中的应用2.1 形如()20cos ,sin f x x dx π⎰型的积分这里()cos ,sin f x x 表示cos ,sin x x 的有理函数,并且在[]0,2π上连续,把握此类积分要注意,第一:积分上下限之差为2π,这样当作定积分时x 从0经历变到2π,对应的复变函数积分正好沿闭曲线绕行一周.第二:被积函数是以正弦和余弦函数为自变量。
留数在定积分计算中的应用
作者:何裕平
来源:《科技风》2019年第25期
摘要:将留数定理应用在定积分计算中是一種较新的计算方法,能够将实积分转变为复积分,降低计算难度和繁琐程度,保证计算效率。
本文将结合具体立体,对留数定理在定积分计算中的应用进行分析。
关键词:定积分;反常积分;函数
留数定理由柯西积分定理及公式推广而来,可被用于解析函数中,某闭曲线路径积分的计算,也能在实积分的计算中使用。
这一计算过程就被称为围道积分法。
计算过程中,将实积分转变为复积分,根据留数定理,再将其转换为对留数的计算,化简整个过程。
留数在定积分计算中的应用需要满足以下条件:被积函数必须和某个解析函数相关,且该定积分能够被转换成沿闭路的积分。
下面将结合具体例题,分析留数定理的应用。
参考文献:
[1]朱传喜.复变函数与积分变换.江西高校出版社.
[2]钟玉泉.复变函数论.高等教育出版社.
作者简介:何裕平(1965-),男,汉族,硕士,高级讲师,研究方向:数学。
第五章留数及其应用§1. 孤立奇点一.孤立奇点的分类1. 孤立奇点的概念定义:若函数在点不解读,但在点的某一去心邻域内处处解读.则称为的孤立奇点.一.求下列函数的奇点,并各奇点是否为孤立奇点.<1) <2)<3)<4)注意:孤立奇点一定是奇点, 但奇点不一定是孤立奇点.2. 孤立奇点的分类设为的孤立奇点,在点的洛朗展式为.(ⅰ> 若有恒成立,则称为的可去奇点.(ⅱ> 若有,但对于有恒成立,则称为的m阶极点.(ⅲ> 若有,则称为的本性奇点.说明: (1>为的洛朗展式,其和函数为在点解读的函数.(2> 无论函数在点是否有定义,补充定义则函数在点解读.3. 孤立奇点的类型的判断(1> 可去奇点的判定方法定理1设在点的某一邻域内解读,则为的可去奇点的充分必要条件是:.定理1’设是的孤立奇点,则为的可去奇点的充分必要条件是:在内有界.(2> 极点的判定方法结论:是的m阶极点的充要条件是:其中在邻域内解读,且.定理2设在点的某一邻域内解读,则为的极点的充要条件是:是的m阶极点的充要条件是:其中为一确定的非零复常数,m为正整数.(3> 本性奇点的判定方法定理3设在点的某一邻域内解读,则为的本性奇点的充要条件是:极限与均不成立.一.判断下列函数的奇点的类型:<1) <2)<3)二. 函数的零点与极点的关系定义:若有正整数m,使得,其中在点解读且,则称为的m阶零点.定理4若在点解读,则为的m阶零点的充要条件是:但一.判断函数的零点及其阶数.定理5 若为的m阶极点,则为的m阶零点.反之亦然.一.判断函数的极点及其阶数.三.函数在无穷远点的性态定义:若存在R>0,有函数在无穷远点的邻域内解读,则称无穷远点为的孤立奇点.设在无穷远点的邻域内的洛朗展式为那么规定:(ⅰ> 若有恒成立,则称为的可去奇点.(ⅱ> 若有,但对于有恒成立,则称为的m阶极点.(ⅲ> 若有,则称为的本性奇点.定理6设在区域内解读,则为的可去奇点、极点和本性奇点的充要条件分别是:极限存在、为无穷及即不存在,也不是无穷.一.判断下列函数的奇点的类型:<1)<2)<3)<4)例6. 判断函数的孤立奇点的类型.§2. 留数一.留数的概念及留数定理定义:设为解读函数的孤立奇点,其洛朗展式为,称系数为在处的留数,记作Res.例6求在孤立奇点0处的留数.例7求在孤立奇点0处的留数.例8求在孤立奇点0处的留数.定理7(柯西留数定理> 设在区域D内除有限多个孤立奇点外处处解读,C是D内包围各奇点的任意一条正向简单闭曲线,那么说明:留数定理把计算周线上的积分的整体问题转化为函数在周线所围成的区域内的各个孤立奇点处的留数的局部问题.例9 计算积分.二. 函数在极点的留数法则Ⅰ如果为的简单极点,则Res.例10 求在各孤立奇点处的留数.法则Ⅱ设,其中在点解读,如果为的一阶零点,则为的一阶极点,且例11 求在的留数.法则Ⅲ如果为的m阶极点,则Res.例12求在孤立奇点0处的留数.例13 计算积分例14 计算积分三. 无穷远点的留数定义:设函数在区域内解读,即为函数的孤立奇点,则称为在的留数,记作Res.定理8如果函数在z平面只有有限多个孤立奇点(包括无穷远点>,设为.则在所有孤立奇点处的留数和为零.法则Ⅳ(无穷远点的留数> 若为函数的孤立奇点,则Res Res.例15 求在它各有限奇点的留数之和.例16计算积分其中C为正向圆周§3. 留数在定积分计算中的应用一.形如的积分思想方法:把定积分化为一个复变函数沿某条周线的积分 .两个重要工作:1> 积分区域的转化,2> 被积函数的转化.当从0到时,z沿单位圆的正向绕行一周.例17 计算的值.二. 形如的积分设为复函数的实值形式,其中满足条件:(1> 。
Chapter 5 定积分计算Abstracts:留数定理及其应用——定积分、积分主值一、留数定理和留数的求法(Residue theorem and residue calculations)1.留数的定义:设0z 是函数)(z f 的孤立奇点(isolated singularity),即除过0z z =点以外函数)(z f 是解析的,则)(z f 在0z 的留数定义为()01Res ()d 2cf z f z z iπ=⎰,其中c 为绕0z的闭曲线(⎰c积分沿正方向进行)且内部无其它奇点,记号为0)(Res z z z f =或)(Res 0z f .(1)有限远孤立奇点的留数:)(z f 在0z 邻域)0(0r z z <-<内(不含其它奇点)的罗朗级数(Laurent series )展开的 1-次幂项10)(--z z 的系数1-a 称为)(z f 在奇点0z 的留数。
即()011Res ()d 2cf z f z z aiπ-==⎰.此定义基于如下的事实:()∑∞-∞=-=k kk z z a z f 0)(,其中 101()d 2()k k c f z a z iz z π+=-⎰.令函数)(z f 沿以孤立奇点0z 为中心的一个圆周c 积分()()∑⎰⎰∑⎰∞-∞=∞-∞=-=-=k c kkck kkcz z z a z z z a z z f d d d )(0,而()02 (1)d 0 (1),kc i k z z z k π=-⎧-=⎨≠-⎩⎰ 所以 1()d 2cf z z ia π-=⎰.可见,级数中仅仅()101---z z a 项对积分有贡献,积分后唯有1-a 这个系数留下来,故名之为留数(residue).(2)无穷远点的留数:)(z f 在以00=z 为中心,环∞<<z R 内(不含其它奇点)的罗朗级数展开的1-次幂项10)(--z z 的系数1-a 的反号称为)(z f 在∞点的留数。